JEDNOROZMĚRNÁ POPISNÁ STATISTIKA

Rozměr: px
Začít zobrazení ze stránky:

Download "JEDNOROZMĚRNÁ POPISNÁ STATISTIKA"

Transkript

1 JEDNOROZMĚRNÁ POPISNÁ STATISTIKA Záladí tattcé ojmy Statta - teto ojem lze cháat v záadě ve třech ojetích: ) číelé ebo loví údaje (data) a jejch ouhry o hromadých jevech ) ratcá čot očívající ve běru, zracováí a vyhodocováí dat o hromadých jevech 3) teoretcá dclía (věda), terá zoumá záotot hromadých jevů, re. ouhr vědecých metod běru, zracováí a aalyzováí dat - v aždé defc tatty je uvedeo, že e zabývá hromadým jevy. Hromadé jevy - taové utečot, teré e vyytují mohorát a mohou e zovu oaovat - jevy, teré e vyytují v maovém měřítu u velého očtu rvů. Stattcý oubor - moža rvů řeě taoveým hodým vlatotm (ař. moža oob, orgazací, atd.). Stattcá jedota - rve tattcého ouboru - dvduálí otel vlatotí daého tattcého ouboru. Rozah tattcého ouboru - očet jedote tattcého ouboru (ymbolcé začeí, N). Etují dvě možot řítuu e tattcému ouboru jejch chááí je relatví. ) Záladí oubor (oulace): tattcý oubor všech jedote, teré jou ředmětem zoumáí, obvyle velm rozáhlý, rozah začíme N. ) Výběrový oubor (výběr): vzore ze záladího ouboru, ořízeý ta, že e určtým zůobem vyberou ouze ěteré jedoty, rozah začíme. Stattcý za - ozačeí (odraz) určté vlatot, terou má v té č oé míře aždá jedota daého tattcého ouboru - u ouboru oob ař. vě, váha, výša, atd.

2 Hodota tattcého zau ( = ozorováí) - míra daé vlatot (tattcého zau) u aždé jedoty tattcého ouboru. Počet hodot (ozorováí) = rozah ouboru. Obměa ( = varata) tattcého zau - hodota ve mylu vyjádřeí růzého tuě daé vlatot. Počet varat rozah ouboru. Stattcý za hodý: v daém tattcém ouboru abývá ouze jedé varaty. Stattcý za roměý: v daém tattcém ouboru abývá více ež jedé varaty. Evvaletí ozačeí = tattcá roměá. Druhy roměých - laface roměých může být rováděa z růzých hlede - rávé určeí druhu roměých je ezbyté ro volbu adevátích metod jejch zracováí a aalýzy. ) Zůob vyjádřeí hodot roměé - loví (ategorálí, alfabetcé, valtatví): jou vyjádřey lovy - číelé (umercé, vattatví): jou vyjádřey číly. ) Ty vztahů mez obměam a hodotam roměé - omálí (jmeé, ázvové): loví roměé, jejchž obměy elze herarchcy uořádat, tz., že elze jedozačě taovt, terá je žší a terá vyšší. O jejích obměách lze ouze otatovat, zda jdou tejé ebo růzé. Nař.: ohlaví, jméo, rodý tav, atd. - ordálí (ořadové): loví číelé roměé, jejchž obměy lze jedozačě eřadt od ejžší ejvyšší ebo obráceě. Jejch obměy lze orovávat rozdílem, ale e odílem. Nař.: ejvyšší doočeé vzděláí, hodot v armádě, ořadí v outěž, atd. - metrcé (měřtelé): vždy číelé, jou udáy v určtých měrých jedotách vyjadřují tedy velot měřeých vlatotí. Nabývají ja ladých, ta eladých hodot. Lze změřt o ol je jeda obměa větší (evet. meší) ež druhá. Obměy lze orovávat rozdílem, ědy taé odílem (e vždy oud jou ěteré obměy záoré č ulové, eí to možé). Nař.: telota vzduchu, z odu, atd. - ardálí (těžejí): ty metrcé roměé, teré abývají ouze ladých hodot, jejch obměy lze orovávat ja rozdílem, ta odílem. Je tedy možo změřt, o ol měrých jedote je jeda obměa větší (evet. meší) ež druhá a taé olrát je jeda obměa větší (evet. meší) ež druhá. Nař.: vě, váha, výša, atd.

3 3) Počet varat, terých roměé abývají - alteratví: abývají ouze dvou obmě. Nař.: ohlaví, atd. - možé: abývají více ež dvou obmě. 4) Počet hodot, terých roměé abývají - drétí (eojté): abývají očetě moha hodot z oečého č eoečého tervalu. Nař. očet dětí v rodě, očet rodaých televzorů, atd. - ojté (otuálí): abývají všech hodot z oečého č eoečého tervalu. Nař.: výša oob, hmotot oob, otřeba eletrcé eerge, atd. 3

4 Zracováí dat - e tattcému zoumáí jou třeba hodoty roměých = data = údaje - zíáme je tattcým šetřeím, tato data a jou zracováa a vyhodocea - většou jde o velé možtví údajů, teré jou začě eřehledé - rvím roem je roto zřehleděí (etříděí) dat formou tabule a grafů - cílem je, aby vyly charatertcé ryy a záotot aalyzovaého ouboru. Tabula rotého rozděleí četotí Obměa roměé abolutí Četot relatví Kumulatví četot abolutí relatví Celem ; ; - taováto tabula je výledem zracováí drétí roměé ěola málo obměam - v říadě zracováí drétí roměé moha obměam ebo ojté roměé eí oužtelá; a je třeba etavt tabulu tervalového rozděleí četotí. Tabula tervalového rozděleí četotí - je třeba taovt otmálí očet tervalů (), a teré rozdělíme varačí rozětí (R) - tomu louží růzá ravdla (ař. Sturgeovo ravdlo: 3,3log0 ) - aždý terval lze ř výočtech zatout jeho tředem (výledy taovýchto výočtů jou řblžé). Grafy Etuje moho druhů grafů, vždy je třeba vybrat taový, terý odovídá charateru dat. Polygo četotí - graf vhodý ro zázorěí rotého rozděleí četotí - ojcový graf. 4

5 Htogram četotí - graf vhodý ro zázorěí tervalového rozděleí četotí - louový graf. Výečový graf (echart) - grafy vhodé ro zázorěí rozděleí četotí omálí roměé. Slouový graf (barchart) - grafy vhodé ro zázorěí rozděleí četotí omálí roměé. Krabcový graf (Bo-ad-Wher Plot) - vhodý ro umercé roměé, založe a vartlech - lze ho oužívat detfac odlehlých hodot (etrémů). 5

6 Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě) - charaterzují záladí ryy zoumaého ouboru dat - umožňují orováváí více ouborů. 4 uy tattcých charatert:. charaterty olohy (úrově). charaterty varablty 3. charaterty šmot 4. charaterty ščatot. Dva zůoby otruce tattcých charatert: a) Charaterty, teré jou fucí všech hodot daé roměé: - jou ovlvěy říadým etrémy - výočet odle určtého fučího ředu. b) Charaterty, teré ejou fucí všech hodot daé roměé: - ejou ovlvěy etrémy - jou to orétí hodoty roměé, vybraé odle určtého rtéra.. Charaterty olohy - charaterzují třed, olem ěhož hodoty olíají - charaterzují úroveň (velot, hladu) roměé - oužívá e ro ě rověž ojem tředí hodoty. a) Charaterty, teré jou fucí všech hodot - růměry Artmetcý růměr - rotý: - vážeý: Používá e tam, de má formačí myl oučet hodot roměé. 6

7 7 Harmocý růměr - rotý: H - vážeý: H Používá e tam, de má myl oučet řevráceých hodot roměé. Nař. výočtu růměré doby otřebé e lěí úolu, dy jedoty lí úoly oučaě. Geometrcý růměr - rotý: G... - vážeý: G... Používá e tam, de má myl ouč hodot roměé. Nař. výočtu růměrého oefcetu růtu v čaových řadách. Kvadratcý růměr - rotý: K - vážeý: K Používá e tam, de má myl oučet čtverců hodot roměé. Nař. tehdy, jetlže jedotlvé hodoty jou jž amy odchylam ůvodích hodot od artmetcého růměru, odchylam od ormy aod. Vztahy mez růměry Jou-l výše uvedeé 4 tyy růměrů vyočítáy z týchž ladých hodot roměé, latí ro ě áledující vztah: K G H

8 b) Charaterty, teré ejou fucí všech hodot - atří em ředevším modu a vatly - jejch výhodou je, že ejou ovlvěy odlehlým ozorováím. Modu - varata ejvětší četotí (tzv. tycá hodota) - vrchol rozděleí - ozačeí ymbolem. Kvatly - lze je taovt ouze ro umercé roměé - hodoty, teré dělí uořádaý tattcý oubor a určtý očet tejě obazeých čátí - hodoty meší č tejé tvoří určtou taoveou čát rozahu ouboru (určtý odíl, určté roceto). Uořádaý tattcý oubor: hodoty roměé jou eřazey do eleající řady. Obecé ozačeí vatlů:, de je relatví četot ~, de 00 je relatví četot vyjádřeá v %. 00 Druhy vatlů: medá ~, ~50, 0, 5 - rotředí hodota uořádaého tattcého ouboru - čleí tattcý oubor a dvě tejě četé čát, etuje tedy 50 % hodot meších (ebo tejých) a 50 % hodot větších (ebo tejých). Výočet medáu: a) rozah ouboru je lché čílo; medáem je orétí rve. ~, de výraz udává ořadí medáu v daé eleající řadě hodot. b) rozah ouboru je udé čílo; medáem je artmetcý růměr dvou rotředích hodot. ~ 8

9 Kvatly < ~ e azývají dolí vatly, vatly > ~ e azývají horí vatly. tercly 33, 3 ~, 0,3 66, 6 ~ 0,6 vatly, teré rozdělují uořádaý tattcý oubor a 3 tejě četé čát. vartly ~, ~, ~ 5 0,5 75 0,75 3 vatly, teré rozdělují uořádaý tattcý oubor a 4 tejě četé čát. vtly ~, ~, ~, ~ 0 0, 40 0,4 60 0,6 4 vatly, teré rozdělují uořádaý tattcý oubor a 5 tejě četých čátí. 80 0,8 etly 5 vatlů, 6 čátí etly 6 vatlů, 7 čátí otávly 7 vatlů, 8 čátí oly 8 vatlů, 9 čátí decly 9 vatlů, 0 čátí ercetly 99 vatlů, 00 čátí, atd. Výočet ořadového číla vatlu: m... rozah tattcého ouboru... relatví četot m... ořadové čílo řílušého vatlu.. Charaterty varablty - udávají roztýleí hodot olem zvoleého tředu (ař. olem ějaé tředí hodoty) - varablta = mělvot = olíavot = odlšot. a) Míry abolutí varablty Varačí rozětí R ma m Kvatlová rozětí - vartlové rozětí: R ~ ~ q declové rozětí: R ~ ~ d 90 0 atd. 9

10 0 Kvatlové odchyly - vartlová odchyla: ~ ~ 75 5 Q - declová odchyla: 8 ~ ~ 90 0 D atd. Průměrá abolutí odchyla - rotá: d - vážeá: d Roztyl - rotý (lacý): - vážeý (lacý): Výočtový tvar roztylu - rotý: - vážeý: Směrodatá odchyla - ladá odmoca z roztylu, tj. - udává, ja e v růměru lší jedotlvé hodoty zau od artmetcého růměru v obou měrech (±) - vhodá ro terretac, je udáa v daých měrých jedotách - ř rotoucím rozahu ouboru e rozdíl mez a zmešuje. Poud racujeme výběrovým ouborem, očítáme výběrový roztyl a výběrovou měrodatou odchylu: - rotý: - vážeý:

11 Rozlad roztylu Jetlže e tattcý oubor ládá z ěola () dílčích odouborů, v chž záme jedotlvé dílčí roztyly, dílčí růměry a četot, a roztyl celého ouboru můžeme rozložt a oučet roztylů, z chž jede charaterzuje varabltu mez uam a druhý varabltu uvtř u.. Roztyl uových růměrů: Průměr uových roztylů: b) Míry relatví varablty Varačí oefcet - je to bezrozměré čílo a roto umožňuje orovávat varabltu ouborů růzou úroví č růzým měrým jedotam - lze j vyjádřt v % - obecě může abývat hodot z tervalu,, ro ardálí roměou z tervalu, 0. V Varablta omálí roměé = mutablta Míra mutablty M - udává odíl dvojc jedote růzou obměou z celového očtu všech možých dvojc jedote - lze j vyjádřt v %. M, 0, M

12 Nomálí varace - oužívá e v říadě, že jou zámy ouze relatví četot a eí zám rozah ouboru - utečý tueň varablty odhodocuje. NOMVAR, NOMVAR 0, Varablta ordálí roměé - ro její měřeí lze oužít výše uvedeé míry abolutí a relatví varablty - vyovídací choot a terretace těchto měr je vša vzhledem charateru roměé roblematcá - ro měřeí varablty ordálích roměých etují ecálí charaterty, ejčatěj je oužívá ordálí roztyl. Ordálí roztyl (varace) 4 dorvar F F, dorvar 0, de F jou umulatví relatví četot. - hodoty 0 abývá v říadě, dy je zatouea ouze jedá ategore - hodoty abývá tehdy, dy je aždé z obou rajích ategorí řřazea relatví četot 0,5. 3. Charaterty šmot - šmot = aymetre - v ymetrcém rozděleí latí vztah: ~ - očet odrůměrých hodot je ta tejý jao očet hodot adrůměrých a míry šmot jou rovy 0. Míra šmo - rotá: 3 - vážeá: 3 3 3

13 Jedoduchá charaterta šmot = de je očet odrůměrých hodot je očet adrůměrých hodot. Iterretace měr šmot - v ymetrcém rozděleí = 0 - v ladě ešmeém rozděleí > 0 (více hodot odrůměrých ež adrůměrých) - v záorě ešmeém rozděleí < 0 (více hodot adrůměrých ež odrůměrých) 4. Charaterty ščatot - ščatot = ece - větší ahuštěot hodot rotředí velot ve rováí ahuštěotí otatích hodot - ščatější rozděleí má výrazější vrchol (tz., že vrchol více vytuuje). Míra ščatot - rotá: vážeá: Iterretace měr ščatot - vyšší hodota míry zameá větší ščatot, tz. ščatější je to rozděleí, teré má míru vyšší - záladem ro rováí je ormovaé ormálí rozděleí (vz. ravděodobot). 3

Statistické charakteristiky (míry)

Statistické charakteristiky (míry) Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty

Více

JEDNOROZMĚRNÁ POPISNÁ STATISTIKA

JEDNOROZMĚRNÁ POPISNÁ STATISTIKA JEDNOROZMĚRNÁ POPISNÁ STATISTIKA Záladí tattcé ojmy Statta - teto ojem lze cháat v záadě ve třech ojetích: ) číelé ebo loví údaje (data) a jejch ouhry o hromadých jevech ) ratcá čot očívající ve běru,

Více

p 1 n zp p p 25 25 100 100 100 100 2,5 z 2,5 1 x x 21 p p 25 25 100 100 100 100 7,5 z 7,5 1 x x 24 Obecný vzorec pro výpočet kvantilů sudé n:

p 1 n zp p p 25 25 100 100 100 100 2,5 z 2,5 1 x x 21 p p 25 25 100 100 100 100 7,5 z 7,5 1 x x 24 Obecný vzorec pro výpočet kvantilů sudé n: Věk 1. 20 2. 20 3. 21 4. 22 5. 22 6. 23 7. 23 8. 24 9. 24 10. 24 Obecý vzorec pro výpočet kvatlů sudé : Dolí kvartl: p z 100 p p 1 100 p p 25 25 zp 1 10 zp 10 1 100 100 100 100 2,5 z 2,5 1 21 p 0,25 (3)

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot

Více

Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.

Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru. Soutava mometů Momety (Obecé, cetrálí a ormovaé) Do ytému mometových charatert patří ty ejdůležtější artmetcý průměr (mometová míra úrově) a rozptyl (mometová úroveň varablty). Obecý momet -tého tupě:

Více

Charakteristiky úrovně

Charakteristiky úrovně Charaterty úrově Měřeí úrově Úroveň (poloha) je jedou ze záladích vlatotí tattcých dat, v úrov e mohou tattcá data lšt ebo aopa hodovat. Výzačé hodoty varačí řady ejou ctlvé a změu jedotlvých hodot Medá

Více

5. Základní statistický rozbor

5. Základní statistický rozbor 5. Záladí tattcý rozbor Záladí tattcý rozbor očívá ve výočtech a rezetac číelých charatert tattcého ouboru hodot zoumaého číelého (vattatvího) tattcého zau. Číelé charaterty jou číelé hodoty, teré zhuštěím

Více

Popisné (deskriptivní) metody. Statistické metody a zpracování dat. II. Popisné statistické metody. Rozdělení četností. Skupinové rozdělení četností

Popisné (deskriptivní) metody. Statistické metody a zpracování dat. II. Popisné statistické metody. Rozdělení četností. Skupinové rozdělení četností Popé (derptví) metody Číme závěry pouze z určtého zpracovávaého ouboru výběrového, popujeme je to, co bylo zjštěo, bez zobecňováí Stattcé metody a zpracováí dat II. Popé tattcé metody Petr Dobrovolý Derptví

Více

Popis datového souboru

Popis datového souboru Lece 3 Pop datového ouboru Zatím jme hovořl převážě o zjšťováí dat a jejch zpracováí Údaje datového ouboru popují aždý případ zvlášť Ní e pouíme vužít údaje tomu, abchom zobecl určté tpcé vlatot datového

Více

ODHADY PARAMETRŮ ZÁKLADNÍHO SOUBORU. 9. cvičení

ODHADY PARAMETRŮ ZÁKLADNÍHO SOUBORU. 9. cvičení ODHADY ARAMETRŮ ZÁKLADNÍHO SOUBORU 9. cvičeí Základí ojmy Bodové odhady Itervalové odhady:ormálí r., velikot výběru, orováí arametrů Tet Statitická idukce Metody tatitické idukce jou zaměřey a řešeí dvou

Více

Popisná statistika. (Descriptive statistics)

Popisná statistika. (Descriptive statistics) Popá tatta Decrptve tattc Výledem měřeí je oubor aměřeých hodot vytvářející datový oubor D { } V datovém ouboru e mohou vyytovat tytéž hodoty vícerát, zejméa tehdy, mají-l velčy drétí epojtou povahu počet

Více

Měření a charakteristiky variability

Měření a charakteristiky variability Lece Měřeí a charatert varablt Po úrov je druhou vlatotí datového ouboru promělvot varablta Tato vlatot je ložtější o čemž vpovídají ja růzé ocepce chápáí promělvot dat ta začý počet dpoblích charatert

Více

3. cvičení 4ST201. Míry variability

3. cvičení 4ST201. Míry variability cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry varablty

Více

3. cvičení 4ST201 - řešení

3. cvičení 4ST201 - řešení cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry

Více

1 STATISTICKÁ ŠETŘENÍ

1 STATISTICKÁ ŠETŘENÍ STATISTICKÁ ŠETŘENÍ Záladem aždého tattcého zoumáí jou údaje (data). Lze je zíat v záadě dvěma způoby. Buď je převzít z ějaého zdroje ebo je am zjtt. Seudárí data údaje, teré převezmeme z růzých zdrojů;

Více

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.)

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.) Aktvta Semář základů tattky a workhop (Prof. Ig. Mla Palát, CSc., Ig. Krta Somerlíková, Ph.D.) Stattcké tříděí Základí metoda tattckého zpracováí. Sekupováí hodot proměé, které jou z hledka klafkačího

Více

Téma 1: Pravděpodobnost

Téma 1: Pravděpodobnost ravděpodobot Téma : ravděpodobot ředáša - ravděpodobot áhodého evu Náhodý pou a áhodý ev Náhodý pou - aždá čot, eíž výlede eí edozačě urče podmíam, za terých probíhá apř hod otou, měřeí dély, běh a 00

Více

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl: 9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí

Více

1 STATISTICKÁ ŠETŘENÍ

1 STATISTICKÁ ŠETŘENÍ STATISTICKÁ ŠETŘENÍ Záladem aždého tattcého zoumáí jou údaje (data). Lze je zíat v záadě dvěma způoby. Buď je převzít z ějaého zdroje ebo je am zjtt. Seudárí data údaje, teré převezmeme z růzých zdrojů;

Více

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor 1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

Momenty a momentové charakteristiky

Momenty a momentové charakteristiky Lekce 3 Momety a mometové charaktertky Pokud jme e v předešlém výkladu zmňoval o ěkteré tattcké charaktertce, zpravdla jme rověž uváděl, zda j řadíme mez více ebo méě důležté. A byly to právě artmetcký

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

Úvodem. Vážení čtenáři,

Úvodem. Vážení čtenáři, Úvodem Vážeí čteář, rpta, terá právě otevíráte, jou určea především poluchačům druhého ročíu baalářého tuda všech oborů Vyoé šoly fačí a práví, tj. jao tudjí materál předmětům Pravděpodobot a tatta, Pravděpodobot

Více

ZÁKLADY POPISNÉ STATISTIKY

ZÁKLADY POPISNÉ STATISTIKY ZÁKLADY POPISNÉ STATISTIKY Statitia věda o metodách běru, zpracováí a vyhodocováí tatiticých údaů. Statiticé údae ou apř. údae o přirozeém přírůtu či migraci obyvateltva, obemu výroby průmylových podiů,

Více

elektrické filtry Jiří Petržela základní pojmy

elektrické filtry Jiří Petržela základní pojmy Jiří Petržela základí ojmy základí ojmy z oblati elektrických filtrů základí ojmy elektrický filtr je lieárí dvojbra, který bez útlumu roouští je určité kmitočtové ložky, které obahuje vtuí igál rouštěé

Více

Odhady a testy hypotéz o regresních přímkách

Odhady a testy hypotéz o regresních přímkách Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží

Více

Lekce Úroveň a její měření. aritmetický průměr; geometrický průměr; harmonický průměr; medián; mocninový

Lekce Úroveň a její měření. aritmetický průměr; geometrický průměr; harmonický průměr; medián; mocninový Lece Nejjedodušší Měřeí a charaterty úrově vlatotí datového ouboru je jeho úroveň, azývaá taé poloha. Charaterty úrově dělíme především podle toho, zda jou tvořey a báz výzamých hodot ebo zda jou fucem

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Ekoomcká fakulta Semestrálí ráce S kua Jméa: Leka Pastorová, Davd arha, Ja Vtásek a Fl Urbačík Ročík: 0/06 Učtel: gr. Jří Rozkovec Obor: Podková ekoomka Datum:.. 06 Obsah

Více

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY 6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY Rozdleí áhodé veliiy je edis, terým defiujeme ravdodobost jev, jež lze touto áhodou veliiou osat. Záladím rozdleím oisujícím výbry bez vraceí je hyergeometricé

Více

Téma 3: Popisná statistika

Téma 3: Popisná statistika Popá tatta Téma : Popá tatta Předáša 7 Záladí tattcé pojmy Pojem a úoly tatty Statta je věda, teá e zabývá zíáváím, zpacováím a aalýzou dat po potřeby ozhodováí. Zoumá tav a vývoj homadých jevů a vztahů

Více

POPISNÁ STATISTIKA. Předmět popisné statistiky

POPISNÁ STATISTIKA. Předmět popisné statistiky STATISTIKA POPISNÁ STATISTIKA Předmět popsé statstky Hromadá data a áhodé velčy Představte s že potřebujete zjstt podrobé a kompleí formace o určtém souboru objektů jedců č událostí (stromech v lese ldech

Více

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI Přílad 0.6 Pracoví, terý spravuje podovou databáz, eportoval do tabulového procesoru všechy pracovíy podu Alfa Blatá s ěterým sledovaým

Více

7 VYUŽITÍ METOD OPERAČNÍ ANALÝZY V TECHNOLOGII DOPRAVY

7 VYUŽITÍ METOD OPERAČNÍ ANALÝZY V TECHNOLOGII DOPRAVY 7 VYUŽITÍ METOD OERAČNÍ ANALÝZY V TECHNOLOGII DORAVY Operačí aalýza jao jeda z oblatí apliovaé matematiy achází vé široé uplatěí v průmylových a eoomicých apliacích. Jedím z oborů, ve teré hraje ezatupitelou

Více

Téma 4: Výběrová šetření

Téma 4: Výběrová šetření Výběrová šetřeí Téma : Výběrová šetřeí Předáška Výběrové charaktertky a jejch rozděleí Výzam a druhy výběrového šetřeí tattcké šetřeí úplé vyčerpávající eúplé výběrové výběrové šetřeí aha o to aby výběrový

Více

Analýza parametrů měřených křivek akomodace a vergence oka v programu MATLAB

Analýza parametrů měřených křivek akomodace a vergence oka v programu MATLAB Analýza arametrů měřených řive aomoace a vergence oa v rogramu MATLAB Václav Baxa*, Jarolav Duše*, Mirolav Dotále** *Katera raioeletroniy, FEL ČVUT Praha **Oční oělení, Nemocnice, Litomyšl Abtrat Práce

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

17 t. Analytická geometrie přímky rovnice přímky, vzájemná poloha přímek, odchylka přímek, průsečík přímek, vzdálenost přímky od roviny

17 t. Analytická geometrie přímky rovnice přímky, vzájemná poloha přímek, odchylka přímek, průsečík přímek, vzdálenost přímky od roviny 7 t Aaltická geometrie přímk rovice přímk, vzájemá poloha přímek, odchlka přímek, průsečík přímek, vzdáleost přímk od rovi Parametrické vjádřeí přímk v roviě Přímka je jedozačě určea dvěma růzými bod.

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec

Směrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec Směrice /0 Statitické vyhodocováí dat, verze 3 Verze 3 e hodá ůvodí Směricí /0 verze, za čl..3 e vlože ový odtavec. Statitické metody ro zkoušeí zůobiloti Statitická aalýza oužívaá ro aalýzu výledků zkoušky

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

Možnosti vyžití statistiky a teorie zpracování dat v práci učitele na 1. stupni ZŠ

Možnosti vyžití statistiky a teorie zpracování dat v práci učitele na 1. stupni ZŠ Možnot vyžtí tatty a teore zpracování dat v prác učtele na. tupn ZŠ Význam tatty je v oudobé polečnot všeobecně uznáván. Svědčí o tom člány v denním odborném tu, lýcháme o ní čato ve vytoupeních hopodářých

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1.

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1. Katedra obecé eletrotechiy Faulta eletrotechiy a iformatiy, VŠB - TU Ostrava EERGETIKA U ŘÍZEÝCH EEKTRICKÝCH POHOŮ Předmět : Rozvody eletricé eergie v dolech a lomech. Úvod: Světový tred z hledisa eletricé

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určté předpoklady (hypotézy) o základím souboru STATISTICKÁ HYPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

Fakulta elektrotechniky a informatiky Statistika STATISTIKA

Fakulta elektrotechniky a informatiky Statistika STATISTIKA Fakulta elektrotechky a formatky TATITIKA. ZÁKLADNÍ OJMY. Náhodý pokus a áhodý jev NÁHODNÝ OKU proces realzace souboru podmíek kde výsledek emůžeme předem ovlvt. - výsledek áhodého pokusu. - jev, který

Více

4 ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4 ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4 ZÁKLADNÍ TYY ROZDĚLENÍ RAVDĚODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. Rovnoměrné rozdělení Rn - má náhodná velčna terá může nabýt n různých hodnot z nchž aždá je stejně ravděodobná Defnce 4..: Náhodná

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

Dynamická pevnost a životnost Statistika

Dynamická pevnost a životnost Statistika DŽ statistika Dyamická pevost a životost tatistika Mila Růžička, Josef Jreka, Zbyěk Hrbý mechaika.fs.cvt.cz zbyek.hrby@fs.cvt.cz DŽ statistika tatistické metody vyhodocováí dat DŽ statistika 3 tatistické

Více

Jednoduchá lineární závislost

Jednoduchá lineární závislost Jedoduchá leárí závlot Regreí fuce: ),...,, ( 0 m f Předpolad: Fuce je leárí v parametrech: ) (... ) 0 ( 0 f f m m f 0 ()... f m () regreor 0... m regreí parametr určujeme METODOU NEJMENŠÍCH ČTVERCŮ Regreí

Více

Dvourozměrná tabulka rozdělení četností

Dvourozměrná tabulka rozdělení četností ANALÝZA ZÁVILOTÍ - zouáí závlot dvou evet více poěých, ěřeí íl této závlot, atd - cíle je hlubší vutí do podtat ledovaých jevů a poceů, přblížeí tzv příčý ouvlote Dvouozěá tabula ozděleí četotí - je eleetáí

Více

ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA P NOV PRVDĚPODOBNOT TTTK Lbor Žák P NOV Lbor Žák Vícvýběrové tsty - NOV NOV tsty s rovádí s omocí aalýzy roztylů NOV souhré tsty ro víc ěž dva výběry. NOV aramtrcká tstováí charaktrstk z zámých rozdělí

Více

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická

Více

Uvažování o znalostech (agentů)

Uvažování o znalostech (agentů) Flozofové se snažl ochot a analyzovat vlastnost znalostí v říadě jedného ndvdua. Uvažování o znalostech (agentů) Ale jádrem aždé analýzy onverzace obchodního vyjednávání rotoolu řízeného událostm v dstrbuovaném

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Digitální učební materiál

Digitální učební materiál Dgtálí učebí materál Číslo projetu CZ..07/.5.00/34.080 Název projetu Zvaltěí výuy prostředctvím ICT Číslo a ázev šabloy líčové atvty III/ Iovace a zvaltěí výuy prostředctvím ICT Příjemce podpory Gymázum,

Více

5 - Identifikace. Michael Šebek Automatické řízení

5 - Identifikace. Michael Šebek Automatické řízení 5 - Idetface Mchael Šebe Automatcé řízeí 06 8-3-6 Idetface Automatcé řízeí - Kybereta a robota Aeb ja zíat model ytému z dat (a valdovat ho a jých datech) whte box (víme vše): ze záladích prcpů (fyz-chem-bo-

Více

Z-TRANSFORMACE. TECHNICKÁ UNIVERZITA V LIBERCI Hálkova 6, 461 17 Liberec 1, CZ. Teorie automatického řízení II. Katedra řídicí techniky

Z-TRANSFORMACE. TECHNICKÁ UNIVERZITA V LIBERCI Hálkova 6, 461 17 Liberec 1, CZ. Teorie automatického řízení II. Katedra řídicí techniky Čílcové říí Příloh EHNIKÁ UNIVERIA V LIBERI Hálov 6, 46 7 Lbrc, Fult mchtro moborových žýrých tudí or utomtcého říí II -RANSFORMAE Studí mtrál oc Ig Ovld Modrlá, Sc Ktdr řídcí tch oc Ig Ovld Modrlá, Sc

Více

stavební obzor 1 2/2014 11

stavební obzor 1 2/2014 11 tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích

Více

Matematická statistika II

Matematická statistika II Ig Pavla Hošová, PhD Pef 3 Pato č 49 Hoova@pefczucz Kozultačí hod: út - 4:3-5:3 atematcá tatta II předáš Předmět je zaoče zápočtem a zoušou Podmí po uděleí zápočtu: - Řádá účat a cvčeí ( toleací 3 aecí)

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@niax.cz Pravděodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, tyy dat, variabilita, frekvenční analýza

Více

Téma 5: Analýza závislostí

Téma 5: Analýza závislostí Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.

Více

Jihočeská univerzita v Českých Budějovicích. Pedagogická fakulta PRAVDĚPODOBNOSTNÍ MODELY KOLEM NÁS BAKALÁŘSKÁ PRÁCE. Radka Glücksmannová

Jihočeská univerzita v Českých Budějovicích. Pedagogická fakulta PRAVDĚPODOBNOSTNÍ MODELY KOLEM NÁS BAKALÁŘSKÁ PRÁCE. Radka Glücksmannová Jihočesá uiverzita v Česých Budějovicích Pedagogicá faulta PRAVDĚPODOBNOSTNÍ MODELY KOLEM NÁS BAKALÁŘSKÁ PRÁCE Rada Glücsmaová Česé Budějovice, rosiec 7 Na tomto místě bych ráda oděovala vedoucímu baalářsé

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Náhodné jevy, jevové pole, pravděpodobnost

Náhodné jevy, jevové pole, pravděpodobnost S Náhodé jevy pravděpodobost Náhodé jevy jevové pole pravděpodobost Lbor Žák S Náhodé jevy pravděpodobost Lbor Žák Základí pojmy Expermet česky též vědecký pokus je soubor jedáí a pozorováí jehož účelem

Více

Regulátor NQR pro nelineární oscilátor s analýzou stability

Regulátor NQR pro nelineární oscilátor s analýzou stability Rulátor NQR ro liárí osilátor s aalýzou stability Pavl Stibaur Mihal Valáš Abstrat: V řísěvu j stručě shruta a řdvší aliováa todoloi ávrhu liárího zětovazbího stavového rulátoru NQR a bhar liárího osilátoru

Více

SP2 Korelační analýza. Korelační analýza. Libor Žák

SP2 Korelační analýza. Korelační analýza. Libor Žák Korelačí aalýza Přpomeutí pojmů áhodá proměá áhodý vetor áhodý vetor Náhodý výběr: pro áhodou proměou : pro áhodý vetor : pro áhodý vetor : Přpomeutí pojmů - ovarace Kovarace áhodých proměých ovaračí oefcet

Více

Doba rozběhu asynchronního motoru.

Doba rozběhu asynchronního motoru. 1 Doba rozběhu asychroího motoru. 1. Doba rozběhu. Pro prví orietaci ke staoveí doby rozběhu asychroího motoru stačí provést přibližý výpočet ze středího urychlovacího mometu a a daých setrvačých hmot

Více

Pro orientaci v této problematice jsme se seznámili s nkolika novými pojmy:

Pro orientaci v této problematice jsme se seznámili s nkolika novými pojmy: Ig. Marta Ltschmaová Statsta I., cveí 8 LIMITNÍ VTY Lmtí vty jsou tvrzeí, terá jsou dležtá pro pops pravdpodobostích model v pípad rostoucího potu áhodých pous.. ro oretac v této problematce jsme se sezáml

Více

ů ů ď

ů ů ď ň ň ň ú ť É Ň ž ů ů ď ď ň ň ť ň ž Ě Í ň Ú ď ž ň ž ě ě Ú ž ž ž ď ž ž Ž ď ď ň ž É Ě ž ž Ž Š ď ď ž ě ž Ě ž ď ž ň ě ě ž Š ž ž ň Ě ž ž Ú Ú Š Ě ž ž ě Ž ě ě Í ě Ú ž ň ž ž Ť Ť ž ě ž Ž ě ě ď ž ě ě ě ď ž ž ž ž ě

Více

ρ hustotu měřeného plynu za normálních podmínek ( 273 K, (1) ve které značí

ρ hustotu měřeného plynu za normálních podmínek ( 273 K, (1) ve které značí Měření růtou lynu rotametrem a alibrace ailárního růtooměru Úvod: Průtoy lynů se měří lynoměry, rotametry nebo se vyočítávají ze změřené tlaové diference v místech zúžení růřezu otrubí nař.clonou, Venturiho

Více

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA UNIVERZIT PLCKÉHO V OLOMOUCI PŘÍROOVĚECKÁ FKULT KTER LGEBRY GEOMETRIE OSVĚTLENÍ VE STŘEOVÉM PROMÍTÁNÍ LINEÁRNÍ PERSPEKTIVĚ Bakalářká práce Vedoucí práce: RNr. Leka Juklová, Ph.. Rok odevdáí 202 Vypracovala:

Více

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem.

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem. HYPTEČNÍ ÚVĚR Spláceí úvěru stejým splátkam - kostatí auta ÚLHA 1: Mladý maželský pár s dostačujícím příjmy (tz. a získáí hypotéčího úvěru) se rozhodl postavt s meší rodý domek. Podle předběžé kalkulace

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd.

1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd. SROVNÁVÁNÍ HODNOT STATSTCÝCH UKAZATELŮ - oisem a analýzou ekonomikýh jevů a roesů omoí statistikýh ukazatelů se zabývá hosodářská statistika - ílem je nalézt zůsoby měření ekonomiké skutečnosti (ve formě

Více

Konstrukční úlohy metodická řada pro konstrukci trojúhelníku Irena Budínová Pedagogická fakulta MU

Konstrukční úlohy metodická řada pro konstrukci trojúhelníku Irena Budínová Pedagogická fakulta MU Konstruční úlohy metodicá řada ro onstruci trojúhelníu Irena udínová Pedagogicá faulta MU irena.budinova@seznam.cz Konstruční úlohy tvoří jednu z důležitých součástí geometrie, neboť obsahují mnoho rozvíjejících

Více

Výpočet planetových soukolí pomocí maticových metod

Výpočet planetových soukolí pomocí maticových metod Česé Vysoé Učeí Techcé v ze Fult stojí Techcá 4, h 6, 166 07 Výočet letových souolí omocí mtcových metod Výzumá záv áce byl odoová Výzumým cetem Josef Bož Záv č.: Z 02-07 Auto: Gbel Achteová Se, 2002 1

Více

P1: Úvod do experimentálních metod

P1: Úvod do experimentálních metod P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

Testování statistických hypotéz

Testování statistických hypotéz Tetováí tatitických hypotéz CHEMOMETRIE I, David MILDE Jedá e o jedu z ejpoužívaějších metod pro vyloveí závěrů o základím ouboru, který ezkoumáme celý, ale pomocí áhodého výběru. Př.: Je obah účié látky

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

ARITMETICKÉ POSLOUPNOSTI s-tého STUPNĚ. Daniela Bittnerová

ARITMETICKÉ POSLOUPNOSTI s-tého STUPNĚ. Daniela Bittnerová The Mthemtc Educto to the t Cetury Project Proceedg of the Itertol Coferece The Decdble d the Udecdble Mthemtc Educto Bro, Czech Republc, September 00 ARITMETICKÉ POSLOUPNOSTI -TÉHO STUPNĚ Del Btterová

Více

Parciální diferenciální rovnice. Dirichletova úloha pro Laplaceovu (Poissonovu) rovnici Rovnice vedení tepla

Parciální diferenciální rovnice. Dirichletova úloha pro Laplaceovu (Poissonovu) rovnici Rovnice vedení tepla arálí dereálí rove Drleova úloa ro Lalaeov ossoov rov Rove vedeí ela Vlová rove Klasae leárí arálí dereálí rov.řád d ě ý ve dvo roměý V oblas Ω E de a b d e a g jso sojé je dáa rove ro [ ] Ω oložíme g

Více

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě. 3. Hodoceí přesost měřeí a vytyčováí. Odchyky a toerace ve výstavbě. 3. Úvod o měřeí obecě 3. Chyby měřeí a jejch děeí 3.. Omyy a hrubé chyby 3.. Systematcké chyby 3..3 Náhodé chyby 3.3 Výpočet charakterstky

Více

} kvantitativní znaky

} kvantitativní znaky Měřeí tattcké závlot, korelace, regree Obecé prcpy závlot vzájemá ouvlot měřeých zaků Prof. RNDr. Jaa Zvárov rová,, DrSc. fukčí závlot x tattcká závlot átroje pro měřeí závlot leár rí regree korelace }

Více

jsou varianty znaku) b) při intervalovém třídění (hodnoty x

jsou varianty znaku) b) při intervalovém třídění (hodnoty x Výběr z eřeštelých příkladů ze zkouškových testů Jde o výběr z tpů příkladů, jejchž úspěšost řešeí u zkoušek se blíží ule. Itervalové versus bodové tříděí V tabulce je uvedeo rozděleí četostí a) př bodovém

Více

cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti

cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti DLUHOPISY ceý papír, jehož koupí si ivestor zajistí předem defiovaé peěží toky, které obdrží v budoucosti podle doby splatosti ~ 1 rok dlouhodobé dluhopisy Pokladičí poukázky

Více

ZÁKLADY STAVEBNÍ MECHANIKY

ZÁKLADY STAVEBNÍ MECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BNĚ AKULTA STAVEBNÍ ING. JIŘÍ KYTÝ, CSc. ING. ZBYNĚK KEŠNE, CSc. ING. OSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ ECHANIKY ODUL BD0-O SILOVÉ SOUSTAVY STUDIJNÍ OPOY PO STUDIJNÍ

Více

6. SLEDOVÁNÍ STATISTICKÉHO CHARAKTERU RADIOAKTIVNÍHO ROZPADU

6. SLEDOVÁNÍ STATISTICKÉHO CHARAKTERU RADIOAKTIVNÍHO ROZPADU 6. SLEDOVÁÍ STATSTCKÉHO CHARAKTERU RADOAKTVÍHO ROZPADU Jedá e o základí úlohu, demotrující tattcký charakter radoaktího rozadu a rcy tattckého ou ýledků měřeí oujícího zářeí. Měřeí je roáděo e ctlačím

Více