1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením m s. V kterém přípdě bude vykonná práce větší proč? Svůj odhd potvrď výpočtem práce, kterou v obou přípdech vykonl thová síl provzu. m = 10 kg h = m = m s g = 10m s W 1 =? W =? Větší práce se musel vykont v druhém přípdě. Výsledkem konání práce bude v obou přípdech stejná změn polohy těles (n tu je nutná stejná práce), ve druhém přípdě, všk těleso získá ještě větší rychlost než mělo n počátku zrychlování (n což je opět potřeb vykont práci) tím je mu nutné n něm vykont větší práci. Výpočet provedeme podle vzorce pro práci. V obou přípdech je tžná síl rovnoběžná se směrem posunutí můžeme vynecht ve vzthu cosα. ) tžení rovnoměrným pohybem W = s dosdíme: = g = m g (síl, kterou táhneme musí vyrovnt tíhu těles) s = h W = g h = mgh W = 10 10 J = 00J b) tžení zrychleným pohybem W s = + m = m g + (síl, kterou táhneme musí vyrovnt tíhu = dosdíme: ( ) těles ještě mu udělit zrychlení ) s = h W = h = m + g h. g ( ) W = 10( + 10) J = 0 J Při rovnoměrném přímočrém pohybu vykoná thová síl provzu práci 00J, při rovnoměrně zrychleném pohybu 0J. Pedgogická poznámk: U bodu b) jde o to, jk dobře se nučili studenti silové rozbory. Opět si opkujeme, že síl provzu musí překont grvitci ještě urychlovt závží. Př. : Určete práci, kterou vykoná při tžení sní psí spřežení. K tžení sní je nutná síl 50 N, psi potáhnou sně rychlostí 10 km h 1 dvě hodiny. Postroje psího spřežení jsou k sním zpojeny vodorovně. -1-1 = 50 N t = h = 700s v = 10 km h =,8m s α = 0 W =? Hledná práce je určen vzthem W = s cosα. Protože sáně jedou po vodorovné rovině rovnoběžně se směrem síly spřežení je cosα = 1. Dráhu určíme z dráhy, kterou sně urzily, z dobu, kterou je spřežení táhlo. W = s s = vt W = vt 6 W = 50,8 700J = 5,0 10 J. 1
Psí spřežení vykoná práci 6 5,0 10 J. Př. 3: N uto, které jede po přibližně rovné dálnici stálou rychlostí 130 km/h, působí proti pohybu vlivem tření odporu vzduchu stálá síl o velikosti 30 kn. Jk velkou práci uto vykoná během jízdy po dálnici při cestě z Prhy do Poděbrd? Délk dálnice z Prhy k odbočce n Poděbrdy je přibližně 35 km. Vzorec pro výpočet práce: 9 W = s = 30000 35000 J = 1,05 10 J Auto vykoná během jízdy po dálnici práci 9 1,05 10 J. Pedgogická poznámk: Předchozí příkld je smozřejmě n tento okmžik nepřiměřeně jednoduchý, le zdání obshuje údj o rychlosti, který se v příkldu využívá při výpočtu. Některé studenty to dokáže splést. Př. : Prodloužení nebo stlčení pružiny je přímo úměrné síle, která n ni působí. Tto přímá úměrnost se uvádí v obráceném pořdí = k, kde je působící síl, je prodloužení nebo zkrácení pružiny k je konstnt úměrnosti nzývná tuhost pružiny. ) V jkých jednotkách se tto konstnt udává? b) Urči tuto konstntu pro pružinu odpružení osobního utomobilu jehož výšk nd vozovkou se po nložení 150 kg sníží o cm. Počítej, že tto hmotnost se rozloží rovnoměrně n všechn čtyři kol. c) Jká práce se při nložení nákldu n pružinu vykoná? m = 150 kg = cm = 0,0 m k =? W =? ) určení jednotek tuhosti pružiny Jednotky, ve kterých se udává konstnt k, určíme doszením do definičního vzthu. 1N = k k = = = 1N/m 1m b) určení tuhosti pružiny: Při nložení nákldu do vozu bude kždá pružin stlčován jednou čtvrtinou tíhy nákldu. Tto síl způsobí stlčení pružiny umožní nám určit tuhost. = k k =, dosdíme: = g = mg mg 150 10 N / m 1,9 10 k = = = = N / m 0,0 c) určení vykonné práce: Vzorec pro práci: W = s Problém: síl, kterou je pružin stlčován, se mění s jejím stlčením. Velikost síly je dán vzthem = k, síl přímo úměrně roste se stlčením nemůžeme tedy použít klsický vzth pro práci. Nkreslíme grf závislosti síly (působící n pružinu) n stlčení pružiny. [N] = k [m]
Podobná situce jko při výpočtu dráhy rovnoměrně zrychleného pohybu přibližně práci určíme, když budeme předpokládt, že síl je po určitou dobu stálá. Přesnost výpočtu roste, když zmenšuje, po které předpokládáme konstntní hodnotu síly. Práci určíme jko plochu pod grfem závislosti působící síly n dráze (tzn. n stlčení pružiny). V grfu je nkreslen ploch pod grfem znázorňující vykonnou práci při stlčení od nuly do - prvoúhlý trojúhelník s odvěsnmi = k (největší působící síl) (největší stlčení). 3
b k 1 W S = = = = = k mg Dosdíme z k: k =. 1 1 mg 1 W = k = = mg - práce, kterou vykoná jedn pružin, v utě jsou čtyři 8 násobíme čtyřmi: WC = mg = mg 8 WC = mg = 150 10 0,0J = 15J Tuhost pružiny se udává v N / m, tuhost pružiny v utě je 1,9 10 N / m při nložení nákldu byl n pružinách vykonán práce 15 J. Pedgogická poznámk: Bod c) předchozího příkldu smozřejmě řešíme po krocích se společnou kontrolou n tbuli. Dodtek: Předstv postupného ztěžování pružiny rostoucí silou, odpovídá postupnému přidávání nákldu. Hmotnost nákldu postupně roste, pružin se postupně stlčuje, n kždé dlší mlé stlčení je potřebná větší síl. Nopk je poměrně nepřirozená v přípdě, že bychom nákld nložili njednou zdálo by se, že n pružinu celou dobu působil tíh nákldu síl by tk byl konstntní. Vykonná práce všk má odpovídt celkové změně, která je v tomto přípdě stejná jko při postupném nkládání. Ve skutečnosti je to tk, že při okmžitém nložení celého nákldu, n počátku jen část tíhy stlčuje pružinu, zbytek uděluje nákldu zrychlení směrem k zemi. Př. 5: Jk velkou práci vykonáme, překlopíme-li bednu tvru krychle o hrně [m] hmotnosti m [kg], okolo hrny. Bedn je zjištěn tk, by se během překlápění neposouvl. Při překlápění krychle budeme vykonávt práci tím, že budeme zvedt těžiště krychle. Vzdálenost, o kterou těžiště zdvihneme je vidět z obrázku n počátku se těžiště nchází nd středem strny, n konci nd hrnou. T s 1 = + = = 1 s = s =
1 W = s W = mg [ J] 1 N převrácení krychle bude třeb práce W = mg [ J] Shrnutí:. 5