Neparametrické metody

Rozměr: px
Začít zobrazení ze stránky:

Download "Neparametrické metody"

Transkript

1 I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických testů (apř. ormalita rozdílů v párovém t-testu) v Neparametrické metody mohou zahrovat požadavky a určité vlastosti rozděleí (apř. symetrie ebo spojitost) v Jsou mohdy jediou alterativou aalýzy ordiálích dat ebo dat ve formě četostí či pořadí Kotakt: Literatura: Obecé iformace Zvárová, J.: Základy statistiky pro biomedicíské obory I. Vydavatelství Karolium, UK Praha Zvára, K.: Roser, B.: EuroMISE cetrum Doc. Zdeěk Valeta, Ph.D. Tel.: 5 (sekretariát) Fax: 5 5 Biostatistika. Vydavatelství Karolium, UK Praha Fudametals of Biostatistics, th Editio ÚVOD (pokr.) v TŘÍD NEPARAMETRICKÝCH TESTŮ: JEDNOVÝBĚROVÉ: Kvatilový test DVOUVÝBĚROVÉ PÁROVÉ: Zamékový test, Wilcoxoův párový test (siged-rak test). Oba testy jsou eparametrickou alterativou párového t-testu. DVOUVÝBĚROVÉ PRO NEZÁVISLÉ VÝBĚR: Mediáový test, Wilcoxoův dvouvýběrový test (Maův-Whiteyův U test, Wilcoxo Rak-Sum test), Robustí dvouvýběrový test, Kolmogorovův-Smirovův dvouvýběrový test, případě Waldův-Wolfowitzův rus test. Tyto testy jsou eparametrickou alterativou dvouvýběrového t-testu. VÍCEVÝBĚROVÉ: Kruskalova-Wallisova aalýza pořadových skórů jedoduchého tříděí, Friedmaova aalýza pořadových skórů opakovaých měřeí v jedoduchém tříděí. Tyto aalýzy odpovídají aalýze rozptylu (ANOVA - aalysis of variace, MANOVA - multivariate ANOVA) jedoduchého tříděí.

2 ÚVOD (pokr.) v Výše uvedeé testy jsou aalogií zámých parametrických testů, tj. jedovýběrového t-testu, dvouvýběrového t-testu pro ezávislé výběry a aalýzy rozptylu v Neparametrické testy emusí vyžadovat splěí všech požadavků zámých z parametrických metod, jakými jsou apříklad ormalita rozděleí, případě ai shodost rozptylů u dvouvýběrových testů (apř. robustí dvouvýběrový test) v V případě, že jsou ovšem požadavky a použití parametrických metod splěy, je vhodé je upředostit před metodami eparametrickými, eboť testy založeé a parametrických metodách mají zpravidla větší sílu (využívají více iformace) POŘADÍ SHODNÝCH POZOROVÁNÍ (ties) v V případě shodých pozorováí (ties) přiřazujeme tzv. průměrá pořadí (average raks). v Vzestupě uspořádaá data a jejich průměrá pořadí: Uspořádaá Data Průměrá pořadí -,5,5 5,5,5 II. USPOŘÁDÁNÍ A POŘADÍ v Pozorovaá data: -,,,,,,, v Vzestupě uspořádaá data: -,,,,,,, v Pořadí R i pozorovaých dat (Raks R i ):, 5,,,,,, III. VÝBĚROVÉ KVANTIL SPOJITÝCH ROZDĚLENÍ v Vzestupě uspořádaá data: -,,,,,,, v Výběrové kvatily: -. % kvatil (mi). / =,% kvatil. / =,% kvatil... 5/ =,5% kvatil. % kvatil (max)

3 ODHAD KVANTILŮ SPOJITÝCH ROZDĚLENÍ v Vzestupě uspořádaá data: -,,,,,,, v Odhady kvatilů (lieárí iterpolace): % kvatil (mi) =-, % kvatil =- + (- -)*(/.) = -, 5% (.kvartil, Q) = + (-)*(./.) =,5 5% (mediá): =,5 5% (. kvartil, Q) = 5, % kvatil =, % kvatil (max) =, KVANTILOVÝ TEST příklad: v ZADÁNÍ: Na základě dat o itervečí léčbě pacietů se závažou formou hyperlipoproteiemie (sérum CHOL mmol/l a více) testujte a hladiě výzamosti α =,5 hypotézu, že u alespoň % pacietů s touto závažou formou hyperlipoproteiémie docílí itervečí léčba poklesu hladiy CHOL v séru většího ež mmol/l. v H :(y -x). = d. = v H : d. > v HLADINA VÝZNAMNOSTI: α =,5 (léčba edosahuje staoveého poklesu u alespoň % pacietů) (pokles u alespoň % pacietů) IV. KVANTILOVÝ TEST (-výběrový) v Nulová hypotéza: H : x q = c (H :*q% kvatil x q cílové populace je rove c) v Alterativí hypotéza: H : x q c v Hladia výzamosti: α (apř.,5) v Postup: Záhodého výběru vyřadíme čley, u kterých je hodota zaku x rova kostatě c. Ve výsledém souboru o rozsahu pak zjistíme počet čleů m, u kterých je x < c. v Testová statistika: Z = m q ~ N(,) q( q) má za platosti H stadardí ormálí rozděleí N(,). v Testové kritérium: Zamítáme H, jestliže z α / v Předpoklady: > 5,, < q <, a spojitost rozděleí (aprox. biomického rozděleí ormálím rozděleím N(,)) Z KVANTILOVÝ TEST pokr. př.: v ŘEŠENÍ: Předpokládejme, že data ukazují, že ve případech ze byla hodota d >a ai v jedom případě ebylo d =. Tedy: = (počet případů kde d ) m = (počet případů kde d > ) q =,. m q *, v TESTOVÁ STATISTIKA: Z = = =,5 q( q) *,*, v VÝSLEDEK: Kritická hodota ormálího rozděleí pro jedostraý test a hladiě výzamosti α = 5% má hodotu,5. Protože hodota testové statistiky Z =,5 přesahuje kritickou hodotu, zamítáme ulovou hypotézu H a hladiě výzamosti 5%. v ZÁVĚR: Na hladiě α=,5 zamítáme ulovou hypotézu H, že itervečí léčba edosahuje staoveého poklesu hladiy CHOL o více ež mmol/l u alespoň % pacietů.

4 V. ZNAMÉNKOVÝ TEST (párový) v NULOVÁ HPOTÉZA: H : (x y),5 = d,5 = (H :Mediá párových rozdílů d,5 je rove ) v ALTERNATIVNÍ HPOTÉZA: H : d,5 v HLADINA VÝZNAMNOSTI: α (apř.,5) v POZNÁMKA: Zamékový test je speciálím případem kvatilového testu pro mediá (tj. q =,5) aplikovaého a párové rozdíly hodot mezi dvěma výběry. v POSTUP: Ze základího souboru párových rozdílů vyřadíme čley, u kterých je hodota zaku d = x - yrova. Ve výsledém souboru o rozsahu (počet párů) pak zjistíme počet čleů C, u kterých je d >. ZNAMÉNKOVÝ TEST příklad v DERMATOLOGIE: Byla realizováa studie zaměřeá a porováí účiosti pleťových krémů typu A, B a C s ochraým faktorem proti egativím účikům sluečího zářeí při dlouhodobé expozici. Krémy byly aplikováy účastíkům studie a odpovídající místa s podobou kvalitou pokožky a levé a pravé části těla a každý z účastíků byl ásledě vystave itezivímu sluečímu zářeí po dobu hod. Poté bylo dermatologem porováo zrudutí pokožky a ošetřeých místech. V. ZNAMÉNKOVÝ TEST (párový, pokr.) v TEST H (aproximace biomického rozděleí ormálím): Zamíteme H, jestliže: ZNAMÉNKOVÝ TEST příklad v Orgaizace dat: C > + + z α / ebo C < z α / v PŘEDPOKLAD: Počet dvojic a spojitost rozděleí v TEST H (exaktí staoveí hladiy výzamosti p a základě biomického rozděleí): (a) Je - li C > p = * j = C j C (b) Je - li C < p = * j = j 5 Krém A Krém B Krém C Původí data hodotila zrudutí pokožky koeficietem až 5.

5 ZNAMÉNKOVÝ TEST příklad v DATA: Box & Whisker Plot Box & Whisker Plot Krém A Krém B Krém C Media 5%-5% Mi-Max STATISTICA.: ZNAMÉNKOVÝ TEST (pokr. př.) Sig Test (sig-test-small.sta) Marked tests are sigificat at p <,5 No. of Percet Z p-level Pair of Variables No-ties v < V Krém A & Krém C,,, Sig Test (sig-test-small.sta) Marked tests are sigificat at p <,5 No. of Percet Z p-level Pair of Variables No-ties v < V Krém A & Krém B,,,55 Sig Test (sig-test-small.sta) Marked tests are sigificat at p <,5 No. of Percet Z p-level Pair of Variables No-ties v < V Krém B & Krém C,,,55 ZNAMÉNKOVÝ TEST (pokr. př.) v Soustřeďme se yí pouze a porováí účiosti jedotlivých dvojic krémů typu A, B a C. Navíc předpokládejme, že dermatolog byl schope rozlišit pouze ásledující případy (zde porováváme apř. krémy typu A a B):. Místo A je lépe ochráěé ež místo B (meší zrudutí při aplikaci krému A). Místo B je lépe ochráěé ež místo A (meší zrudutí při aplikaci krému B). Obě místa vykazují podobý stupeň zrudutí pokožky v Tato situace je vhodá pro využití zamékového testu, eboť původí hodoty koeficietů zrudutí pokožky v tomto případě ejsou dostupé, pouze počty případů, kdy pro d = x y platí: d <, d = a d >. ZNAMÉNKOVÝ TEST (pokr. př.) v Rozsah áhodého výběru byl však v každé skupiě (tj, pro každý typ ochraého krému) pouze, což esplňuje požadavek a aproximaci biomického rozděleí stadardím ormálím rozděleím. V takovém případě je uté použít exaktí test biomický test. v Buď C AB počet subjektů, u ichž je d = x y > při porováváí účiku krémů A a B. Je-li C AB velké číslo blízké, pak krém B chráí pokožku většiy studovaých subjektů lépe ež krém A, zatímco je-li C AB malé, pak krém typu A vykazuje a souboru studovaých subjektů lepší výsledky ež krém typu B.

6 ZNAMÉNKOVÝ TEST (pokr. př.) v Za platosti ulové hypotézy H (tj. předpokladu stejé efektivity krémů A a B) lze předpokládat, že Pr(d > ) = Pr(d < ) je u subjektů s eulovou hodotou d stejá, tedy ½. Jiými slovy, jsou-li oba krémy stejě efektiví, potom frekvece případů, kdy A je lepší ež B a případů, kdy A je horší ež B by měly být zhruba stejé. v Ke staoveí DOSAŽENÉ HLADIN VÝZNAMNOSTI p zamékového testu tedy můžeme využít přímo formule biomického rozděleí: p = * j= C AB j VI. WILCOONŮV PÁROVÝ TEST (siged-rak test) v NULOVÁ HPOTÉZA: H : (x y),5 = d,5 = (H :Mediá párových rozdílů d,5 = ) v ALTERNATIVNÍ HPOTÉZA: H : d,5 v HLADINA VÝZNAMNOSTI: α (apř.,5) v POSTUP: Z áhodého výběru s počtem párových pozorováí vyřadíme čley, u ichž je hodota zaku d = x - yrova. Staovíme pořadí hodot d a zjistíme součet pořadí T +,která odpovídají kladým hodotám d. ZNAMÉNKOVÝ TEST (dokočeí) v EAKTNÍ ZNAMÉNKOVÝ TEST: Připoměňme si, že při porováváí účiosti krému A a B jsme měli pozorováí, shodu ( tie ), C AB =, =. Pro exaktí výpočet dosažeé hladiy výzamosti oboustraého testu tedy platí: p = * j= j v ZÁVĚR: = *( + )* = * =, Na hladiě výzamosti α = 5% zamítáme ulovou hypotézu H o shodosti účiku ochraých krémů typu A a B. VI. WILCOONŮV PÁROVÝ TEST (siged-rak test, pokr.) + T ( + ) / v TESTOVÁ STATISTIKA: Z = ~ N(,) ( + )( + ) / má za platosti H stadardí ormálí rozděleí v POZNÁMKA: Wilcoxoův párový test má větší statistickou sílu ež zamékový test, eboť využívá jak iformaci o směru rozdílů, tak o jejich velikosti ve formě pořadí. To se projevuje také v ižším požadovaém miimálím rozsahu áhodého výběru. v TESTOVÉ KRITÉRIUM: Zamítáme H,jestliže z α / v PŘEDPOKLAD:počet párů > 5 a spojitost rozděleí Z

7 v WILCOONŮV PÁROVÝ TEST -příklad Pokračujme aším příkladem z dermatologie: připoměňme, že Wilcoxoův siged-rak test pracuje s aktuálí velikostí rozdílů d = x y, ikoliv pouze s iformací, zda x je větší či meší ež y. Můžeme tedy očekávat, že reálě existující rozdíly mezi efektivostí krémů bude sazší detekovat a základě Wilcoxoova párového testu ež jedoduššího testu zamékového. WILCOONŮV PÁROVÝ TEST (pokr. př.): Krém A vs B: Wilcoxo Matched Pairs Test (sig-test.sta) Marked tests are sigificat at p <,5 Valid T Z p-level Pair of Variables N Krém A & Krém B,,5, Srovej: Sig Test (sig-test.sta) Marked tests are sigificat at p <,5 No. of Percet Z p-level Pair of Variables No-ties v < V Krém A & Krém B,,, WILCOONŮV PÁROVÝ TEST -příklad WILCOONŮV PÁROVÝ TEST (pokr. př.): v Orgaizace dat: v Box ad Whisker plot: Krém A vs C: 5 5 Krém A Krém B Krém C Box & Whisker Plot Krém A Krém B Krém C Media 5%-5% Mi-Max Wilcoxo Matched Pairs Test (sig-test.sta) Marked tests are sigificat at p <,5 Valid T Z p-level Pair of Variables N Krém A & Krém C,5,5,5 Srovej: Sig Test (sig-test.sta) Marked tests are sigificat at p <,5 No. of Percet Z p-level Pair of Variables No-ties v < V Krém A & Krém C,,555,

8 WILCOONŮV PÁROVÝ TEST (pokr. př.): Krém B vs C: Wilcoxo Matched Pairs Test (sig-test.sta) Marked tests are sigificat at p <,5 Valid T Z p-level Pair of Variables N Krém B & Krém C,5,,5 Srovej: Sig Test (sig-test.sta) Marked tests are sigificat at p <,5 No. of Percet Z p-level Pair of Variables No-ties v < V Krém B & Krém C,5,5,5 v VARIANT TESTU: - exaktí a základě hypergeometrického rozděleí: (Fisherův test, ) a + c b + d a b P [ a, b] = a + b - Chí-kvadrát aproximace (>): MEDIÁNOVÝ TEST (dvouvýběrový, pokr.) ( ad bc / ) () = ( a + b)( a + c)( b + d)( c + d) v PŘEDPOKLAD: spojitost a shodý tvar rozděleí a. VII. MEDIÁNOVÝ TEST (dvouvýběrový) v NULOVÁ HPOTÉZA: v ALTERNATIVNÍ HPOTÉZA: H : Θ = Θ (H :Mediáy Θ a Θ jsou shodé) v HLADINA VÝZNAMNOSTI: α (apř.,5) H : Θ > Θ (mediá Θ je apravo od Θ ) v POSTUP: Klasifikace hodot vobou souborech podle společého mediáu Θ : VIII. WILCOONŮV DVOUVÝBĚROVÝ TEST (Ma-Whitey U test, Rak-Sum test) v NULOVÁ HPOTÉZA: H : Dva ezávislé výběry pocházejí z populací se shodými mediáy (Θ = Θ ) v ALTERNATIVNÍ HPOTÉZA: od (mediá Θ > Θ ) H : Populace je apravo v HLADINA VÝZNAMNOSTI: α (apř.,5) Klasifikace Počet hodot > Θ Počet hodot < Θ Celkem Soubor a c a+c Soubor b d b+d Celkem a+b c+d v POSTUP: Staovíme pořadí hodot vsouboru vziklém spojeím výběrů a azjistíme součty pořadí W aw ( raked sums ) odpovídající výběrům,. Za platosti H by statistiky W aw y měly mít přibližě stejou hodotu.

9 WILCOONŮV DVOUVÝBĚROVÝ TEST (pokr.) v TESTOVÁ STATISTIKA: W Z = +.5 m( m + + ) / ~ N (,) m( m + + ) / má za platosti H stadardí ormálí rozděleí N(,), přičemž m a jsou rozsahy jedotlivých výběrů. v POZNÁMKA: V případě, že H mátvar Θ < Θ má hodota,5 v čitateli záporé zaméko. Wilcoxoův dvouvýběrový test má větší statistickou sílu ež mediáový test, eboť využívá jak iformaci o poloze skórů vůči společému mediáu, tak také součty pořadí. WILCOONŮV DVOUVÝBĚROVÝ TEST - příklad v v Pokračujme opět aším příkladem z dermatologie; pouze yí předpokládejme, že data evzikla párovým porováváím a týchž subjektech, ýbrž že každému z účastíků studie byl apliková právě jediý z ochraých krémů typu A, B, C. Z tohoto důvodu budou mít data amísto zázamů (records) se třemi proměými A, B, C mít zázamů a pouze dvě proměé, přičemž prví proměá udává hodotu zjištěého koeficietu a druhá je idikátorem, udávajícím typ použitého krému u daého subjektu. WILCOONŮV DVOUVÝBĚROVÝ TEST (dok.) v TESTOVÉ KRITÉIUM: Zamítáme H, jestliže z α v PŘEDPOKLAD: m>, > a spojitost a shodý tvar rozděleí v obou populacích Z WILCOONŮV DVOUVÝBĚROVÝ TEST - příklad v Orgaizace dat v programu Statistica v tomto případě vypadá ásledově: Krém Group

10 WILCOONŮV DVOUVÝBĚROVÝ TEST - pokr. př. Pozámky k dvouvýběrovým testům: v Ukázka výpočtu rus ve WALDOVĚ-WOLFOWITZOVĚ testu a příkladě: Ma-Whitey U Test (Wilcoxo Rak Sum Test.sta) By variable Group Marked tests are sigificat at p <,5 Rak Sum Rak Sum U Z p-level Z p-level Valid N Valid N *sided variable Group Group adjusted Group Group exact p Krém 5,5,5 5,5 -,5, -,,5,5 pořadí... data MMMZZZMMMMZZMMMZZZZZZZMMZMMZZZZ ru 555 DALŠÍ DVOUVÝBĚROVÉ TEST: v KOLMOGOROVŮV-SMIRNOVŮV test: Kolmogorov-Smirov Test (Wilcoxo Rak Sum Test.sta) By variable Group Marked tests are sigificat at p <,5 Max Neg Max Pos p-level Mea Mea Std.Dev. Std.Dev. Valid N Valid N variable Differc Differc Group Group Group Group Group Group Kr ém -,, p >.,,5,5, v WALDŮV-WOLFOWITZŮV rus test Wald-Wolfowitz Rus Test (Wilcoxo Rak Sum Test.sta) By variable Group Marked tests are sigificat at p <,5 Valid N Valid N Mea Mea Z p-level Z adjstd p-level No. of No. of Variable Group Group Group Group Rus ties Krém,,5,5,5,, Pozámky k dvouvýběrovým testům: v WILCOONŮV DVOUVÝBĚROVÝ TEST (Maův- Whiteyův U-test, Wilcoxoův Rak-Sum test) má ejvětší statistickou sílu z uvedeých testů a je vhodý zejméa v případě, že počet ties (shodých pozorováí) je malý. Je vhodý zejméa v situacích, kdy se průměré hodoty pořadí v jedotlivých skupiách (apř. muži a žey) podstatě liší. v WALDŮV-WOLFOWITZŮV RUNS TEST má meší statistickou sílu, ale je vhodý v případě, že průměré hodoty pořadí se ve skupiách (muži a žey) zásadě eliší, ale apříklad u mužů abývají buď vysokých ebo aopak ízkých hodot, zatímco u že abývají středích hodot. v KOLMOGOROVŮV-SMIRNOVŮV test je vhodý v případě, že počet shodých pozorováí ( ties ) je vyšší.

11 I. KRUSKALOVA-WALLISOVA ANOVA v Nulová hypotéza: H : kezávislých výběrů pochází z populací se shodými mediáy (Θ = Θ =...= Θ k ) v Alterativí hypotéza: H : Mediáy se alespoň ve dvou populacích vzájemě liší v Hladia výzamosti: α (apř.,5) v Postup:. Do tabulky o k sloupcích, ve které j-tý sloupec odpovídá výběru z j-té populace (j=,...,k), zapíšeme amísto pozorovaých hodot pořadí, která odpovídají pozorovaým hodotám v souboru vziklém spojeím k podsouborů.. V každé z k skupi spočteme průměré pořadí R j, (j=,...,k) KRUSKALOVA-WALLISOVA aalýza příklad: Opthalmologie: v Kyselia arachodiová je zámá tím, že ovlivňuje metabolismus oka. Kotakt oka s malým možstvím této kyseliy má za ásledek zavřeí víčka, svěděí a v ěkterých případech poruchy viděí. Studie, z íž pocházejí data pro áš příklad, porovávala protizáětlivé účiky zkoumaých látek, které byly aplikováy laboratorím zvířatům (bílí králíci) do jedoho oka a roztok salia do druhého oka. v Po miutách bylo králíkům aplikováo malé možství kyseliy arachodiové a obě bulvy. Po dalších 5 miutách byli králíci kotrolovái, zda došlo k uzavřeí víčka a bylo zazameáo skóre, které představovalo hodotu rozdílu mezi stupěm otevřeí víčka (-otevřeé, - polouzavřeé a uzavřeé) a začátku pokusu a po aplikaci kyseliy arachodiové. KRUSKALOVA-WALLISOVA ANOVA (pokr.) v Testová statistika: má za platosti H rozděleí v Testové kritérium: Zamítáme H, jestliže KW v Předpoklady: k KW = jr N( N + ) j= χ k ( N + ) - Rozsahy výběru j (j=,...,k) musí být v jedotlivých skupiách alespoň 5 - Spojitost - Shodý tvar rozděleí v jedotlivých populacích. j > χ k ( α ) KRUSKALOVA-WALLISOVA aalýza pokr. př.: Opthalmologie: v Data pro statistickou aalýzu udávají míru efektivosti protizáětlivého přípravku a jsou dáa rozdíly mezi hodotou skóre a oku ošetřeém aktiví látkou a oku ošetřeém saliou (eutrálí izotoický,% roztok soli). v Vyšší hodoty skórů (rozdíly rozdílů) azačují efektivější účiek protizáětlivé látky.

12 KRUSKALOVA-WALLISOVA aalýza pokr. př. v Opthalmologie -data: 5 5 Skore Lecba Idometaci Idometaci Idometaci Idometaci Idometaci Idometaci Aspiri Aspiri Aspiri Aspiri Aspiri Aspiri Piroxicam Piroxicam Piroxicam Piroxicam Piroxicam Piroxicam BW55C BW55C BW55C BW55C BW55C - BW55C KRUSKALOVA-WALLISOVA aalýza pokr. př. v K-W aalýza pořadových skórů: Deped.: Sk ore Idometaci Aspiri Piroxicam BW55C v Mediáový test: Depedet: Sk ore <= Media: observed expected obs.-exp. > Media: observed expected obs.-exp. Total: observed Kruskal-Wallis ANOVA by Raks; Idepedet (groupig) variable: Lecba Kruskal-Wallis test: H (, N= ) =,5 p =, Code Valid Sum of N Raks,5 5,,5, Media Test, Overall Media =,; Sk ore (Kruskal-Wallis Ophtalmologie.sta) Idepedet (groupig) variable: Lecba Chi-Square =,, df =, p =, Idometaci Aspiri Piroxicam BW55C Total,,,, 5,,5,5,5,5 -,5,5 -,5,5,,,,,,5,5,5,5,5 -,5,5 -,5,,,,, KRUSKALOVA-WALLISOVA aalýza pokr. př. v Box & Whisker Plot: Boxplot by Group Variable: Skore,5,,5,. ROBUSTNÍ DVOUVÝBĚROVÝ TEST v NULOVÁ HPOTÉZA: H : Dva ezávislé výběry pocházejí z populací se shodými mediáy (Θ = Θ ) v ALTERNATIVNÍ HPOTÉZA: H : Mediá Θ > Θ v HLADINA VÝZNAMNOSTI: α (apř.,5) Skore,5,,5, v POSTUP (a příkladě):. Vzestupě uspořádejme pozorovaá data a ozačme příslušost ke skupiám a : -,5 -, -,5 Idometaci Aspiri Piroxicam BW55C Lecba Media 5%-5% Mi-Max Data Skupia 5

13 ROBUSTNÍ DVOUVÝBĚROVÝ TEST (pokr.) Data Skupia i U( i ). Defiujeme: U( i ) počet meších ež i U( j ) počet meších ež j 5 j U( j ). Vypočteme středí hodoty U() a U(): ( ) (+ ( ) = m U i U = m i= ( ) (+ + ( ) = U i U = i= + ) + ) = =,5 5 U = ROBUSTNÍ DVOUVÝBĚROVÝ TEST - pokr. v Středí hodoty: U() = U() =,5. v Ukazatele variability: V = V =,5. 5. TESTOVÁ STATISTIKA U má za platosti H rozděleí N(,): mu ( ) U ( ) = V + V + U ( ) U ( ) () (,5) =, +,5 + (,5)(). TESTOVÉ KRITÉRIUM: Zamítáme H, jestliže platí U z.. ZÁVĚR: V ašem příkladě H ezamítáme. α. PŘEDPOKLAD: m >, > a spojitost rozděleí (rozptyly se mohou lišit, jde o tzv. Behresův-Fisherův problém). Pro m, je rozděleí U tabelováo. ROBUSTNÍ DVOUVÝBĚROVÝ TEST - pokr. Středí hodoty: U() = U() =,5.. Vypočteme ukazatele variability V a V : V i U( i ) m = [ U ( i) U ( )] i= = ( ) = + + = + ( ) 5 V = + ( ) j U( j ) = j= [ U ( ) U ( )] = (,5) + (,5) j + (,5) + (,5) = =,5

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Statistika. Poznámky z přednášek

Statistika. Poznámky z přednášek Statistika Pozámky z předášek Materiál obsahuje pozámky ze předášek plus to co se musíme doučit včetě ukázkových příkladů, které se objevily a předášce, ebo z aplikace etstorage. J.T. OBSAH Úvodí stráka

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Cvičení 9: Neparametrické úlohy o mediánech

Cvičení 9: Neparametrické úlohy o mediánech Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B) Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Test hypotézy o parametru π alternativního rozdělení příklad

Test hypotézy o parametru π alternativního rozdělení příklad Test hypotézy o parametru π alterativího rozděleí příklad Podik předpokládá, že o jeho ový výrobek bude mít zájem 7 % osloveých domácostí. Proběhl předběžý průzkum, v ěmž bylo osloveo 4 áhodě vybraých

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

ANALÝZA SRÁŽKOVÝCH MAXIM

ANALÝZA SRÁŽKOVÝCH MAXIM Rožovský, J., Litschma, T. (ed): Semiář Extrémy počasí a podebí, Bro,. březa 4, ISBN 8-8669-2- Marie Budíková, Ladislav Budík Summary Aalysis of precipitatio maxima ANALÝZA SRÁŽKOVÝCH MAXIM Database of

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací 6.-7. září 006 tegrace hodot Value-at-Risk lieárích subportfolií a bázi vícerozměrého ormálího

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

3 - Póly, nuly a odezvy

3 - Póly, nuly a odezvy 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 5 3--5 Automatické řízeí - Kyberetika a robotika Póly přeosu jsou kořey jmeovatele pro gs () = bs () as () jsou to komplexí čísla si: as ( i) = pokud

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

FORT-PLASTY s.r.o., Hulínská 2193/2a, 767 01 Kroměříž, CZ tel.: +420 575 755 711, e-mail: info@fort-plasty.cz, www.fort-plasty.cz

FORT-PLASTY s.r.o., Hulínská 2193/2a, 767 01 Kroměříž, CZ tel.: +420 575 755 711, e-mail: info@fort-plasty.cz, www.fort-plasty.cz FORT-LASTY s.r.o., Hulíská 2193/2a, 767 01 Kroměříž, CZ NQA ISO 9001 0 7. Vetilátory řady a Vetilátory řady a slouží k odsáváí vzdušiy s obsahem agresivích látek, jako jsou kyseliy a louhy především z

Více

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu): Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při

Více

35! n! n k! = n k k! n k! k! = n k

35! n! n k! = n k k! n k! k! = n k Do školí jídely přišla skupia 35 žáků. Určete kolika způsoby se mohli seřadit do froty u výdeje obědů. Řešeí: Počet možostí je 1 2... 35=35! (Permutace bez opakováí) Permutací bez opakováí z -prvkové možiy

Více

3.1 OBSAHY ROVINNÝCH ÚTVARŮ

3.1 OBSAHY ROVINNÝCH ÚTVARŮ 3 OBSAHY ROVINNÝCH ÚTVARŮ Představa obsahu roviého obrazce byla pro lidi důležitá od pradávých dob ať již se jedalo o velikost a přeměu polí či apříklad rozměry základů obydlí Úlohy a výpočet obsahu základích

Více

Příklady k přednášce 9 - Zpětná vazba

Příklady k přednášce 9 - Zpětná vazba Příklady k předášce 9 - Zpětá vazba Michael Šebek Automatické řízeí 205 6--5 Příklad: Přibližá iverze tak průřezu s výškou hladiy y(t), přítokem u(t) a odtokem dy() t dt + 2 yt () = ut () Cíl řízeí: sledovat

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Metodický postup pro určení úspor primární energie

Metodický postup pro určení úspor primární energie Metodický postup pro určeí úspor primárí eergie Parí protitlaká turbía ORGRZ, a.s., DIVIZ PLNÉ CHNIKY A CHMI HUDCOVA 76, 657 97 BRNO, POŠ. PŘIHR. 97, BRNO 2 z.č. Obsah abulka hodot vstupujících do výpočtu...3

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více