Reologické modely měkkých tkání

Rozměr: px
Začít zobrazení ze stránky:

Download "Reologické modely měkkých tkání"

Transkript

1 Reologické modely měkkých kání Tomas Mares 1. Úvod Výchozím principem mechaniky měkkých kání (j. kůže, cév, pojivových kání, kání vniřních orgánů, šlach, vazů, chrupavek, sinoviální ekuiny) je reologie. Při modelování ěcho kání se někdy aké používá eorie směsí, jejíž zvlášní čásí je zv. poroelasicia. 2. Reologie Reologie suduje deformování a ečení hmoy způsobené aplikovaným napěím. 1 Název byl zaveden roku 1920 profesorem ugenem Binghamem z Lehigh Universiy (Behlehem, Pennsylvania). Inspirací mu byl výrok řeckého filosofa Héraleia z fesu ( , Hϱάκλιτoς ó ϕέίoς) Vše plyne (πάντα ϱ ι, pana rei) proneseného ve významu Nevsoupíš dvakrá do sejné řeky. Reologie rozšiřuje klasické disciplíny jako je eorie pružnosi, = du dx, a mechanika newonovských ekuin, τ = η d u dy na maeriály jiných vlasnosí. Reologie se aké snaží předpovědě chování maeriálu nazíraného jako koninuum se znalosí jeho mikro a nanosrukury. V každé láce je obsažena jak pružná ak viskozní deformace. Rozdíl je jen v rychlosi rvalé deformace. Pevné láky ečou pomaleji, ekuiny rychleji Základní reologické láky. Základní reologickou lákou je zv. uklidova uhá láka, láka, kerá se může pohybova, působí na ni servačné účinky, ale zůsává nedeformována ( = 0). Pro uo láku používáme následující symbolickou značku: Další důležiou základní reologickou lákou je Hookeova pružná láka, kde závislos mezi napěím a deformací je lineární =. Symbolem éo značky je pružina a charakerisikou je zv. modul uhosi. Hookeova pružná láka předsavuje vůbec první známé vyjádření závislosi deformace na zaížení. Jako první ho nejspíše vyslovil roku 1660 Rober Hooke v práci vydané až roku 1678 v Londýně. Také v Londýně, avšak o čyři roky dříve, j. r. 1674, vyšla i práce Williama Peyho, kde nezávisle na Hookeovi formuloval enýž zákon o lineární závislosi deformace na zaížení. S. Venanova plasická láka je láka, jejíž závislos napěí a deformace je charakerizována grafem z obrázku 2 a značena symbolem: k Tao láka je charakerizována veličinou k zvanou mez kluzu. Newonova vazká kapalina je charakerizována lineární závislosí mezi napěím a rychlosí deformace = η a symbolizována obrázkem: 1 [Sob81] 1

2 Meziprosorová (inersiciální) ekuina Anion Kaion Proeoglykanová molekula j. molekula obsahující kovalenně vázané bílkoviny a polysacharidy Kolagenní vlákno Uvažujme jen objemové podíly Kovalenní vazba Microfibrila Tropokolagen j. rojnásobně spirálovié vlákno kolagenu Aniony Kaiony Tekuina Pevná láka Reologie Spojiý model Teorie směsí Pseudospojiý model Obrázek 1. Reologie a poroelasicia v modelování měkkých kání 2

3 k Zpevněná láka Obrázek 2. Závislos napěí a deformace pro S. Venanovu láku je charakerizována závislosí napěí a deformace z obrázku 3. z Obrázek 3. Závislos napěí a deformace pro zpevněnou láku 3

4 Název láky Charakerisika Grafický symbol uklidova uhá láka = 0 Hookeova pružná láka = S.-Venanova plasická láka k k Newonova vazká kapalina = η Zpevněná láka z Tabulka 1. Základní reologické láky 4

5 2.2. Modelování láek skládáním láek základních Láky pružné (elasické). 2 = = ( + 2 ) Obrázek 4. Paralelní uspořádání elasických láek 2 ( 1 = = + 1 ) 2 Obrázek 5. Seriové uspořádání elasických láek z 2 z 2 = ( z + z ) Obrázek 6. Jednoduchá nadpružená láka 5

6 0 1 z 2 2 z 3 3 z 0 1 z 2 z 3 z = k=1 k 2 ( ) k z + k z Obrázek 7. Složená nadpružená láka 0 1 z = 0 + Obrázek 8. Spojiá nadpružená láka 0 (ɛ) dɛ 6

7 k k k = k = k ( k ) k Obrázek 9. lasoplasická láka bez zpevnění Láky pružnoplasické (elasoplasické, pružnováné). Vzah mezi napěím a deformací v případě elasoplasické láky bez zpevnění, viz obr. 9, získáme ze vzahu (6) planém pro jednoduchou nadpruženou láku, kde položíme 2 = a =, j. = + 2 ( k + k ), z čehož po úpravě dosáváme výsledný reologický vzah kde k = k. = k ( k ), max max < 2 k max max > 2 k k k k = k + Obrázek 10. Tuhoplasická láka se zpevněním 7

8 2 k 2 k Obrázek 11. lasoplasické láky s přímkovým zpevněním 8

9 2.3. Láky viskoelasické (vazkopružné, pružnovláčné). = + Obrázek 12. Láka Kelvinova (Voiova) Láka Kelvinova (Voiova). Napěí přenášené lákou Kelvinovou (viz obrázek 12) je dáno součem napěí přenášeného jeho elasickou složkou 1 a složkou vazkou 2, edy = 1 + 2, zaímco deformace Kelvinovy láky je aáž jako deformace složky elasické 1 i složky vazké 2, j. Pro elasickou složku plaí a pro složku vazkou = 1 = 2. 1 = 1 = 2 = 2 =. Okamžiě ak přicházíme ke konsiuivní rovnici Kelvinovy láky = +. Řešení diferenciální rovnici ohoo ypu, j. diferenciální rovnice můžeme vyjádři v uzavřeném varu jako 2 ẋ + ax = f(), (1) x() = e a e aτ f(τ) dτ + e a0 x( 0 ) 0 anebo, pro 0 = 0, užiím inverzní Laplaceovy ransformace 3 kde F (s) jes Laplaceův obraz funkce f(): x () = L 1 ( F (s) + x (0) s + a F (s) = L (f ()). Použiím vzahu (1) můžeme okamžiě psá závislos deformace Kelvinovy (jednorozměrné) láky na uvaleném napěí: (2) () = e 1 1 τ 1 e (τ) dτ + e η 0 2 ( 0 ). η 0 Průběh dopružování Kelvinovy láky vyšeříme ve dvou krocích. Prvním krokem je inegrace výrazu (2) pro = kons v inervalu 0 < < 1 ( 0 = 0, 0 = 0): = ( ) kons 1 e. 2 [Sob81] 3 GNU Maxima 9 ),

10 Pro rychlos deformace v omo inervalu pak plaí = kons e. Druhým krokem je inegrace v inervalu > 1, kde = 0 a 0 = 1, 0 = 1 = kons () = kons ( ) e η e. Rychlos deformace je pak dána vzahem = ( ) kons e η e. Grafické znázornění ohoo průběhu máme na obrázku 13. ( 1 e 1 ): 10

11 kons 1 kons 1 1 kons η 1 Obrázek 13. Průběh dopružování Kelvinovy láky 11

12 + = Obrázek 14. Láka Maxwellova Láka Maxwellova. Konsiuivní rovnici Maxwellovy láky získáme uvolněním srukury naznačené na obrázku 14. Napěí přenášené Maxwellovou hmoou je zjevně rovno napěí přenášenému složkou elasickou ( 1 ) i napěí přenášenému složkou vazkou ( 2 ): (3) = 1 = 2. Celková deformace je však součem deformací obou složek Maxwellovy láky: (4) = Použiím závislosí z abulky 1 ve zderivovaném vzahu (4) máme nebo, použiím rovnosi (3), = 1 + 2, + =. Prosou inegrací získáme výraz pro deformaci Maxwellovy láky ( 1 (5) () = + 1 ) η dτ + ( 0 ). 0 Použiím vzahu (1) získáme přímou závislos napěí Maxwellovy láky na dané deformaci (6) () = e 0 τ 1 e (τ) dτ + e η 0 2 ( 0 ). Creep (plouživos, dováření). V případě, že na Maxwellovu láku působí konsanní napěí ( = kons, 0 = 0), pak výraz (5) dosává var = 1 kons + ( 0 ), kde ( 0 ) = kons. Teno časový průběh deformace, zvaný creep (plouživos, dováření) je znázorněn na obrázku 15 Relaxace (ochabování). Jesliže je na Maxwellovu láku uvalena konsanní deformace ( = kons, = 0), pak vzah (6) přejde do vzahu = e 1 e η 0 2 ( 0 ) a pro 0 = 0 a ( 0 ) = kons dosáváme průběh napěí zvavý relaxace (či ochabování): (7) = e 1 kons se znázorněným průběhem na obrázku

13 kons kons η Obrázek 15. Creep kons η Obrázek 16. Relaxace (ochabování) 13

14 + + 2 = Obrázek 17. Láka Poyningova-Thompsonova Láka Poyningova-Thompsonova. Při sesavování konsiuivní rovnice Poyningovy-Thompsonovy láky použijeme opě meodu uvolnění, kde napěí a deformace na jednolivých složkách jsou označeny příslušným indexem, ak jak je naznačeno na obrázku 17. Zřejmě pak máme (8) = 1 = a (9) = 1 + 2, 2 = 3. Použiím vzahů z abulky 1 do rovnosí (8) dosaneme (10) = 1 a (11) = Z (9) a (11) = 2 ( 1 ) + ( 1 ) a užiím (10) dosáváme (po uspořádání jednolivých členů) konsiuivní rovnici Poyningovy-Thompsonovy láky (12) = + 2. Užiím vzahu (1) můžeme vyjádři napěí přenášené Poyningovou-Thompsonovou lákou při předepsané deformaci jako ( = e τ e + ) 1 2 dτ + e + 2 η 0 3 ( 0 ) a deformaci při daném napěí jako kde ( 0 ) = ( 0 ). = e ( 2 τ e η ) dτ + e 2 η 0 3 ( 0 ), 14

15 2 + 2 = ( + 2 ) + 2 Obrázek 18. Láka Zenerova Láka Zenerova. Konsiuivní rovnici Zenerovy láky získáme podobně jako v případech hořejších. Uvolněním jednolivých členů s užiím značení v souladu s obrázkem 18 máme (13) = a 2 = 3. Deformační podmínka má var (14) = 1 = Užiím vzahů z abulky 1 v časové derivaci jedné z rovnosí (14) máme = = a posupně s pomocí (13) a 1 = a uspořádáním pořadí členů dosame konsiuivní rovnici Zenerovy láky (15) + 2 = ( + 2 ) + 2. Použiím vzahu (1) dosáváme opě vyjádření závislosi napěí na deformaci ( = e 2 2 τ e ( + 2 ) + ) 1 2 dτ + e 2 η 0 3 ( 0 ) a deformace na napěí = e 2 ( + 2 ) 0 kde v čase 0 ( 0 ) = ( + 2 )( 0 ). 0 e 2 τ ( + 2 ) ( + ) 2 3. Reologické modely kání dτ e ( + 2 )η 0 3 ( 0 ), Reologický model šlachy. Šlacha předsavuje vláknoviou pojivovou káň, kerá spojuje sval s kosí. Kolagenní vlákna svalu spojiě přecházejí v kolagenní vlákna šlachy. Kolagenní vlákna v mísě, kde je šlacha spojená s kosí, mineralizuje a je inegrována s kosní kání. Šlacha sama negeneruje sílu, pouze přenáší ahovou sílu vyvolanou zkracujícím se svalem. Šlacha musí mí značnou pevnos, aby byla schopná přenés ahovou sílu vyvinuou svalem. Šlacha však není schopná přenáše síly lakové. Šlacha musí mí značnou poddajnos, aby dokázala zabráni poškození svalu. K modelování reologického chování šlach se v lierauře převážně používají modely láky Zenerovy a láky Poyningovy-Thompsonovy + 2 = ( + 2 ) = + 2. Oba yo modely mají shodný charaker + a = b + c 15

16 Láka Zenerova Láka Poyningova-Thompsonova = ( + 2 ) = + 2 Obrázek 19. Reologické modely šlach s vyjádřením napěí (16) = e a a deformace (17) = e c b kde 0 0 e aτ (b + c) dτ + ( 0 )e a0 c e b τ ( + a) dτ b + ( 0)e c b 0, ( 0 ) = b( 0 ) s b = + 2 v případě Zenerovy láky a b = pro láku Poyningovu-Thompsonovu. šlacha před deformací šlacha po deformaci siloměr kons Obrázek 20. xperimenální uspořádání s konsanní deformací 3.2. xperimenální určení koeficienů reologického modelu šlach. Koeficieny reologického modelu šlach + a = b + c určíme ve dvou experimenálních uspořádáních. V prvém experimenálním uspořádání vzorek šlachy zdeformujeme předepsanou deformací (viz obrázek 20) = kons 16

17 a s jisou časovou periodou budeme určova velikos napěí. Tím obdržíme abulku hodno 0 0 ( ) 1 1 =... n n šlacha před deformací šlacha po deformaci 0 1kg Obrázek 21. xperimenální uspořádání s konsanním napěím Inegrací vzahu (16) pro konsanní = kons a 0 = 0 máme (18) = ( 1 e a) c a kons + 0 e a, přičemž 0 = b kons. Koeficien b určíme okamžiě z posledního vzahu jako b = 0 kons a výraz (18) napíšeme posupně pro všechny naměřené hodnoy k ( 1 e a k ) c a kons 0 e a k = 0 (k = 1,..., n) ve varu maicovém jako (19) S(a, c) = 0. V druhém uspořádání experimenu zaížíme vzorek konsanním nápěím = kons (viz obrázek 21) a měříme deformaci v různých časových okamžicích, čímž dosaneme abulku hodno 0 0 ( ) 1 1 =.., kde opě kons = b 0, kde b by mělo bý shodné s údajem z předešlého experimenálního uspořádání. Samozřejmě eno koeficien b určíme z řady experimenálních měření provedených v obou uspořádáních, při použií pravidel o saisickém vyhodnocování experimenálně zjišěných da. Naměřené hodnoy opě dosadíme do vzahu daného inegrací výrazu (17) pro = kons a 0 = 0: k a c kons což i zde zapíšeme maicově ve varu ( 1 b a c n n ) kons e c b (20) (a, c) = (k = 1,..., n),

18 Sousavu rovnic (19) a (20) rozřešíme ve smyslu nejmenších čverců minimalizací funkce S T S + 2 kons T min, kde fakor kons 2 zajišťuje řádovou rovnos úlohy. Minimum éo funkce lze však získa jen obížně a jsme zde odkázani na numerické meody, mezi nimiž se jako použielné ukazují dnes mezi inženýry populární geneické algorimy Dynamické uspořádání experimenu. V případě dynamického uspořádání experimenu, j. experimenu, kde mám k dispozici úplnou abulku da , n n n n n je siuace daleko jednodušší. Charakerisickou rovnici + a = b + c napíšem pro jednolivé časy i + a i = b i + c i (i = 0, 1,..., n) nebo maicově = a + b + c, j. = Aa, kde A =..., a = a b. c n n n Tuo přeurčenou sousavu rozřešíme ve smyslu nejmenších čverců jako a = ( A T A ) 1 A T, čímž dosáváme hledané koeficieny a, b, c našeho modelu. Reference [Sob81] Z. Soboka, Reologie hmo a konsrukcí, Academia, Praha,

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Základní vztahy z reologie a reologického modelování

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Základní vztahy z reologie a reologického modelování STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTRSKÉHO PROGRAMU STAVBNÍ INŽNÝRSTVÍ -GOTCHNIKA A PODZMNÍ STAVITLSTVÍ MCHANIKA PODZMNÍCH KONSTRUKCÍ Základní vzahy z reologie a reologického

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

Přetváření a porušování materiálů

Přetváření a porušování materiálů Převáření a porušování maeriálů Převáření a porušování maeriálů Přednášející: Prof. Milan Jirásek, B322, el. 224 354 481, Milan.Jirasek@fsv.cvu.cz konzulace úerý 14:30-16:30, případně kdykoliv jindy dle

Více

Přetváření a porušování materiálů

Přetváření a porušování materiálů Převáření a porušování maeriálů Přednášející: Prof. Milan Jirásek, B322, el. 224 354 481, Milan.Jirasek@fsv.cvu.cz konzulace úerý 14:00-15:30, případně kdykoliv jindy dle dohody Sudijní podklady: skripum

Více

10 Lineární elasticita

10 Lineární elasticita 1 Lineární elasicia Polymerní láky se deformují lineárně elasicky pouze v oblasi malých deformací a velmi pomalých deformací. Hranice mezi lineárním a nelineárním průběhem deformace (mez lineariy) závisí

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav 5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických

Více

x udává hodnotu směrnice tečny grafu

x udává hodnotu směrnice tečny grafu Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()

Více

NA POMOC FO. Pád vodivého rámečku v magnetickém poli

NA POMOC FO. Pád vodivého rámečku v magnetickém poli NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

Volba vhodného modelu trendu

Volba vhodného modelu trendu 8. Splinové funkce Trend mění v čase svůj charaker Nelze jej v sledovaném období popsa jedinou maemaickou křivkou aplikace echniky zv. splinových funkcí: o Řadu rozdělíme na několik úseků o V každém úseku

Více

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D

Více

Tabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin.

Tabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin. Tabulky únosnosi varovaných / rapézových plechů z hliníku a jeho sliin. Obsah: Úvod Základní pojmy Příklad použií abulek Vysvělivky 4 5 6 Tvarovaný plech KOB 00 7 Trapézové plechy z Al a jeho sliin KOB

Více

Derivace funkce více proměnných

Derivace funkce více proměnných Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme

Více

Dynamika hmotného bodu. Petr Šidlof

Dynamika hmotného bodu. Petr Šidlof Per Šidlof Úvod opakování () saika DYNAMIKA kinemaika Dynamika hmoného bodu Dynamika uhého ělesa Dynamika elasických ěles Teorie kmiání Aranz/Bombardier (Norwegian BM73) Před Galileem, Newonem: k udržení

Více

Laplaceova transformace Modelování systémů a procesů (11MSP)

Laplaceova transformace Modelování systémů a procesů (11MSP) aplaceova ransformace Modelování sysémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček 5. přednáška MSP čvrek 2. března 24 verze: 24-3-2 5:4 Obsah Fourierova ransformace Komplexní exponenciála

Více

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je. Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy

Více

LS Příklad 1.1 (Vrh tělesem svisle dolů). Těleso o hmotnosti m vrhneme svisle

LS Příklad 1.1 (Vrh tělesem svisle dolů). Těleso o hmotnosti m vrhneme svisle Obyčejné diferenciální rovnice Jiří Fišer LS 2014 1 Úvodní moivační příklad Po prosudování éo kapioly zjisíe, k čemu mohou bý diferenciální rovnice užiečné. Jak se pomocí nich dá modelova prakický problém,

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

Tlumené kmity. Obr

Tlumené kmity. Obr 1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující

Více

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8 Biologické modely Rober Mařík 9. lisopadu 2008 Obsah 1 Diferenciální rovnice 3 2 Auonomní diferenciální rovnice 8 3 onkréní maemaické modely 11 Dynamická rovnováha poču druhů...................... 12 Logisická

Více

Téma 5 Kroucení Základní principy a vztahy Smykové napětí a přetvoření Úlohy staticky určité a staticky neurčité

Téma 5 Kroucení Základní principy a vztahy Smykové napětí a přetvoření Úlohy staticky určité a staticky neurčité Pružnos a plasicia, 2.ročník bakalářského sudia Téma 5 Kroucení Základní principy a vzahy Smykové napěí a převoření Úlohy saicky určié a saicky neurčié Kaedra savební mechaniky Fakula savební, VŠB - Technická

Více

14. Soustava lineárních rovnic s parametrem

14. Soustava lineárních rovnic s parametrem @66 4. Sousava lineárních rovnic s aramerem Hned úvodem uozorňuji, že je velký rozdíl mezi sousavou rovnic řešenou aramerizováním, roože má nekonečně mnoho řešení zadaná sousava rovnic obsahuje jen číselné

Více

T t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka

T t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka Analýza časových řad Klasický přísup k analýze ČŘ dekompozice časové řady - rozklad ČŘ na složky charakerizující různé druhy pohybů v ČŘ, keré umíme popsa a kvanifikova rend periodické kolísání cyklické

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

Zpracování výsledků dotvarovací zkoušky

Zpracování výsledků dotvarovací zkoušky Zpracování výsledků dovarovací zkoušky 1 6 vývoj deformace za konsanního napěí 5,66 MPa ˆ J doba zaížení [dny] počáek zaížení čas [dny] Naměřené hodnoy funkce poddajnosi J 12 1 / Pa 75 6 45 3 15 doba zaížení

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PRUŽNÉ SPOJKY NA PRINCIPU TEKUTIN FLEXILE COUPLINGS

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované. finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

Práce a výkon při rekuperaci

Práce a výkon při rekuperaci Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava

Více

REAKČNÍ KINETIKA 1. ZÁKLADNÍ POJMY. α, ß jsou dílčí reakční řády, α je dílčí reakční řád vzhledem ke složce A, ß vzhledem ke složce

REAKČNÍ KINETIKA 1. ZÁKLADNÍ POJMY. α, ß jsou dílčí reakční řády, α je dílčí reakční řád vzhledem ke složce A, ß vzhledem ke složce REKČNÍ KINETIK - zabývá se ryhlosí hemikýh reakí ZÁKLDNÍ POJMY Definie reakční ryhlosi v - pro reake probíhajíí za konsanního objemu v dξ di v V d ν d i [] moldm 3 s Ryhlosní rovnie obeně vyjadřuje vzah

Více

Dynamická mechanická spektroskopie

Dynamická mechanická spektroskopie Dynamická mechanická spekroskopie Experimenální meody fyziky kondenzovaných sousav II NFPL146 Bohlin C-VOR 2 roaional rheomeer Triec 2 dynamic mechanical analyser viskozia, modul pružnosi v ahu a ve smyku

Více

Analogový komparátor

Analogový komparátor Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací

Více

Diferenciální rovnice 1. řádu

Diferenciální rovnice 1. řádu Kapiola Diferenciální rovnice. řádu. Lineární diferenciální rovnice. řádu Klíčová slova: Obyčejná lineární diferenciální rovnice prvního řádu, pravá srana rovnice, homogenní rovnice, rovnice s nulovou

Více

Reologické modely technických materiálů při prostém tahu a tlaku

Reologické modely technických materiálů při prostém tahu a tlaku . lekce Reologické modely technických materiálů při prostém tahu a tlaku Obsah. Základní pojmy Vnitřní síly napětí. Základní reologické modely technických materiálů 3.3 Elementární reologické modely creepu

Více

listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly.

listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly. 6. cvičení z PSI 7. -. lisopadu 6 6. kvanil, sřední hodnoa, rozpyl - pokračování příkladu z minula) Náhodná veličina X má disribuční funkci e, < F X ),, ) + 3,,), a je směsí diskréní náhodné veličiny U

Více

čím později je betonový prvek zatížen, tím méně bude dotvarovat,

čím později je betonový prvek zatížen, tím méně bude dotvarovat, POROVNÁNÍ MATEMATICKÝCH MODELŮ PRO VÝPOČET SMRŠŤOVÁNÍ A DOTVAROVÁNÍ BETONU COMPARISON OF THE MATHEMATICAL MODELS FOR PREDICTION OF CREEP AND SHRINKAGE OF CONCRETE Jan Soška, Lukáš Vráblík Příspěvek se

Více

Numerická integrace. b a. sin 100 t dt

Numerická integrace. b a. sin 100 t dt Numerická inegrace Mirko Navara Cenrum srojového vnímání kaedra kyberneiky FEL ČVUT Karlovo náměsí, budova G, mísnos 14a hp://cmpfelkcvucz/~navara/nm 1 lisopadu 18 Úloha: Odhadnou b a f() d na základě

Více

Parciální funkce a parciální derivace

Parciální funkce a parciální derivace Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:

Více

2.2.2 Měrná tepelná kapacita

2.2.2 Měrná tepelná kapacita .. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro

Více

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Sední rmslová škola elekroechnická a Všší odborná škola, Pardubice, Karla IV. 3 LABORATORNÍ CVIENÍ Sední rmslová škola elekroechnická Píjmení: Hladna íslo úloh: 2 Jméno: Jan Daum mení: 3. ÍJNA 2006 Školní

Více

Kmitání tělesa s danou budicí frekvencí

Kmitání tělesa s danou budicí frekvencí EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů

Více

V EKONOMETRICKÉM MODELU

V EKONOMETRICKÉM MODELU J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům

Více

Radek Hendrych. Stochastické modelování v ekonomii a financích. 18. října 2010

Radek Hendrych. Stochastické modelování v ekonomii a financích. 18. října 2010 Sochasické modelování v ekonomii a financích 18. října 21 Program 1 2 3 4 Úroková míra R, T ) Uvažujme bezrizikový bezkuponový dluhopis s mauriou T a nominální hodnoou 1 $, jeho cenu v čase budeme nadále

Více

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru Asabilní obvod s reálnými operačními zesilovači Josef PUNČOCHÁŘ Kaedra eoreické elekroechniky Fakula elekroechnicky a informaiky Vysoká škola báňská - Technická universia Osrava ř. 17 lisopadu 15, 708

Více

5. Modifikovaný exponenciální trend

5. Modifikovaný exponenciální trend 5. Modifikovaný exponenciální rend Tvar rendu Paraer: α, β, Tr = + α β, =,..., n ( β > 0) Hodí se k odelování rendu s konsanní podíle sousedních diferencí Aspoick oezen (viz obr., α < 0,0 < β 0) α

Více

4. Kroucení prutů Otevřené a uzavřené průřezy, prosté a vázané kroucení, interakce, přístup podle Eurokódu.

4. Kroucení prutů Otevřené a uzavřené průřezy, prosté a vázané kroucení, interakce, přístup podle Eurokódu. 4. Kroucení pruů Oevřené a uzavřené průřezy, prosé a vázané kroucení, inerakce, přísup podle Eurokódu. Obvyklé je pružné řešení (plasické nelineární řešení - např. Srelbická) Podle Eurokódu lze kombinova

Více

Tento NCCI dokument poskytuje návod pro posouzení prutů namáhaných kroucením. 2. Anlýza prvků namáhaných kroucením Uzavřený průřez v kroucení 5

Tento NCCI dokument poskytuje návod pro posouzení prutů namáhaných kroucením. 2. Anlýza prvků namáhaných kroucením Uzavřený průřez v kroucení 5 NCC: Kroucení Teno NCC dokumen poskyuje návod pro posouzení pruů namáhaných kroucením. Obsah 1. Obecně. Anlýza prvků namáhaných kroucením. Uzavřený průřez v kroucení 5 4. Oevřený průřez v kroucení 6 5.

Více

SLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC

SLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ..0/.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol SLOVNÍ ÚLOHY VEDOUCÍ

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu

Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu Sýskala, 22 L e k c e z e l e k r o e c h n i k y Víězslav Sýskala TÉA 6 Oddíl 1-2 Sylabus k émau 1. Definice elekrického pohonu 2. Terminologie 3. Výkonové dohody 4. Vyjádření pohybové rovnice 5. Pracovní

Více

Vybrané metody statistické regulace procesu pro autokorelovaná data

Vybrané metody statistické regulace procesu pro autokorelovaná data XXVIII. ASR '2003 Seminar, Insrumens and Conrol, Osrava, May 6, 2003 239 Vybrané meody saisické regulace procesu pro auokorelovaná daa NOSKIEVIČOVÁ, Darja Doc., Ing., CSc. Kaedra konroly a řízení jakosi,

Více

Vliv funkce příslušnosti na průběh fuzzy regulace

Vliv funkce příslušnosti na průběh fuzzy regulace XXVI. ASR '2 Seminar, Insrumens and Conrol, Osrava, April 26-27, 2 Paper 2 Vliv funkce příslušnosi na průběh fuzzy regulace DAVIDOVÁ, Olga Ing., Vysoké učení Technické v Brně, Fakula srojního inženýrsví,

Více

73-01 KONEČNÝ NÁVRH METODIKY VÝPOČTU KAPACITU VJEZDU DO OKRUŽNÍ KOMENTÁŘ 1. OBECNĚ 2. ZOHLEDNĚNÍ SKLADBY DOPRAVNÍHO PROUDU KŘIŽOVATKY

73-01 KONEČNÝ NÁVRH METODIKY VÝPOČTU KAPACITU VJEZDU DO OKRUŽNÍ KOMENTÁŘ 1. OBECNĚ 2. ZOHLEDNĚNÍ SKLADBY DOPRAVNÍHO PROUDU KŘIŽOVATKY PŘÍLOHA 73-01 73-01 KONEČNÝ NÁVRH METODIKY VÝPOČTU KAPACITU VJEZDU DO OKRUŽNÍ KŘIŽOVATKY Auor: Ing. Luděk Baroš KOMENTÁŘ Konečný návrh meodiky je zpracován ormou kapioly Technických podmínek a bude upřesněn

Více

Analýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA

Analýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA 4 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 11-12 září 2008 Analýza rizikových fakorů při hodnocení invesičních projeků dle kriéria

Více

Schéma modelu důchodového systému

Schéma modelu důchodového systému Schéma modelu důchodového sysému Cílem následujícího exu je názorně popsa srukuru modelu, kerý slouží pro kvanifikaci příjmové i výdajové srany důchodového sysému v ČR, a o jak ve varianách paramerických,

Více

LindabCoverline. Tabulky únosností. Pokyny k montáži trapézových plechů Lindab

LindabCoverline. Tabulky únosností. Pokyny k montáži trapézových plechů Lindab LindabCoverline Tabulky únosnosí Pokyny k monáži rapézových plechů Lindab abulky únosnosi rapézových plechů Úvod Přípusné plošné zaížení je určeno v souladu s normou ČSN P ENV 1993-1-3 Navrhování ocelových

Více

1.3.4 Rovnoměrně zrychlený pohyb po kružnici

1.3.4 Rovnoměrně zrychlený pohyb po kružnici 34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb

Více

Skupinová obnova. Postup při skupinové obnově

Skupinová obnova. Postup při skupinové obnově Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE VYTVÁŘENÍ TRŽNÍ ROVNOVÁHY VYBRANÝCH ZEMĚDĚLSKO-POTRAVINÁŘSKÝCH PRODUKTŮ Ing. Michal Malý Školiel: Prof. Ing. Jiří

Více

DYNAMIKA časový účinek síly Impuls síly. 2. dráhový účinek síly mechanická práce W (skalární veličina)

DYNAMIKA časový účinek síly Impuls síly. 2. dráhový účinek síly mechanická práce W (skalární veličina) DYNAMIKA 2 Působením síly na čásici se obecně mění její pohybový sav. Síla působí vždy v učiém časovém inevalu a záoveň na učiém úseku ajekoie s. 1. časový účinek síly Impuls síly 2. dáhový účinek síly

Více

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS ZÁKLADY ELEKTRICKÝCH OHONŮ (E) Určeno pro posluchače bakalářských sudijních programů FS Obsah 1. Úvod (definice, rozdělení, provozní pojmy,). racovní savy pohonu 3. Základy mechaniky a kinemaiky pohonu

Více

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Základní ransformace časových řad Veškeré násroje základní korelační analýzy, kam paří i lineární regresní (ekonomerické) modely

Více

Přibližná linearizace modelu kyvadla

Přibližná linearizace modelu kyvadla Přibližná linearizace model kyvadla 4..08 9:47 - verze 4.0 08 Obsah Oakování kalkl - Taylorův rozvoj fnkce... Nelineární savový model a jeho řibližná linearizace... 4 Nelineární model vs-výs a jeho řibližná

Více

PLL. Filtr smyčky (analogový) Dělič kmitočtu 1:N

PLL. Filtr smyčky (analogový) Dělič kmitočtu 1:N PLL Fázový deekor Filr smyčky (analogový) Napěím řízený osciláor F g Dělič kmioču 1:N Číače s velkým modulem V současné době k návrhu samoného číače přisupujeme jen ve výjimečných případech. Daleko časěni

Více

Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav techniky a automobilové dopravy

Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav techniky a automobilové dopravy Mendelova zemědělská a lesnická univerzia v Brně Agronomická fakula Úsav echniky a auomobilové dopravy Vliv zrání na deformační vlasnosi sýrů Diplomová práce Vedoucí diplomové práce: Vypracoval: prof.

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Úsav fyziky a měřicí echniky Pohodlně se usaďe Přednáška co nevidě začne! Základy fyziky + opakovaná výuka Fyziky I Web úsavu: ufm.vsch.cz : @ufm444 Zimní semesr opakovaná výuka + Základy fyziky 2 hodiny

Více

Jméno a příjmení holka nebo kluk * Třída Datum Škola

Jméno a příjmení holka nebo kluk * Třída Datum Škola P-1 Jméno a příjmení holka nebo kluk * Třída Daum Škola Zopakuje si (bude se vám o hodi ) 3 důležié pojmy a především o, co popisují Pro jednoduchos se omezíme pouze na 1D (j. jednorozměrný) případ. Pro

Více

2. ZÁKLADY TEORIE SPOLEHLIVOSTI

2. ZÁKLADY TEORIE SPOLEHLIVOSTI 2. ZÁKLADY TEORIE SPOLEHLIVOSTI Po úspěšném a akivním absolvování éo KAPITOLY Budee umě: orienova se v základním maemaickém aparáu pro eorii spolehlivosi, j. v poču pravděpodobnosi a maemaické saisice,

Více

2.2.9 Jiné pohyby, jiné rychlosti II

2.2.9 Jiné pohyby, jiné rychlosti II 2.2.9 Jiné pohyby, jiné rychlosi II Předpoklady: 020208 Pomůcky: papíry s grafy Př. 1: V abulce je naměřeno prvních řice sekund pohybu konkurenčního šneka. Vypoči: a) jeho průměrnou rychlos, b) okamžié

Více

Hlavní body. Úvod do nauky o kmitech Harmonické kmity

Hlavní body. Úvod do nauky o kmitech Harmonické kmity Harmonické kmiy Úvod do nauky o kmiech Harmonické kmiy Hlavní body Pohybová rovnice a její řešení Časové závislosi výchylky, rychlosi, zrychlení, Poenciální, kineická a celková energie Princip superpozice

Více

tuhost, elasticita, tvrdost, relaxace a creep, únava materiálu, reologické modely, zátěž a namáhání

tuhost, elasticita, tvrdost, relaxace a creep, únava materiálu, reologické modely, zátěž a namáhání tuhost, elasticita, tvrdost, relaxace a creep, únava materiálu, reologické modely, zátěž a namáhání Reologie obor mechaniky - zabývá obecnými mechanickými vlastnostmi látek vztahy mezi napětím, deformacemi

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

Úloha VI.3... pracovní pohovor

Úloha VI.3... pracovní pohovor Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro

Více

Fyzikální praktikum II - úloha č. 4

Fyzikální praktikum II - úloha č. 4 Fyzikální prakikum II - úloha č. 4 1 4. Přechodové jevy v obvodech s kapaciory Úkoly 1) 2) 3) 4) Sesave obvod pro demonsraci jevu nabíjení a vybíjení kondenzáoru. Naměře průběhy napěí a proudů na vybraných

Více

Rotačně symetrické úlohy

Rotačně symetrické úlohy Roačně symeické úlohy Pužnos a pevnos Napěí a defomace zaíženého pužného ělesa Základní úloha pužnosi - Posup řešení úlohy ) podmínky ovnováhy ) vzahy mezi posuvy a převořeními 3) vyloučení posuvů ovnice

Více

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K 1. KAPITOLA TEPELNÉ VLASTNOSTI Tepelné vlasnosi maeriálů jsou charakerizovány pomocí epelných konsan jako měrné eplo, eploní a epelná vodivos, lineární a objemová rozažnos. U polymerních maeriálů má eploa

Více

1 - Úvod. Michael Šebek Automatické řízení

1 - Úvod. Michael Šebek Automatické řízení 1 - Úvod Michael Šebek Auomaické řízení 2018 9-6-18 Základní názvosloví Auomaické řízení - Kyberneika a roboika Objek: konkréní auo (amo) Sysém: určiá čás objeku, kerou se zabýváme, řídíme, Moor, sojka,

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0. Měření rozpylového magneického pole ransformáoru, měření ampliudové permeabiliy A3B38SME Úkol měření 0a. Měření rozpylového magneického pole ransformáoru s oroidním jádrem a jádrem EI. Změře indukci

Více

Využití programového systému MATLAB pro řízení laboratorního modelu

Využití programového systému MATLAB pro řízení laboratorního modelu Využií programového sysému MATLAB pro řízení laboraorního modelu WAGNEROVÁ, Renaa 1, KLANER, Per 2 1 Ing., Kaedra ATŘ-352, VŠB-TU Osrava, 17. lisopadu, Osrava - Poruba, 78 33, renaa.wagnerova@vsb.cz, 2

Více

XI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny...

XI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny... XI- Nesacionární elekromagneické pole... XI- Rovinná harmonická elekromagneická vlna...3 XI- Vlasnosi rovinné elekromagneické vlny...5 XI-3 obrazení rovinné elekromagneické vlny v prosoru...7 XI-4 Fázová

Více

Úloha II.E... je mi to šumák

Úloha II.E... je mi to šumák Úloha II.E... je mi o šumák 8 bodů; (chybí saisiky) Kupe si v lékárně šumivý celaskon nebo cokoliv, co se podává v ableách určených k rozpušění ve vodě. Změře, jak dlouho rvá rozpušění jedné abley v závislosi

Více

min 4 body Podobně pro závislost rychlosti na uražené dráze dostáváme tabulku

min 4 body Podobně pro závislost rychlosti na uražené dráze dostáváme tabulku Řešení úloh školního kola 6 ročníku Fyzikální olympiády Kaegorie E a F Auoři úloh: J Jírů (1, 1), V Koudelková (11), L Richerek (3, 7) a J Thomas (1, 4 6, 8 9) FO6EF1 1: Grafy pohybu a) Pro závislos dráhy

Více

Demografické projekce počtu žáků mateřských a základních škol pro malé územní celky

Demografické projekce počtu žáků mateřských a základních škol pro malé územní celky Demografické projekce poču žáků maeřských a základních škol pro malé územní celky Tomáš Fiala, Jika Langhamrová Kaedra demografie Fakula informaiky a saisiky Vysoká škola ekonomická v Praze Pořebná daa

Více

POPIS OBVODŮ U2402B, U2405B

POPIS OBVODŮ U2402B, U2405B Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody

Více

P Ř Í K L A D Č. 2 OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE

P Ř Í K L A D Č. 2 OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE P Ř Í K L A D Č. OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE Projek : FRVŠ 0 - Analýza meod výpoču železobeonových lokálně podepřených desek Řešielský kolekiv : Ing. Marin Tipka Ing. Josef

Více

2.1 POHYB 2.2 POLOHA A POSUNUTÍ

2.1 POHYB 2.2 POLOHA A POSUNUTÍ 2 P ÌmoËar pohyb V roce 1977 vyvo ila Kiy OíNeilov rekord v z vodech dragser. Dos hla ehdy rychlosi 628,85 km/h za pouh ch 3,72 s. Jin rekord ohoo ypu zaznamenal v roce 1958 Eli Beeding ml. p i jìzdï na

Více