Nepředvídané události v rámci kvantifikace rizika



Podobné dokumenty
Optimalizace portfolia

Metodika projektů generujících příjmy

Využití účetních dat pro finanční řízení

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

10.3 GEOMERTICKÝ PRŮMĚR

Nalezení výchozího základního řešení. Je řešení optimální? ne Změna řešení

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Spolehlivost a diagnostika

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

7.Vybrané aplikace optimalizačních modelů

P1: Úvod do experimentálních metod

Vzorový příklad na rozhodování BPH_ZMAN

Testování statistických hypotéz

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.

Jednokriteriální rozhodování za rizika a nejistoty

Nejistoty v mìøení III: nejistoty nepøímých mìøení

8. Zákony velkých čísel

2. Finanční rozhodování firmy (řízení investic a inovací)

Deskriptivní statistika 1

4.2 Elementární statistické zpracování Rozdělení četností

2. Vícekriteriální a cílové programování

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

9. Měření závislostí ve statistice Pevná a volná závislost

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

Pojem času ve finančním rozhodování podniku

1.1 Definice a základní pojmy

Pravděpodobnostní modely

Příloha č. 7 Dodatku ke Smlouvě o službách Systém měření kvality Služeb

Chyby přímých měření. Úvod

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

Přednáška č. 2 náhodné veličiny

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VY_52_INOVACE_J 05 01

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2

a další charakteristikou je četnost výběrového souboru n.

Pravděpodobnostní model doby setrvání ministra školství ve funkci

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

Mendelova univerzita v Brně Statistika projekt

PRAVDĚPODOBNOST A STATISTIKA

523/2006 Sb. VYHLÁŠKA

Ventilátory řady NV. Polohy spirálních skříní při pohledu ze strany sání. levé pravé. Provedení pravé Provedení levé Provedení oběžného kola

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

Lineární regrese ( ) 2

Aspects of Intangible Property Valuation in Intragroup Financial Management. Aspekty ocenění nehmotného majetku ve vnitroskupinovém finančním řízení

[ jednotky ] Chyby měření

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné

Finanční řízení podniku. Téma: Časová hodnota peněz

DISTRIBUČNÍ ÚLOHY (Speciální úlohy LP)

2 STEJNORODOST BETONU KONSTRUKCE

1. Základy měření neelektrických veličin

( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N.

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

Princip tržního odstupu v ocenění nehmotného majetku #

Příloha č. 9 PPŽP Metodika projektů generujících příjmy

6. Ventilátory řady FORT NVN

3.3.3 Rovinná soustava sil a momentů sil

Analytické modely systémů hromadné obsluhy

1 ROVNOMĚRNOST BETONU KONSTRUKCE

TECHNICKÁ UNIVERZITA V LIBERCI

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem.

Matematika I, část II

Srovnání kapitálového požadavku na kreditní riziko dle NBCA s ekonomickým kapitálem dle CreditMetrics

SRÁŽECÍ REAKCE. Srážecí reakce. RNDr. Milan Šmídl, Ph.D. Cvičení z analytické chemie ZS 2014/

Téma 6: Indexy a diference

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ

U. Jestliže lineární zobrazení Df x n n

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a a N. n=1

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

Logické rovnice. 1 Úvod. 2 Soustavy logických rovnic

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou

Odhady parametrů 1. Odhady parametrů

Spojitost a limita funkcí jedné reálné proměnné

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Jiří Fořt, Martin Pittermann ZČU v Plzni - Katedra elektromechaniky a výkonové elektroniky

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

P2: Statistické zpracování dat

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

2. Směsi, směšování a ředění roztoků, vylučování látek z roztoků

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

ZÁKLADY STAVEBNÍ MECHANIKY

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE

3. DIFERENCIÁLNÍ ROVNICE

8. cvičení 4ST201-řešení

Testy statistických hypotéz

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Úvod do korelační a regresní analýzy

ij m, velikosti n je tvořen (n m) rozměr-ným polem dat x x x 22 x n1 ... x n2 7.1 Druhy korelačních koeficientů

11. Časové řady Pojem a klasifikace časových řad

Transkript:

Nepředvídaé událost v rác kvatfkace rzka Jří Marek, ČVUT, Stavebí fakulta {r.arek}@rsk-aageet.cz Abstrakt Z hledska úspěchu vestce ohou být krtcké právě ty zdroe ebezpečí, které esou detfkováy. Vzhlede k budoucí estotá, daý povahou ašeho světa, k ech určeí a eexstue ástro, který by tak čl s stotou. Dva přístupy k ech kvatfkac sou vysvětley v toto čláku s tí, že záleží a zpracovatel aalýzy rzka, ke kteréu z přístupů se přkloí v závslost a kokrétích okolostech vestce. Klíčová slova Nepředvídaé událost, kvatfkace rzka. Úvod Kroě předvídaých zdroů ebezpečí ohou a výsledek aalýzy rzka ít vlv zdroe ebezpečí epředvídaé, t. zdroe ebezpečí, které předpovědět lze, ale z růzých důvodů byly opoeuty, a zdroe ebezpečí epředvídatelé, t. zdroe ebezpečí, které elze předpovědět a byly v aalýze taktéž opoeuty. V čláku e oboí považováo za totéž, eboť kalkulace oboího e shodá, a oboí e uvažováo ako zdroe ebezpečí epředvídaé. Kdyby ebylo epředvídaých událostí, aageet rzka by ebyl. Na druhou strau právě ech exstece e tí, co aageet rzka čí tak obtížý, estlže eho prováděí á sěřovat ke skutečéu zaštěí úspěchu vestce. Veškeré detfkovaé zdroe ebezpečí ohou být álo užtečé, pokud astae událost, kterou se dříve edetfkoval a která předětou vestc v okažku svého uskutečěí zasáhe exstečě. Následuící postupy výpočtu elze považovat za ástro, který tuto evetualtu zcela odstraí. ouze poohou do rzka vestce, spočteého a základě detfkovaých scéářů ebezpečí, určtý způsobe zabudovat edetfkovaé scéáře ebezpečí.

Vyezeí rzka V ěkterých publkacích sou v defc rzka zahruty pouze ty zdroe ebezpečí, které ohou výsledek vestce ovlvt v egatví sěru. Jelkož e však lépe v rác aageetu vestce kolv pouze alzovat ztrátu, ale axalzovat eí zsk, e lépe v aageetu rzka uvažovat zdroe ebezpečí ak vedoucí k poklesu vestčího zsku, tak k eho ožéu růstu (v to případě se hovoří o dodatečé vestčí příležtost a kolv o ebezpečí). Na hodotu kalkulovaého rzka teto odlšý přístup vlv á, ásledá aalýza výsledků této kalkulace by ěla být však obdobá pro oba způsoby výpočtu. okud v kalkulac rzka esou dodatečé vestčí příležtost zahruty, ech aalýzu e vhodé provést ý způsobe. Jak bycho v rác aageetu vestce ohl alzovat zeéa eí ožou ztrátu, ale kolv axalzovat eí zsk. Vydee ze základího vzorce, který se defue rzko pro potřeby tohoto textu ásleduící způsobe: = = * C, () kde e rzko vyádřeé v peěžích edotkách. Budee předpokládat, že e spočteé pouze a základě zalostí detfkovaých scéárů, kterých e, a dále, že C ( =,..., ) e ákladová odchylka (ak záporá, tak kladá), která e spatá s určtou pravděpodobostí ( = { ; ;...; ;...; }), že astae ý scéář vývoe vestce ebo eí část (v \ 2 to případě aalyzuee část vestce) ež scéář původě předpokládaý, který reprezetue právě pravděpodobost. Hodoty pravděpodobostí se vztahuí vždy k určtéu časovéu úseku t a v případě, kdy e ěkterý teto úsek ž překroče, e uté provést výpočet rzka zovu s ový hodota pravděpodobostí + pro časový úsek t +. Z toho důvodu e vhodé, aby všechy hodoty byly vždy vztažey ke steéu časovéu úseku t, tedy t = t pro t t; t. Jak by byl výpočet rzka pracěší v případě růzě dlouhých časových úseků t e uté přepočítávat výš rzka př každé zěě pravděpodobost hodotu +, ke které dode př přechodu z časového úseku t do t +. a Co se týče pravděpodobostí obsažeých ve vzorc (), usí pro ě platt ásleduící:

= =. (2) stota = ravděpodobost výchozího vestčího scéáře (bez rzk) e hodota. Tedy všecha ožá ebezpečí, která ohou vyvolat rzka, sou spoea s pravděpodobost 2 až součet všech pravděpodobostí usí představovat stotu.. V celku Jestlže astate stuace, že exstue pouze hodota = a všechy ostatí hodoty pravděpodobostí sou rovy ule, poté hovoříe o bezrzkové vestc. U takové vestce eexstuí žádé hrozby. raktcky by teto případ kdy eěl astat, pokud ao, aalýza rzka by byla bezpředětá. Nepředvídaé událost, které budee považovat vzhlede k () za dodatečou hodotu původě spočteé hodoty, lze pak do tohoto vzorce zabudovat buď do eho pravé č levé stray, ak e vysvětleo íže. ro rzko však usí vždy platt, že e rovo součtu rzka spatého s detfkovaý scéář ebezpečí a rzka vztažeého k edetfkovaý scéářů ebezpečí: = +. (3) 2 rví přístup U každého ž realzovaého vestčího proektu ( =,..., ) zpětě vyhodotíe přesost aalýzy rzka zpracovaé v rác ěkteré z eho předrealzačích fází (apříklad aalýzu rzka zpracovaou v rác stude provedtelost). Důležté e, aby se tyto posuzovaé aalýzy vztahovaly u všech proektů ke steý předrealzačí úseků. táe se, zda astalo u každé této zpětě aalyzovaé vestce ěaké rzko ( =,..., ), které v aalýze rzka ebylo uvažováo, a pokud ao, aké dodatečé skutečé áklady a zpětě odhadutá hodota C NU, pravděpodobost, s títo -tý rzke -té vestce byly spoey. Spočtee: NU = = NU, * C NU, = =, (4)

kde představue součet všech dílčích rzk -té vestce, která astala a v původí aalýze rzka ebyla uvažováa. oěr: = ω = *00% (5) ( + ) = vyadřue průěrou procetí chybu aalýz rzk vestčích proektů. Hodoty se převzaly z původí aalýzy rzk vestc. řto v těchto hodotách esí být uvažováo rzko epředvídaých událostí. ulých proektů o propočtu ho rzka současě posuzovaé vestce bez epředvídaých událostí vyásobíe výš tohoto rzka hodotou + ω, tedy: = * ( + ω). (6) ozaeee, že v toto přístupu lze použít expertího ohodoceí. Experty, kterých e celke, dotážee a procetí odhady δ árůstu č poklesu hodoty vlve epředvídaých událostí, které a základě svých zkušeostí z předchozích podobých proektů očekávaí. Od každého experta obdržíe ede odhad δ ( =,..., ) a spočtee: = * ( + δ ). (7) = Dotazováí expertů a pravděpodobost a ákladové odchylky v toto přístupu e zbytečé, eboť ech využtí e ožé až v přístupu popsaé v ásleduící kaptole. 3 Druhý přístup Spočívá v zabudováí epředvídaých událostí do pravé stray vzorce (), tedy pro platt po rozepsáí (2): usí = * C + = = * C, (8)

kde hodoty a pro =,..., se vztahuí k detfkovaý zdroů ebezpečí, kterých C e, a pro =,..., se vztahuí k edetfkovaý zdroů ebezpečí, kterých e. Uplatěí tohoto vzorce e v prax ožé e v případě, kdy se schop určt hodotu * = C, a to e ožé pouze, když á skupa k(=,,) expertů a základě svých zkušeostí staoví pravděpodobost k (k=,,), že astaou událost v aalýze rzka euvažovaé, a k těto pravděpodoboste odhade dodatečé áklady Ck, které ohou u vestce astat. Spočtee artetcký průěr (resp. vážeý artetcký průěr váhy reprezetuí výzaost expertů) součů těchto hodot: k = k * Ck k = (9) a touto hodotou ve vzorc (8) ahradíe eho druhý suačí vztah: = * C + k = * C = = +. (0) Další ožost uplatěí vztahu (0) eí ožá, eboť k edetfkovaéu scéář elze ý způsobe přřadt hodotu pravděpodobost a výš dodatečých ákladů. 4 orováí přístupů Z kostrukce vztahů (6), (7) a (0) sou zřeé ech výhody č evýhody. Vztah (6) e vhodé použít, pokud sou k dspozc výsledky aalýz rzk předchozích vestčích proektů, včetě ech závěrečých vyhodoceí po okažcích ukočeí žvotího cyklu vestce (resp. po realzačí fáz vestce apod.). Vztah uožňue určt hodotu obektvě, a rozdíl od etody vycházeící z expertího hodoceí (vzorec (7) a (0)), a ěl by být levěší, eboť práce expertů e obecě drahá. Nevýhodou e právě eožost eho aplkace a aalyzovaý proekt, pokud eáe k dspozc výše uvedeé údae z předchozích vestčích proektů. Vztah (5) lze uplatt pouze u orgazací, které systeatcky rzka svých proektů ž řídí a základě předpokladů u tohoto přístupu uvedeých.

zko spočteé dle (7), resp. dle (0) e aopak vysoce subektvě staoveé, ale a druhou strau eí u zpracovatele aalýzy rzka utá zalost hstore rzk ž realzovaých proektů tyto forace poskytou expert. Za předpokladu steé expertí skupy př výpočtu dle (7) a (0) by ěla být teoretcky eí výsledá výše vždy shodá. ř výpočtu dle (7) expert staovuí dvakráte éě hodot, tedy cea ech prací e žší ež př ech agažovaost v rác výpočtu dle (0). Na druhou strau výpočet dle (0) poskytue více forací o ožé skladbě spočteého, což zeéa u aageetu rzka ůže být příosé. Závěr Uvedeé přístupy k výpočtu byly popsáy odděleě, vč. ech výhod a evýhod. Vzhlede ke složtost aalýzy rzk rozsáhleších vestčích proektů, alespoň v případech, kdy á být tato aalýza opravdu přesá, e ale zřeé, že ožá růzá kobace těchto přístupů v rác kokrétí vestce, ůže pohled a eí rzko zpřest. Je saozřeé, že a zde uvedeé etody kalkuluící epředvídaé událost eohou zastt, že v budoucu eastae událost, která vestc zčí. Leč ech přehlížeí v procesu aalýzy rzka přáší vestorov z hledska oha vestčích proektů vyšší ztráty, ež když tyto výpočty provádí. Na závěr uveďe, že sysle aageetu rzka eí pouze vypracovat exceletí aalýzu rzka vestce, když tato čost e velce důležtá, ale apříklad uět výsledky z této aalýzy, vč. veškerých forací, které se k eíu zpracováí použl, využít co elépe k optalzac rzk vestce a tí pláovaých výsledků vestce. Lteratura SMEJKAL, V., AIS, K. Řízeí rzk. raha: GADA, 2003, ISBN 80-247-098-7 TICHÝ, M. zkové žeýrství: 2 detfkace ebezpečí. raha: STAVEBNÍ OBZO 9/95, 995 ETÁKOVÁ, I. Ivestováí 0. raha: ČVUT, 998, ISBN 80-00802-4