Kombinatorické pravděpodobnosti

Podobné dokumenty
n-rozměrné normální rozdělení pravděpodobnosti

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

3. Lineární diferenciální rovnice úvod do teorie

12. N á h o d n ý v ý b ě r

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

Komplexní čísla. Definice komplexních čísel

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze

Přednáška 7, 14. listopadu 2014

1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A );

11. přednáška 16. prosince Úvod do komplexní analýzy.

Kapitola 4 Euklidovské prostory

O Jensenově nerovnosti

14. B o d o v é o d h a d y p a r a m e t r ů

4. B o d o v é o d h a d y p a r a m e t r ů

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N?

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

1. Číselné obory, dělitelnost, výrazy

Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta

6. Posloupnosti a jejich limity, řady

1 Uzavřená Gaussova rovina a její topologie

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Pravděpodobnost a aplikovaná statistika

Náhodný výběr 1. Náhodný výběr

Definice obecné mocniny

Intervalové odhady parametrů některých rozdělení.

Kapitola 5 - Matice (nad tělesem)

Odhady parametrů 1. Odhady parametrů

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

I. TAYLORŮV POLYNOM ( 1

1. K o m b i n a t o r i k a

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti

1 Trochu o kritériích dělitelnosti

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

Diskrétní matematika

Kombinatorika- 3. Základy diskrétní matematiky, BI-ZDM

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

V. Normální rozdělení

6. FUNKCE A POSLOUPNOSTI

2. Náhodná veličina. je konečná nebo spočetná množina;

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:

Spojitost a limita funkcí jedné reálné proměnné

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

8. Analýza rozptylu.

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2019

Náhodné jevy, jevové pole, pravděpodobnost

5. Posloupnosti a řady

8. Odhady parametrů rozdělení pravděpodobnosti

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),

Matematika I, část II

Masarykova univerzita Přírodovědecká fakulta

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

1 Základní matematické pojmy Logika Množiny a jejich zobrazení... 7

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení

I. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) =

8.2.1 Aritmetická posloupnost

Posloupnosti a číselné řady. n + 1. n n n n. n n n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b b n) = 1 b

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

7. KOMBINATORIKA, BINOMICKÁ VĚTA. Čas ke studiu: 2 hodiny. Cíl

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):

z možností, jak tuto veličinu charakterizovat, je určit součet

1 Základní pojmy a vlastnosti

7. Analytická geometrie

Pravděpodobnost a statistika Výpisky z cvičení Ondřeje Chocholy

P. Girg. 23. listopadu 2012

( )! ( ) ( ) ( ) = ( ) ( ) ( ) ( ) ( )

Petr Šedivý Šedivá matematika

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a a N. n=1

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

Kvantily. Problems on statistics.nb 1

ŘADY Jiří Bouchala a Petr Vodstrčil

Matematická analýza I

ZS 2018/19 Po 10:40 T5

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n.

Vlastnosti posloupností

Deskriptivní statistika 1

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

Statistika pro metrologii

3. Charakteristiky a parametry náhodných veličin

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické

Transkript:

Examples+Solutios.b Kombiatorické pravděpodobosti.. Náhodý výběr s avraceím. V urě je N koulí, z toho M červeých a N - M bílých. Jaká je pravděpodobost, že mezi áhodě vybraými koulemi bude přesě k červeých, jestliže po každém jedotlivém tahu je vytažeá koule vrácea do ury a koule jsou důkladě promícháy? Jaká je pravděpodobost, že k-tá červeá koule bude vytažea při -tém tahu? Představme si, že koule jsou očíslováy čísly až N. Výsledkem tahů je pak posloupost Ha, a,..., a L celých čísel z itervalu X, N\. Tyto poslouposti tvoří možiu W stejě pravděpodobých elemetárích jevů. Protože počet prvků možiy W je N, pravděpodobost každého elemetárího jevu je ê N. Předpokládáme-li pro určitost, že červeým koulím odpovídají čísla až M, což zřejmě eí a újmu obecosti, potom aším úkolem je určit pravděpodobosti jevů A = 8Ha, a,..., a L»a + a + +a = k<, B = 8Ha, a,..., a L»a + a + +a = k, a = <, kde a i * =, jestliže a i M, a a i * = 0 v opačém případě. Protože zřejmě dostáváme» A» = J k N Mk HN ML k,» B» = J k N Mk HN ML k, PHAL = J k N Mk HN ML k N = J k N J M N Nk J M N k, N PHBL = J k N Mk HN ML k N = J k N J M N Nk J M N k. N.. Náhodý výběr bez avraceí. V osudí je N koulí, z toho M červeých a N - M bílých. Koule postupě vytahujeme z osudí a evracíme je zpět. Jaká je pravděpodobost, že poprvé vytáheme červeou kouli při k-tém tahu? Jaká je pravděpodobost, že mezi vytažeými koulemi bude k červeých a - k bílých? Představme si, že koule jsou očíslováy čísly až N. Výsledkem k tahů je pak prostá posloupost Ha, a,..., a L celých čísel z itervalu X, N\. Tyto poslouposti tvoří možiu W stejě pravděpodobých elemetárích jevů. Protože počet prvků možiy W je N!êHN - L!, pravděpodobost každého elemetárího jevu je HN - L!ê N!. Předpokládáme-li pro určitost, že červeým koulím odpovídají čísla až M, což zřejmě eí a újmu obecosti, potom aším úkolem je určit pravděpodobosti jevů A = 8Ha, a,..., a L»a + a + +a k = 0, a k = <, B = 8Ha, a,..., a L»a + a + +a = k<, kde a i * =, jestliže a i M, a a i * = 0 v opačém případě. Zřejmě A N M k, B N M k. Jsou-li tyto podmíky splěy, pak HN ML! HN kl!» A» = M HN M k + L! HN L!,» B» = J k N M! HM kl! a proto PHAL = HN ML! HN kl! M HN M k + L! HN L! HN L! M HN ML! HN kl! = N! HN M k + L! N! HN ML! HN M + kl! N k J = M N J N, M N PHBL = J k N M! HM kl! HN ML! HN M + kl! HN L! N! = J k N JN M k N J N. M N

Examples+Solutios.b.3. Maxwellova-Boltzmaova statistika. věcí rozdělujeme áhodě do N přihrádek, přičemž dvě rozděleí považujeme za růzá, jestliže alespoň jedu věc přidělí do růzých přihrádek. Jaká je pravděpodobost, že v určité pevě zvoleé přihrádce bude právě k věcí? Můžeme zřejmě předpokládat, že přihrádky i věci jsou očíslováy. Každé rozděleí je pak jedozačě určeo zobrazeím možiy 8,,..., < do možiy 8,,..., N<. Tato zobrazeí tedy můžeme považovat za možé elemetárí jevy. Možia W všech těchto elemetárích jevů má N prvků, a protože všechy elemetárí jevy jsou zřejmě stejě možé, pravděpodobost každého z ich je ê N. Naším úkolem je určit pravděpodobost jevu A r,k = 8ϕ Ω»ϕ HrL = k<, kde k, r N jsou pevě zvoleá celá čísla. Každý elemetárí jev přízivý jevu A r,k můžeme zřejmě získat tak, že vybereme k-čleou podmožiu M možiy 8,,..., <, každý její prvek zobrazíme a r a ostatích - k prvků možiy 8,,..., < zobrazíme libovolě do možiy 8,,..., r -, r +,..., N<. Protože M můžeme vybrat i j y z způsoby a možiu o - k prvcích můžeme do možiy o N - prvcích zobrazit HN - L -k kk způsoby, počet elemetárích jevů přízivých jevu A r,k je» A r,k» = i j y z HN - L -k, a tedy kk PHA r,k L = J N HN L k k N = J k N N k J k N N..4. Boseova-Eisteiova statistika. věcí rozdělujeme áhodě do N přihrádek, přičemž dvě rozděleí považujeme za růzá, jestliže do alespoň jedé přihrádky přidělí růzý počet věcí. Jaká je pravděpodobost, že v určité pevě zvoleé přihrádce bude právě k věcí? I. Můžeme zřejmě předpokládat, že přihrádky jsou očíslovaé. Ze zadáí pak vyplývá, že každé rozděleí je jedozačě charakterizováo počty věcí v jedotlivých přihrádkách, tj. posloupostí a =Ha, a,..., a N L celých ezáporých čísel, jejichž součet se rová. Tyto poslouposti tedy můžeme považovat za elemetárí jevy. Všecha rozděleí jsou stejě možá, takže pravděpodobost každého elemetárího jevu je ê»w», kde W je možia všech elemetárích jevů a»w» je jejich počet. Naším úkolem je určit pravděpodobost jevu A k,r = 8a Ω»a r = k<, kde k, r N jsou pevě zvoleá celá čísla. K tomu musíme ejdříve určit počty prvků moži W a A k,r. To lze provést dvěma způsoby. () Každé rozděleí věcí do N přihrádek si můžeme představit jako H + N - L-čleou posloupost tvořeou věcmi a N - přepážkami mezi přihrádkami. Např. pro = 8, N = 0 si rozděleí,, si můžeme představit jako poslouposti,,. Počet prvků možiy W je tedy rove počtu takovýchto posloupostí. Každá taková posloupost je však jedozačě určea možiou pozic přihrádek, apř. pro výše uvedeé tři poslouposti jsou to možiy 84, 5, 7, 0,,, 4, 5, 7<, 8, 3, 5, 0,,, 4, 5, 7<, 8, 3, 4, 6, 8, 0,, 4, 5<. Počet prvků možiy W je tedy rove počtu kombiací třídy N - z + N - prvků:» Ω» = J + N N N = J + N N. () Každému prvku a œ W přiřaďme posloupost a * =Ha *, a *,....a * N L, kde a * i = a +... + a i + i pro každé i =,,..., N. Posloupost a * je zřejmě rostoucí, a * a a * N = + N. Obráceě pro každou rostoucí posloupost b =Hb, b,..., b N L s vlastostmi b, b N = + N je předpisem a = b -, a i = b i - b i- - pro i =,... N defiováa posloupost a, pro kterou a * = b. Korespodece a a * je tedy vzájemě jedozačá, a proto W má tolik prvků, kolik je rostoucích posloupostí b =Hb, b,..., b N L, kde b a b N = + N. Takových posloupostí

Examples+Solutios.b 3 je ale tolik, kolik má možia 8,,..., + N - < podmoži o N - prvcích, což je počet kombiací třídy N - z + N - prvků. II. Každé rozděleí patřící do možiy A k,r zřejmě můžeme získat tak, že do r-té přihrádky dáme k libovolých předmětů, a zbývajících - k předmětů rozdělíme áhodě do zbývajících N - přihrádek. Počet prvků možiy A k,r je tedy rove počtu rozděleí - k předmětů do N - přihrádek, tj. III. Výsledek:» A k,r» = J + N k N PHA k,r L = J + N k N k J + N N N = J + N k N. k pro k..5. Fermiho-Diracova statistika. věcí rozdělujeme áhodě do N přihrádek, přičemž v každé přihrádce může být ejvýše jeda věc a dvě rozděleí považujeme za růzá, jestliže alespoň jeda přihrádka je v jedom rozděleí prázdá a v druhém ikoliv. Jaká je pravděpodobost, že určitá pevě zvoleá přihrádka ebude prázdá? Můžeme zřejmě předpokládat, že přihrádky jsou očíslovaé. Každé rozděleí popsaého typu je pak jedozačě určeo rostoucí posloupostí idexů i, i,..., i eprázdých přihrádek. Takových posloupostí je ale tolik, kolik je kombiací -té třídy z N prvků. Možia W elemetárích jevů má tedy i j N y z prvků a pravděpodobost každého k elemetárího jevu je ì i j N y z. Počet rozděleí, v ichž pevě zvoleá přihrádka eí prázdá, je zřejmě rove k počtu rozděleí popsaého typu - předmětů do N - přihrádek, tj. i j N - y z. Hledaá pravděpodobost je tedy k - rova J N N J N N = N..6. Ve společosti lidí je stejý počet mužů a že a místa za kulatým stolem se obsazují áhodě. Jaká je pravděpodobost, že se dvě osoby stejého pohlaví eposadí vedle sebe? Můžeme zřejmě předpokládat, že osoby i židle jsou očíslováy. Každé rozesazeí kolem stolu je pak reprezetováo prostou posloupostí a =Ha, a,..., a L všech celých čísel z itervalu X, \, tj. permutací řádu. Možia elemetárích jevů W má tedy H L! prvků. Posloupost a œ W reprezetuje rozesazeí, v ěmž dvě osoby stejého pohlaví esedí vedle sebe, právě tehdy, když buď všechy její čley se sudými idexy jsou sudá čísla ebo všechy její čley se sudými idexy jsou lichá čísla. Posloupostí prvého typu je zřejmě stejě jako posloupostí druhého typu, a to H!L. Ozačíme-li A možiu všech elemetárích jevů reprezetovaých posloupostmi těchto dvou typů, potom hledaá pravděpodobost je rova PHAL = H!L H L!..7. Ve společosti se sešlo maželských dvojic. Při taci tačí každý muž se stejou pravděpodobostí s kteroukoliv žeou. Jaká je pravděpodobost, že ikdo etačí se svou maželkou? Vypočtěte limitu této pravděpodoboti pro Ø. Návod. Dokažte ejprve, že pro libovolé koečé možiy A,..., A platí vztah»a... A» =»A i» -»A i A j» +»A i A j A k» - +H-L +»A A», i i<j kde» A» je počet prvků možiy A. i<j<k I. Nejprve matematickou idukcí dokážeme výše uvedeý vztah. Protože vztah triviálě platí pro =, stačí

4 Examples+Solutios.b dokázat, že z jeho platosti pro koečých moži plye jeho platost pro + koečých moži. Podle idukčího předpokladu = = i < <i k k i < <i k k»a... A +» = =» A... A» +» A +»»HA... A L A +» = H L k+»a i A ik» +» A +»»HA A + L HA A + L» = H L k+»a i A ik» +» A +» + i < <i k k H L k» A i A ik A +» = + = i =»A i» + i < <i k k H L k+»a i A ik» + i < <i k =+ k H L k+» A i A ik» = + = i=»a i» + i < <i k k + + H L k+»a i A ik» = k= H L k+»a i A ik», i < <i k což bylo třeba dokázat. II. Můžeme zřejmě předpokládat, že jak muži, tak žey jsou očíslováy čísly od do. Každé rozděleí do taečích dvojic je pak reprezetováo permutací a =Ha, a,..., a L možiy celých čísel 8,,..., < a proto za možiu elemetárích jevů W můžeme považovat možiu všech těchto permutací. Všechy elemetárí jevy mají zřejmě stejou pravděpodobost ê! a aším úkolem je určit pravděpodobost PHAL =» A» ê! jevu a vypočítat její limitu pro Ø. A = 8a Ω»a i i pro všecha i =,,..., < Položíme-li A i =8a Ω»a i = i< pro každé i =,,...,, potom zřejmě a tedy podle části I důkazu A = Ω Ê A i, A i A ik = 8a Ω»a i = i,..., a ik = i k <, i= i < < i k» A i A ik» = H kl!, =!» A» =! k= k= i < <i k H L k+ H kl!= H L k+ J k N H kl!=! k= Odtud a z Maclauriovy formule pro fukci x se zbytkem v Lagrageově tvaru PHAL =» A»! = k= kde 0 < ϑ <, + H L k+ k! = k=0 H L k k! H + L! < PHAL < lim PHAL =. H L k+! k!. = + ϑ H + L!, + H + L!,.8. Každá z osob vloží svou vizitku do klobouku a každá si pak opět jedu vytáhe. Jaká je pravděpodobost, že právě r osob si vytáhe svou vizitku? Vypočtěte limitu této pravděpodoboti pro Ø. Možiu elemetárích jevů můžeme podobě jako v řešeí příkladu.7 ztotožit s možiou W všech permutací a =Ha,..., a L možiy 8,,..., <. Všechy elemetárí jevy mají pravděpodobost ê! a aším úkolem je určit pravděpodobost jevu A = 8a Ω»a i = i právě pro r idexů i<. Položíme-li pro prostou posloupost Hi,..., i k L celých čísel z itervalu X, \

Examples+Solutios.b 5 potom, jak se sado ahléde, a tedy Podobě platí A i,...,i k = 8a Ω»a i = i právě když i = i,..., i k <, B i,...,i k = 8a Ω»a i = i,..., a ir = i r <,» A i,...,i r» =» A,...,r», A i,...,i r A j,...,j r = pro 8i,..., i r < 8j,..., j r <, A = Ê i <...<i r A i,...,i r,» A» = i <...<i r» A i,...,i r» = i <...<i r» A,...,r» = J r N»A,...,r».» B i,...,i k» =» B,...,k» = H kl!, a proto formule z ávodu v příkladu.7 aplikovaá a možiy implikuje r = k= Dále se sado ahléde, že a proto Celkem tedy r = k= B,...,r,r+,..., B,...,r, Ê B,...,r,i = ƒ i=r+ ƒ H L k+ r<i < <i k» B,...,r,i,...,i k» = r H L k+ H r kl! = r<i < <i k k= r = H rl! k= A,...,r = B,... r Ê Ê H L k+ J r N H r kl! = k H L k+ k!. i=r+» A,...,r» = B,... r,i, =» B,...,r» B,...,r,i = H rl! i j H L k+ y k! z. ƒ i=r+ ƒ k k=» A» = J r N»A,...,r» =! r! r r r i j H L k+ y k! z =! r! k k= k=0 takže hledaá pravděpodobost a její limita pro Ø jsou dáy formulemi PHAL =» A»! = r! r i j H L k y k! z, lim P HAL = r!. kk=0 H L k k!,.9. Matematik S. Baach, který byl silý kuřák, osil ve dvou kapsách po jedé krabičce zápalek. Zápalky si bral áhodě z jedé ebo druhé krabičky s pravděpodobostí ê. Jedou si dal do každé kapsy ovou krabičku s zápalkami. Vypočtěte pravděpodobost P k, že v okamžiku, kdy si vzal z jedé krabičky posledí zápalku, zbývalo v druhé krabičce právě k zápalek. Pro které k je tato pravděpodobost maximálí?

6 Examples+Solutios.b Za elemetárí jevy zde zřejmě můžeme považovat jisté -čleé poslouposti výběrů z levé a pravé kapsy. Ozačíme-li výběr z jedé (řekěme levé) kapsy číslem a výběr z druhé (řekěme pravé) kapsy číslem 0, bude možiou elemetárích jevů možia W všech posloupostí a =Ha,..., a L, kde a + + a =. Všechy elemetárí jevy mají zřejmě stejou pravděpodobost a jejich počet je rove počtu kombiací -té třídy z prvků. Jestliže při elemetárím jevu a je posledí zápalka z levé kapsy vybráa při m-tém výběru, je utě a m =, a a + + a m =. Zbývá-li přitom v pravé kapse k m zápalek, je utě m = - k. Pravděpodobost P k je proto dáa formulí!! P k = H L!»A» kde A =8a œ W»a -k =, a + +a -k = <. Protože počet prvků možiy A je zřejmě rove počtu kombiací třídy - z - k - prvků, je!! H k L!! H k L! P k = = H L! H L! H kl! H L! H kl!. Abychom určili, pro které k = 0,,..., je pravděpodobost P k ejvětší (ituitivě je, myslím, zřejmé, že pro k = 0), porováme P k s P k+. Protože P k+! H k L! H L! H kl! = P k H L! H k L!! H k L! = k k = k <, ejvětší je pravděpodobost P 0 = ê..0. Ve frotě a vstupeky po 50-ti koruách, stojí m + lidí, z ichž m platí padesátikoruou a platí stokoruou. Jaká je pravděpodobost, že ikdo z platících stokoruou ebude muset čekat a vráceí padesátikoruy, jestliže před zahájeím prodeje ebyly v pokladě žádé peíze? Pokud žádý člověk ve frotě platící stokoruou emá čekat a vráceí padesátikoruy, musí být zřejmě m. Za předpokladu, že je tato podmíka splěa, je pro průběh prodeje podstaté, jak jsou ve frotě rozmístěi lidé platící padesátikoruou. Každé takové rozmístěí je jedozačě určeo fukcí f :8,,..., m + < Ø8-, <, kde» f - HL»=m, přičemž fhil = právě když a i-tém místě ve frotě stojí člověk platící padesátikoruou. Za možiu W elemetárích jevů můžeme proto považovat možiu všech takových fukcí. Elemetárích jevů je zřejmě tolik, kolik je kombiací m-té třídy z m + prvků, tj. i j m + y z, a všechy jsou stejě pravděpodobé. Nazveme-li elemetárí jev přízivým, jestliže při jím určeém rozmístěí lidí platících padesátikoruou ve frotě ikdo k m ebude muset čekat a vráceí padesátikoruy, pak možiou přízivých elemetárích jevů je možia A = 8fεΩ»f HL + f HL + +f HkL 0 pro každé k =,,..., m + < a aším úkolem je určit pravděpodobost PHAL. Protože PHAL = PHBL =»B» J m +, m N kde B = W - A je komplemetárí jev, zbývá určit počet prvků možiy B. Pro každé f œ W defiujme f è :80,,..., m + < Ø předpisem f H0L = 0, fhil = fhl + +fhil pro k > 0. Protože posloupost fhl,..., fhm + L obsahuje m jediček a mius jediček, platí rovost f è Hm + L = m -. Kromě toho rozdíl hodot fukce f è ve dvou sousedích bodech je vždy. Zřejmě f œ A ñ f è 0 a proto pro každé f œ B můžeme defiovat f` :80,,..., m + < Ø předpisem l om f f ˆHiL HiL, pro i k, = o f HiL, pro i > k, kde k prví číslo z možiy 8,,..., m + <, pro které f è HkL < 0. V důsledku defiice f`h0l = 0, f`hm + L = - m - a rozdíl hodot fukce f` v libovolých dvou sousedích bodech je též. Pro m + = a fukci f abývající hodoty v bodech,, 6, 9, 0, jsou fukce f è a f` zázorěy íže a obrázku: čerou lomeou čárou jsou pospojováy body grafu fukce f è a červeou lomeou čárou jsou pospojováy body grafu fukce f`.

Examples+Solutios.b 7 0 - - -3 0 4 6 8 0 Zobrazeí f # f` je evidetě prosté a proto»b» =» B`», kde B` =9 f`» f œ B=. Počet prvků možiy B` však určíme sado. Každá fukce f` œ B` je zřejmě jedozačě určea posloupostí ˆHL f fˆh0l, fˆhl fˆhl,..., fˆhm + L fˆhm + L, a ta je dále jedozačě určea možiou I f všech i, pro ěž f`hil - f`hi - L =. Ozačíme-li r resp. s počet čísel resp. - v této poslouposti, potom utě r + s = m + a r - s = - m -, což implikuje»i f» = r = -. To však zameá, že počet prvků možiy B` je rove počtu kombiací třídy - z m + prvků. Hledaá pravděpodobost je proto rova J m +»Bˆ» N PHAL = J m + = m N J m + = m N P HAL = 0 pro m <. m + = m + m + pro m,.. Ve frotě a vstupeky po 50-ti koruách stojí lidí, z ichž každý platí buď padesátikoruou ebo stokoruou. Jaká je pravděpodobost, že ikdo z platících stokoruou ebude muset čekat a vráceí padesátikoruy, jestliže před zahájeím prodeje bylo v pokladě pouze m padesátikoru? Pokud žádý člověk ve frotě platící stokoruou emá čekat a vráceí padesátikoruy, musí počet p lidí platících padesátikoruou splňovat erovost m + p - p, tj. p - m. Za předpokladu, že je tato podmíka splěa, je pro průběh prodeje podstaté, jak jsou ve frotě rozmístěi lidé platící padesátikoruou. Každé takové rozmístěí je jedozačě určeo fukcí f :8,,..., < Ø8-, <, kde fhil = právě když a i-tém místě ve frotě stojí člověk platící padesátikoruou. Počet prvků možiy f - HL je přitom rove počtu lidí platících padesátikoruou. Za možiu W elemetárích jevů můžeme proto považovat možiu všech fukcí f :8,,..., < Ø8-, < splňujících podmíku» f - HL» - m. Protože W je zřejmě disjukím sjedoceím moži W -m,..., W, kde W p je možia všech f œ W splňujících podmíku» f - HL» = p, a počet prvků možiy W p je rove počtu kombiací p-té třídy z prvků, počet prvků možiy W je dá vztahem» Ω» = p= m J p N. Všechy elemetárí jevy jsou přitom stejě pravděpodobé. Nazveme-li elemetárí jev přízivým, jestliže při jím určeém rozmístěí lidí platících padesátikoruou ve frotě ikdo ebude muset čekat a vráceí padesátikoruy, pak možiou přízivých elemetárích jevů je možia A = 8fεΩ» m + f HL + f HL + +f HkL 0 pro každé k =,,..., < a aším úkolem je určit pravděpodobost PHAL. Protože PHAL = PHBL = p= m»b PHB p L = p»» Ω» = p= m»b p»,» Ω» kde B = W - A a B p = W p - A, zbývá určit počet prvků každé možiy B p. K tomu použijeme stejou techiku jako v řešeí příkladu.0. Zvolme tedy pevě celé p z itervalu X - p, \ a pro každé f œ W p defiujme f è :80,,..., < Ø předpisem f H0L = m, fhil = fhl + +fhil pro k > 0. p= m

8 Examples+Solutios.b Protože v poslouposti fhl,..., fh L je p čleů rovo a - p čleů je rovo -, platí rovost f H L = m + p + p = Hm + pl. Kromě toho rozdíl hodot fukce f è ve dvou sousedích bodech je vždy. Protože f œ A ñ f è 0, pro každé f œ B p můžeme defiovat f` :80,,..., < Ø předpisem l om f f ˆHiL HiL pro i < k, = o f HiL pro i k, kde k prví číslo z možiy 8,,..., <, pro které f è HkL < 0. Zřejmě f`h0l = m, f`h L = H - m - p - L a rozdíl hodot fukce f` v libovolých dvou sousedích bodech je též. Zobrazeí f # f` je evidetě prosté a proto»b» =» B` p», kde B` p =9 f`» f œ B p =. Počet prvků možiy B` p však určíme sado. Každá fukce f` œ B` p je zřejmě jedozačě určea posloupostí ˆHL f fˆh0l, fˆhl fˆhl,..., fˆh L fˆh L, a ta je dále jedozačě určea možiou I f všech i, pro ěž f`hil - f`hi - L =. Je-li r resp. s počet čísel resp. - v této poslouposti, potom utě r + s = a r - s = H - m - p - L, což implikuje»i f» = r = - m - p -. To však zameá, že počet prvků možiy B` p je rove počtu kombiací třídy - m - p - z prvků, což je totéž jako počet kombiací třídy m + p + z prvků. Hledaá pravděpodobost je proto rova PHAL = p= m»b p»» Ω» J m + p + N p= m = J p N p= m PHAL = 0 pro p < m. pro p m,.. Za předpokladu, že všechy cifry áhodě zvoleého přirozeého čísla N jsou stejě pravděpodobé, určete pravděpodobost, že posledí dvě cifry jeho třetí mociy jsou jedičky. Jestliže N má v dekadické číselé soustavě zápis a a - a a 0, takže potom N = a 0 + 0 a + +0 + 0, N 3 = a 0 3 + 30 a 0 a + 300 M, kde M je celé ezáporé číslo. To však zameá, že a posledí dvě cifry třetí mociy čísla N mají vliv pouze jeho posledí dvě cifry, a proto za možiu stejě možých elemetárích jevů můžeme považovat možiu W všech uspořádaých dvojic a =Ha 0, a L celých čísel z itevalu X0, 9\. Protože»W» = 00, každý elemetárí jev má pravděpodobost ê00, a aším úlolem je určit pravděpodobost jevu A tvořeého všemi elemetárími jevy a, pro ěž posledí dvě cifry v dekadickém zápisu čísla a 0 3 + 30 a 0 a jsou jedičky. Posledí cifrou čísla a 0 3 + 30 a 0 a však může být jedička pouze v případě a 0 = a předposledí cifrou čísla a 0 3 + 30 a 0 a = + 30 a může být jedička, jak se sado ověří, pouze v případě a = 7. Jev A tedy obsahuje jediý elemetárí jev a proto PHAL = ê00..3. Čebyševova úloha. Jaká je pravděpodobost, že při áhodém výběru celých čísel p, q z itervalu X, \, kde je celé číslo, elze zlomek pêq zkrátit? Určete limitu této pravděpodobosti pro Ø. Možiou elemetárích jevů W je zde zřejmě možia všech uspořádaých dvojic Ha, bl přirozeých čísel z itervalu X, \. Všechy elemetárí jevy jsou stejě možé a proto každý má pravděpodobost ê. Naším prvím úkolem je určit pravděpodobost jevu A = 9Ha, bl Ω»p Π a Π b a p fi b p =, kde P x je možia všech prvočísel z itervalu X, x\. Nechť p K, kde «K Õ P, je souči všech prvočísel p œ K a echť B K je možia všech elemetárích jevů Ha, bl, kde obě čísla a, b jsou dělitelá číslem p K. Potom zřejmě

Examples+Solutios.b 9 B = Ω A = Ê8B 8p<» p Π < a proto, viz příklad.7,»b» = K Π H L»K»+»B K» = K Π H L»K»+»B K» kde P è je možia všech eprázdých K Õ P s p K. Protože, jak se sado ahléde,»b K» = B p K F, kde @xd začí celou část čísla x a 0 K <, dostáváme pro hledaou pravděpodobost formuli PHAL =» B» = + H L»K» B F = + p K K Π K Π H L»K» A p K E. Např. pro = 0 pro = 0 Π = 8, 3, 5, 7<, Π = 88<, 83<, 85<, 87<, 8, 3<, 8, 5<< PHAL = 63 H5 + 9 + 4 + L = 00 00, Π = 8, 3, 5, 7,, 3, 7, 9<, Π = 88<, 83<, 85<, 87<, 8<, 83<, 87<, 89<, 8, 3<, 8, 5<, 8, 7<, 83, 5<< PHAL = 5 H00 + 36 + 6 + 4 + + + + 9 4 L = 400 80 = 0.6375, a pro = 00» Π» = 5,» Π» = 60, PHAL = 6087 0000 = 0.6087 Zbývá určit limitu pravděpodobosti PHAL pro Ø. Položíme-li B F = p K p K, K p K kde 0 K <, potom kde 0 K <, a proto B F = J N K p K p K p K PHAL = + K Π + K J N, p K H L»K» J p K K N = = + K Π H L»K» J N + p K K Π H L»K» I K M K Π H L»K» K p K. Protože z jedozačosti rozkladu přirozeého čísla a souči prvočísel vyplývá, že K # p K je prosté zobrazeí možiy P è do možiy 8,,..., <, možia P è má ejvýše prvků, a proto ƒ K Π To však zameá, že K Π ƒ K Π ƒ H L»K» K p K ƒ H L»K» J N p K ƒ H L»K» I K M ƒ K Π p K K Π K Π i= J N p K i= J N J N = i + x i i i= = π 6, 0 pro, lh + L x = 0 pro.

0 Examples+Solutios.b = + lim lim PHAL = + lim K Πˆ K Π H L»K» J N = lim p K H L»K» J N = + p K p Πˆ J p N = lim N p K H L»K» J K Π i= J p i N = i= = J p i N. kde P è je možia všech koečých podmoži možiy všech prvočísel, P` je možia prvích prvočísel a p i je i-tý čle rostoucí poslouposti všech prvočísel. Použijeme-li ještě idetitu i= px i p x i = x = platou pro x > a dokázaou již v 8. století švýcarským matematikem, fyzikem a astroomem Leohardem Eulerem (5.4.707-8.9.783), dostaeme defiitiví výsledek lim PHAL = i j k= Geometrické pravděpodobosti y z = 6 π U 0.60797... Bertradův paradox. K daé kružici zvolíme áhodě tětivu. Jaká je pravděpodobost, že tětiva bude delší ež straa rovostraého trojúhelíku vepsaého do této kružice? Výsledek závisí a tom, co přesě rozumíme áhodým výběrem tětivy. O kružici můžeme zřejmě předpokládat, že je zadáa aalyticky rovicí x + y = R. I. Protože délka tětivy závisí pouze a její vzdáleosti od středu kružice, za áhodý výběr tětivy můžeme považovat áhodý výběr její vzdáleosti od středu kružice, tj. áhodý výběr reálého čísla z itervalu W =X0, R\. Při tomto pohledu je modelem pro daou úlohu pravděpodobostí prostor HW,, PL, kde je s-algebra borelovských podmoži itervalu W a PHAL = lhalêr, kde l je Lebesgueova míra možiy A. Protože vzdáleost stray vepsaého rovostraého trojúhelíku od středu kružice je R sihpê6l = Rê a protože tětiva je tím delší, čím je její vzdáleost od středu kružice meší, hledaou pravděpodovostí je pravděpodobost jevu což je zřejmě ê. A = 8ω Ω»ω Rê<, II. Protože tětiva je jedozačě určea svým středem, druhou možostí pro její áhodou volbu je áhodá volba jejího středu. Při této iterpretaci áhodé volby tětivy je modelem pro daou úlohu pravděpodobostí prostor HW,, PL, kde W je kruh ohraičeý daou kružicí, je s-algebra jeho borelovských podmoži a PHAL = lhalêhp R L, kde l je Lebesgueova míra (obsah) možiy A. Protože vzdáleost stray vepsaého rovostraého trojúhelíku od středu kružice je R sihpê 6L = Rê a protože tětiva je tím delší, čím je vzdáleost jejího středu od středu kružice meší, hledaou pravděpodovostí je pravděpodobost jevu což je zřejmě ê4. A = 8Hω, ω L Ω»ω + ω R ê 4<, III. Třetí možostí, jak áhodě zvolit tětivu k daé kružice, je zvolit áhodě její kocové body. Vzhledem ke stadardí parametrizaci x = R cos t, y = R si t kružice x + y = R je taková áhodá volba zřejmě ekvivaletí áhodé volbě bodu čtverce W =X0, p\. Při tomto pohledu je modelem pro daou úlohu pravděpodobostí prostor HW,, PL, kde je s-algebra borelovských podmoži čtverce W a PHAL = lhalêh4 p L, kde l je Lebesgueova míra (obsah) možiy A. Protože délka stray vepsaého rovostraého trojúhelíku je R è!!! 3, aším úkolem je určit pravděpodobost jevu A = 9Hα, βl Ω : R "############################################################################### Hcos α cos βl +Hsi α si βl R è!!! 3=. Zjedodušováím erovosti v defiici jevu A za pomoci zámých vztahů mezi goiometrickými fukcemi postupě dostaeme

Examples+Solutios.b A = 8Hα, βl Ω» è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! coshα βl è!!! 3< = 9Hα, βl Ω : ÀsiJ α β è!!! NÀ 3= = = 9Hα, βl Ω : sià α β À è!!! 3 ë = = 9Hα, βl Ω : π 3»α β» 4 π 3 = = = 9Hα, βl Ω : π 3 α β 4 π π = 9Hα, βl Ω : 3 3 β α 4 π 3 =, 6 5 4 A 3 A takže, jak je patro z obrázku, 0 0 3 4 5 6 PHAL = PHA L = i j k J 4 π 3 N J π y 3 N z ì H4 π L = 3... Daou úsečku rozdělíme dvěma áhodě zvoleými body a tři díly. Jaká je pravděpodobost, že z ich lze sestrojit trojúhelík? Daou úsečkou můžeme zřejmě ztotožit s itervalem X0, \. Náhodá volba dvou bodů daé úsečky je pak ekvivaletí áhodé volbě bodu Hx, yl čtverce W =X0, \ äx0, \ a pravděpodobost, že áhodě vybraý bod bude patřit do borelovské podmožiy A, závisí zřejmě pouze a Lebesgueově míře (obsahu) této podmožiy. Vhodým modelem pro daou úlohu je proto pravděpodobostí prostor HW,, PL, kde s-algebra borelovských podmoži čtverce W a P je restrikce Lebesgueovy míry a. Sado se ahléde, že ze tří úseček, a ěž je iterval X0, \ rozděle body x, y, lze sestrojit trojúhelík právě když jsou splěy (trojúhelíkové) erovosti v případě x < y, ebo erovosti x +Hy xl > y, x +H yl > y x, Hy xl +H yl > x y +Hx yl > x, y +H xl > x y, Hx yl +H xl > y v případě x > y. Hledaá pravděpodobost je proto rova Lebesgueově míře (obsahu) možiy A = A A, kde A = 8Hx, yl Ω»y > x, y > ê, y < x + ê, x < ê<, A = 8Hx, yl Ω»y < x, x > ê, y > x ê, y < ê<, 0.5 A A takže, jak je patro z obrázku, PHAL = ê4. 0.5

Examples+Solutios.b.3. Zvolíme áhodě tři úsečky o délce ejvýše l. Jaká je pravděpodobost, že z ich bude možé sestrojit trojúhelík? Velikosti áhodě zvoleých úseček o délce ejvýše l představují tři áhodě zvoleá čísla x, y, z z itervalu X0, l\ a možost sestrojit ze zvoleých úseček trojúhelík závisí pouze a těchto číslech, tj. a bodu Hx, y, zl œ W, kde Ω = X0, l\ 3 = 8Hx, y, zl»8x, y, z< X0, l\<. Protože všechy velikosti áhodě voleých úseček jsou zřejmě stejě možé, pravděpodobost, že bod Hx, y, zl bude patřit do borelovské podmožiy A Œ W závisí zřejmě pouze a Lebesgueově míře (objemu) této podmožiy. Vhodým modelem pro daou úlohu je proto pravděpodobostí prostor HW,, PL, kde s-algebra borelovských podmoži možiy W a pravděpodobost každého jevu A œ je dáa vztahem PHAL = lhalêl 3, kde l je Lebesgueova míra a 3. Sado se ahléde, že ze tří úseček o velikostech x, y, z lze sestrojit trojúhelík právě když jsou splěy (trojúhelíkové) erovosti x + y > z, x + z > y, y + z > x. Hledaá pravděpodobost je proto rova pravděpodobosti jevu A = 8Hx, y, zl Ω»x+y > z, x + z > y, y + z > x<. Ozačíme-li B jev komplemetárí k jevu A, potom zřejmě B = B B B 3, kde a proto B = 8Hx, y, zl Ω»x+y z<, B = 8Hx, y, zl Ω» x + z y<, B 3 = 8Hx, y, zl Ω» y + z x<, PHB B L = PHB B 3 L = PHB B 3 L = 0, PHB L = l l x l 3 0 0 l l x l 3 Hl x yl y x = 0 0 l 3 0 l z y x = x+y lj l l x + x N x = 6, PHBL = PHB L + PHB L + PHB 3 L = 3 PHB L =, PHAL = PHBL =..4. Dva paríky musí přirazit k témuž přístavišti. Příjezdy obou paríků jsou ezávislé a stejě možé během celého de. Určete pravděpodobost toho, že jede z paríků bude muset čekat a uvolěí přístaviště, jestliže prví parík stojí v přístavišti jedu hodiu a druhý dvě hodiy. Ozačme x okamžik příjezdu jedoho paríku a y okamžik příjezdu druhého paríku. Rozumíme-li dem časový iterval X0, 4\, pak Hx, yl je bod čtverce W =X0, 4\ äx0, 4\. Protože příjezdy obou paríků jsou ezávislé a stejě možé během celého de, pravděpodobost, že Hx, yl je prvkem (borelovské) podmožiy A, závisí pouze a Lebesgueově míře (obsahu) lhal této podmožiy. Vhodým modelem pro daou úlohu je proto pravděpodobostí prostor HW,, PL, kde s-algebra borelovských podmoži čtverce W a pravděpodobost každého jevu A œ je dáa vztahem PHAL = lhalê4. Stojí-li už u přístaviště prví parík, druhý bude muset čekat v případě, že okamžiky x, y jejich příjezdů budou splňovat erovost x < y < x +, a stojí-li už u přístaviště druhý parík, prví bude muset čekat v případě, že bude platit erovost y < x < y +. Hledaou pravděpodobostí je proto pravděpodobost jevu A = 8Hx, yl Ω»x < y < x + <.

Examples+Solutios.b 3 0 5 0 B A 5 B Z obrázku je patré, že 0 0 5 0 5 0 PHAL = PHB L PHB L = i 4 j k + 3 y z = 39 5 U 0.066..5. Na autobusovou staici přijíždí každé 4 miuty autobus liky A a každých 6 miut autobus liky B. Délka časového itervalu mezi příjezdy autobusu liky A a ejbližšího ásledujícího autobusu liky B může být se stejou pravděpodobostí jakákoliv v mezích od 0 do 4 miut. Jaká je pravděpodobost, že (a) prví autobus, který přijede, bude autobus liky A, (b) během dvou miut přijede buď autobus liky A ebo autobus liky B. Ozačme x začátek čekáí a autobus. Teto okamžik leží v itervalu I =Xa, a + 4\, mezi dvěma po sobě jdoucími příjezdy autobusu liky A a pravděpodobost, že pade do borelovské podmožiy C, je zřejmě úměrá její Lebesgueově míře. V tomto časovém itervalu přijede také jede autobus liky B. Nechť y je okamžik jeho příjezdu. Pravděpodobost, že pade do borelovské podmožiy C, je podle zěí úlohy také úměrá její Lebesgueově míře. Za elemetárí jevy proto můžeme považovat body Hx, yl čtverce W = I äi. Protože příjezdy autobusů liky A a příjezdy autobusů liky B jsou a sobě ezávislé, pravděpodobost příslušosti libovolého elemetárího jevu k borelovské podmožiě C čtverce W je také úměrá její Lebesgueově míře lhcl. Vhodým modelem pro daou úlohu je proto pravděpodobostí prostor HW,, PL, kde je s-algebra borelovských podmoži čtverce W a pravděpodobost jevu C je dáa vztahem PHCL = lhclê6. Pravděpodobost, že prvím autobusem, který přijede, bude autobus liky A, je zřejmě rova pravděpodobosti jevu C = 8Hx, yl Ω»x y< a pravděpodobost, že během dvou miut přijede buď autobus liky A ebo autobus liky B, je zřejmě rova pravděpodobosti jevu C = 8Hx, yl Ω»x y x + fix a + <. 4 4 3 3 C C 0 0 3 4 0 0 3 4 Zřejmě PHC L = ê a PHC L = 3ê4..6. V pětiposchoďovém domě je výškový rozdíl mezi jedotlivými patry 6 m, mezi přízemím a prvím patrem 8 m. Pro poruchu zůstae výtah ěkde stát. Jaká je pravděpodobost, že v okamžiku zastaveí bude z výtahu vidět je stěu šachty, jestliže výška dveří výtahu je.8 m? Ozačme x výšku (podlahy) kabiy výtahu ad podlahou přízemí v okamžiku zastaveí a předpokládejme, že z

4 Examples+Solutios.b bezpečostích důvodů x emůže být větší ež 3 m, což je úroveň podlahy pátého patra. Protože pravděpodobost zastaveí kabiy v kterémkoliv poditervalu itervalu W =X0, 3\ je zřejmě přímo úměrá jeho Lebesgueově míře (délce), vhodým modelem pro daou úlohu je pravděpodobostí prostor HW,, PL, kde je s-algebra borelovských podmoži itervalu W a pravděpodobost P je určea Lebesgueovou mírou l. Z obrázku, a ěmž bílé obdélíky zobrazují dveře výtahu, 6.. 8. 4. 30..8 9.8 5.8.8 7.8 je zřejmé, že v okamžiku zastaveí bude z výtahu vidět je stěu šachty, jestliže x bude prvkem možiy A = X.8, 6.\ X9.8,.\ X5.8, 8.\ X.8, 4.\ X7.8, 30.\. Hledaou pravděpodobostí je proto pravděpodobost PHAL = H4.4 + 4.4L = 0.4375. 3.7. Pravoúhlá mříž je složea z válcových prutů o poloměru r. Vzdáleosti mezi osami prutů jsou rovy a a b. Kuličku o průměru d hodíme bez mířeí po dráze kolmé k roviě mříže. Určete pravděpodobost, že kulička zasáhe mříž. Pro řešeí úlohy je zřejmě podstatá pouze geometrie kolmého průmětu mříže do roviy r s í rovoběžé. Tímto průmětem je pravoúhlá roviá mříž tvořeá pásy o šířce r, v íž vzdáleost os dvou sousedích rovoběžých pásů je rova a resp. b. Zřejmě můžeme předpokládat, že každý pás je rovoběžý s jedou osou souřadic a že každá osa souřadic je osou jedoho pásu. Nechť Hx, yl jsou souřadice kolmého průmětu středu kuličky do roviy r a echť Hξ, ηl = Ix aa x y E, y ba EM ε X0, a\ X0, b\, a b kde @zd začí celou část čísla z. Kulička zřejmě zasáhe mříž právě tehdy, když bod Hx, hl pade do podmožiy A = X0, a\ X0, b\ J d + r, a d rn J d + r, b d rn obdélíku W = X0, a\ äx0, b\, vyzačeé a obrázku 0 5 0 a=30,b=0,d=,r= 5 0 0 5 0 5 0 5 30 světle a tmavě šedou barvou, přičemž tmavou šedí je vyzačea část pásů ležící v obdélíku X0, a\ äx0, b\. Protože bod Hx, hl přitom pade do borelovské podmožiy B obdélíku W s pravděpodobostí přímo úměrou její Lebesgueově míře lhbl, vhodým modelem pro daou úlohu je pravděpodobostí prostor HW,, PL, kde je s-algebra borelovských podmoži obdélíku W a pravděpodobost P je určea Lebesgueovou mírou l. Hledaou pravděpodobostí je proto pravděpodobost Ha d rl Hb d rl Ha + b d rl Hd + rl PHAL = =. a b a b.8. Zvolíme áhodě dvě reálá čísla z itervalu H0, \. Určete pravděpodobost, že jejich součet ebude větší ež a jejich souči epřesáhe ê9. Náhodá volba dvou čísel z itervalu (0,\ je ekvivaletí áhodé volbě bodu Hx, yl ve čtverci W =H0,\äH0,\. Protože bod Hx, yl přitom pade do borelovské podmožiy A čtverce W s pravděpodobostí přímo úměrou její

Examples+Solutios.b 5 Lebesgueově míře lhal, vhodým modelem pro daou úlohu je pravděpodobostí prostor HW,, PL, kde je s-algebra borelovských podmoži čtverce W a pravděpodobost P je určea Lebesgueovou mírou l. Hledaou pravděpodobostí je proto pravděpodobost jevu A = 8Hx, yl Ω»x+y flxy ê9<. Protože přímka x + y = protíá hyperbolu x y = ê9 v bodech Hê3, ê3l, Hê3, ê3l, pravděpodobost PHAL je dáa formulí PHAL = ê3 J x ê3 9 x N x = 3 + Log@D 9 U 0.487366..9. Hodoty reálých koeficietů a, b kvadratické rovice x + a x + b = 0 jsou stejě možé v obdélíku» a» m,» b». Jaká je pravděpodobost, že oba kořey jsou (a) reálé, (b) kladé? Ze zadáí plye, že vhodým modelem je pravděpodobostí prostor HW,, PL, kde W je obdélík X-m, m\ äx-, \, je s-algebra jeho borelovských podmoži a pravděpodobost P je určea Lebesgueovou mírou l. Pravděpodobost, že oba kořey jsou reálé, je zřejmě rova pravděpodobosti jevu A = 8Ha, bl Ω»a b 0< a pravděpodobost, že oba kořey jsou kladé, je rova pravděpodobosti jevu B = 9Ha, bl Ω : a ± è!!!!!!!!!!!!! a b 0=. Protože, jak se sado ověří, A = 8Ha, bl : m a mfl b a <, m, A = 8Ha, bl :H è!!!» a» mfl»b» MfiH»a» è!!! fl b a M<, < m, B = 8Ha, bl : m a 0Ï0 b a <, m, B = 8Ha, bl :I m a è!!! fl 0 b MÍI è!!! a 0fl0 b a M<, m, pravděpodobosti jevů A, B jsou dáy formulemi m PHAL = 4 m Ha + L a = m J3 + m 6 N, m, è!!!! i PHAL = 4 m j Im è!!! M + Ha + L a y k è!!!! z = i è!!! y j3 + z, < m 6 k m, PHBL = 4 m PHBL = i j k 0 4 m a a = m m, m, 0 Im è!!! M + a a y è!!!! z = i j è!!! k 4 6 m y z, < m..0. Hodoty reálých koeficietů a, b kubické rovice x 3 + 3 a x + b = 0 jsou stejě možé v obdélíku»a» m,» b». Jaká je pravděpodobost, že všechy kořey jsou (a) reálé, (b) kladé? Ze zadáí vyplývá, že vhodým modelem je pravděpodobostí prostor HW,, PL, kde W je obdélík X-m, m\ äx-, \, je s-algebra jeho borelovských podmoži a pravděpodobost P je určea Lebesgueovou mírou l. Z teorie algebraických rovic je zámo, že rovice x 3 + 3 a x + b = 0 s reálými koeficiety má pouze reálé kořey právě když 4 a 3 + b 0, a proto pravděpodobost, že všechy kořey jsou reálé, je rova pravděpodobosti jevu Protože, jak se sado ověří, A = 8Ha, bl Ω»4 a 3 + b 0<. A = 8Ha, bl : m a 0fl»b» H al 3ê <, m 3ê, A = 8Ha, bl :H m a m 0 fl»b» LfiH m 0 a 0fl»b» H al 3ê L<, < m, kde m 0 =Hê L ê3, pravděpodobost jevu A je dáa formulemi

6 Examples+Solutios.b PHAL = 4 m PHAL = 0 4 m 4H al 3ê a = m3ê m 5, m3ê, i j Hm m 0L + k 0 m 0 4H al 3ê a y z = 3 ê3 0 ê3 m, < m3ê. Pravděpodobost, že všechy kořey jsou kladé, je ulová jako pravděpodobost emožého jevu, protože kořey a, b, g uvažovaé rovice vyhovují v důsledku rozkladu polyomu x 3 + 3 a x + b a souči kořeových čiitelů vztahu Náhodé veličiy α + β + γ = 0. 3.. Diskrétí áhodá veličia X má biomické rozděleí pravděpodobosti s parametry, p, tj. P@X = kd = J k N pk H pl k pro k = 0,,,...,, P@X = kd = 0 pro ostatí k. Určete její středí hodotu a rozptyl. Položme q = - p. Podle defiice středí hodoty = p EHXL = k= a podle defiice rozptylu k=0 = EHX L E HXL = Pro libovolá reálá čísla x, y však a proto k= J k N pk q k H L! k = p Hk L! H kl! pk q k = k= J k N pk q k = p J k N pk q k = p Hp + ql = p, k=0 k=0 J k N k xk y k = varhxl = EHX E XL = J k N pk q k k p = p k= J k N k pk q k p. i x j J k N xk y ky z = i p j x kk= k k=0 = x Hx Hx + yl L = Hx + yl +H L x Hx + yl, varhxl = p H + p pl p = p H pl. J k N xk y ky z = 3.. Diskrétí áhodá veličia X má záporě biomické rozděleí pravděpodobosti řádu r s parametrem p, tj. P@X = kd = J r + k N p r H pl k pro k = 0,,,..., P@X = kd = 0 pro k < 0. k Určete její středí hodotu a rozptyl. Položme q = - p. Podle defiice středí hodoty EHXL = k=0 = p r Hr + k L! q Hk L! Hr L! qk = k= J r + k N p r q k k = k r p r q Hr L! Hr + k il q k = k= i=0

Examples+Solutios.b 7 p = r q Hr L! = r q r i k j k= p r q Hr L! EHX L = q r+k y z = p r q Hr L! r q r J k=0 r q r J qr q N = p r q Hr L! r q r J qr + q q q p qr N = r q r Hr L! q r J q N = p = r q r! Hr L! H ql r+ = qr p = J N r, p J r + k k r N p r q k k = p r Hr + k L! q Hk L! Hr L! k qk = p = r q i Hr L! q j q Hr + k il q k y z = p r q i Hr L! q j q r i q k k= i=0 k r j q r+k y y zz = kk= p = r q i r! jq y Hr L! q k H ql r+ z = p r q i Hq L r + r j y q k H ql r+ z = = p r r H + q rl q H ql r+ = p Hq r + q r L, a tedy podle defiice rozptylu k= varhxl = EHX L E HXL = p Hq r + q r L q r p = qr p = J p N r p. 3.3. Diskrétí áhodá veličia X má Poissoovo rozděleí pravděpodobosti s parametrem l > 0, tj. P@X = kd = λk k! λ pro k = 0,,,..., P@X = kd = 0 pro ostatí k. Určete její středí hodotu a rozptyl. Podle defiice středí hodoty EHXL = a podle defiice rozptylu = k=0 k=0 λ k k! λ k = λ λ k= λ k k! λ k λ = λ λ k= λ k Hk L! = λ λ k=0 varhxl = EHX L E HXL = k λ k Hk L! λ = λ λ λ = λ λ Hλ λ L λ = λ λ H λ + λ λ L λ = λ. 3.4. Distribučí fukce F spojité áhodé veličiy X je dáa předpisem 0 pro x, lo FHxL = m a + b arcsi x pro < x <, o pro x. Určete kostaty a, b a vypočtěte středí hodotu EHXL a rozptyl varhxl. Protože distribučí fukce F je spojitá, π lim Ha + b arcsi xl = a x + a proto a = ê, b = êp. Podle defiice středí hodoty EHXL = x F HxL x = b = 0, lim x = π x arcsi x x = 0 π @x arcsi xd 0 λ k k! = λ λ λ = λ, i j λ λ k y Hk L! z λ = k k= Ha + b arcsi xl = a + π b =, x J + arcsi xn x = π π 0 x x = À x = si t x è!!!!!!!!!!!!! x = cos t t À = N =

8 Examples+Solutios.b a podle defiice rozptylu = = π 0 πê si t t = π 0 πê varhxl = EHX L E HXL = H cosh tll t = 4, x F HxL x 6 = x J + π arcsi xn x = x 0 x 6 = 3 48. 3.5. Za předpokladu, že distribučí fukce F áhodé veličiy X je spojitá a rostoucí, ajděte distribučí fukci áhodých veliči Y = FHXL, Y = -l FHXL, Y 3 = YHFHXLL, kde x = YHyL je fukce iverzí k distribučí fukci stadardího ormálího rozděleí y = Φ HxL = x è!!!!!!! π t ê t. Nechť F, F, F 3 jsou po řadě distribučí fukce áhodých veliči Y, Y, Y 3. Z předpokladu, že F je spojitá a rostoucí, vyplývá, že zobrazuje vzájemě jedozačě a iterval H0, L, a proto z 0 P@FHXL zd = 0, 0 < z < P@FHXL zd = P@X F HzLD = FHF HzLL = z, z P@FHXL zd =. Podle defiice distribučí fukce áhodé veličiy tedy platí P@FHXL yd = 0, y 0, lo F HyL = P@Y yd = m y, 0 < y <, o, y, F HyL = P@Y yd = P@l FHXL yd = P@FHXL y D = : F 3 HyL = P@ΨHFHXLL yd = P@FHXL ΦHyLD = ΦHyL., y 0, y, y > 0, 3.6. Náhodá veličia X má ormálí rozděleí pravděpodobosti NHµ, s L. Vyjádřete její distribučí fukci F a hustotu pravděpodobosti f pomocí distribučí fukce F resp. hustoty pravděpodobosti j stadardího ormálího rozděleí NH0, L. Podle defiice ormálího rozděleí a proto x FHxL = σ è!!!!!!! π exp i Ht µl y j k σ z t = = À t µ = σ u x µ t = σ u À = σ è!!!!!!! π u exp J N t = Φ I x µ σ M, fhxl = F HxL = x Φ I x µ σ M = Φ I x µ σ M σ = σ ϕ I x µ σ M. 3.7. Náhodá veličia X má ormálí rozděleí pravděpodobosti NHµ, s L. Najděte distribučí fukci F a hustotu pravděpodobosti f áhodé veličiy Y = X. Podle defiice distribučí fukce FHxL = P@X xd = 0, x < 0, FHxL = P@X xd = PA è!!! x X è!!! xe = PAX è!!! xe PAX è!!! xe = è!!!! x σ è!!!!!!! π exp i Ht µl y j è!!!! k σ z t = Φ i è!!! x µ y j z Φ i j è!!! x µ y z, x 0, k σ k σ x kde F je distribučí fukce stadardího (ormovaého) ormálího rozděleí.

Examples+Solutios.b 9 3.8. Náhodá veličia X má hustotu pravděpdobosti f HxL = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ. Jakou hustotu pravděpodobosti má áhodá ph+x L veličia Y = arctg X? Ozačíme-li G distribučí fukci áhodé veličiy Y, potom GHyL = P@Y yd = P@arctg X yd = 0, y π, GHyL = P@arctg X yd = P@X tg yd = tg y π x + x = y π +, π < y < π, GHyL = P@arctg X yd =, y π, a tedy Y má hustotu ghyl = G HyL = l o 0, m o π, y >»π», y <»π». 3.9. Čebyševova erovost. Je-li středí hodota E X áhodé veličiy X koečá, potom pro každé > 0 P@»X EX» D varhxl. Je-li X defiováa a pravděpodobostím prostoru HW,, PL, potom podle defiice varhxl = EHX E XL = HX E XL P HX E XL P P = P HAL, Ω kde A =@» X - E X» D, což je zřejmě ekvivaletí Čebyševově erovosti. 3.0. Cauchy-Schwarzova erovost. Pro libovolé áhodé veličiy X, Y E» X Y» EHX L EHY L. Důkaz zřejmě stačí provést za předpokladu, že veličiy X, Y jsou ezáporé a obě středí hodoty a pravé straě erovosti jsou obě koečé. Dále můžeme zřejmě předpokládat, že obě středí hodoty jsou kladé, eboť v opačém případě je jeda z veliči X, Y skoro jistě rova ule, takže jejich souči X Y je též skoro jistě rove ule a proto E» X Y» = 0. Protože pro každé reálé t platí erovost EHt X YL = t EHX L t EHX YL + EHY L 0, diskrimiat kvadratické rovice t EHX L - t EHX YL + EHY L = 0 emůže být kladý. Platí proto erovost což je pouze jiý tvar Cauchy-Schwarzovy erovosti. E HX YL EHX L EHY L 0, 3.. Trojúhelíková erovost. Pro libovolé áhodé veličiy X, Y Nerovost plye ihed z erovosti Cauchy-Schwarzovy erovosti a idetity E ê HX + YL E ê HX L + E ê HY L. EHX + YL EH» X»+» Y»L = EHX L + E» X Y»+EHY L E»XY» E ê HX L E ê HY L EHX L + E ê HX L E ê HY L + EHY L = HE ê HX L + E ê HY LL. 3.. Pro libovolá kladá čísla a, b > 0 a libovolá čísla r, s > platí implikace r + s = a b r ar + s bs. A A

0 Examples+Solutios.b Protože a b r ar + s bs r a r b + s b s a r kde druhá ekvivalece je důsledkem vztahu r s - r - s = 0, stačí dokázat implikaci t > 0 fhtl = r t + s t s. To je však sadé, eboť a r b + s f HtL = r s s ts+ = 0 r J ts+ N = 0 t =, t f HtL Ht L > 0, což zameá, že fukce f :H0, L Ø má miimum fhl =. H ar b Ls, 3.3. Hölderova erovost. Pro libovolé áhodé veličiy X 0, Y 0 a libovolá čísla r, s > platí implikace r + s = EHX YL Eêr HX r L E ês HY s L. Důkaz zřejmě stačí provést za předpokladu, že obě středí hodoty a pravé straě erovosti jsou obě koečé. Dále můžeme zřejmě předpokládat, že obě středí hodoty jsou kladé, eboť v opačém případě je jeda z veliči X, Y skoro jistě rova ule, takže jejich souči X Y je též skoro jistě rove ule a proto EHX YL = 0. Podle příkladu 3. platí erovost X E êr HX r L a tedy také erovost X E J E êr HX r L Y E ês HY s L r z ichž druhá je pouze jiou formou Hölderovy erovosti. X r EHX r L + s Y s EHY s L Y E ês HY s L N r E J Xr EHX r L N + s E J Ys EHY s L N, EHX YL E êr HX r L E ês HY s L, 3.4. Mikovského erovost. Pro libovolé áhodé veličiy X, Y a libovolé kladé číslo r E êr»x + Y» r E êr»x» r + E êr»y» r. Pro r = je erovost důsledkem erovosti»x + Y»»X» +»Y». V případě r > můžeme vzhledem k této erovosti zřejmě předpokládat, že veličiy X, Y jsou ezáporé a středí hodoty a pravé straě dokazovaé erovosti jsou koečé. Dále můžeme zřejmě předpokládat, že středí hodota a levé straě dokazovaé erovosti je kladá.. Položíme-li s = rêhr - L, potom podle Hölderovy erovosti EHXH X + YL r L E êr X r E ês HX+ YL Hr L s = E êr X r E ês HX+ YL r, EHYH X + YL r L E êr Y r E ês HX+ YL Hr L s = E êr Y r E ês HX+ YL r, eboť Hr - L s = r. Sečteím dostaeme erovost EHX + YL r HE êr X r + E êr Y r L E ês HX+ YL r. ihed Mik- Vydělíme-li obě její stray kladým číslem E ês HX + YL r, dostaeme vzhledem k idetitě - ÅÅÅÅ ovského erovost. 3.5. Pro libovolou áhodou veličiu X a libovolá kladá čísla 0 < r < s E»X» s < E»X» r <. s = ÅÅÅÅ r Nechť Y = je kostatí áhodá veličia a echť p = sêr, q = pêhp - L. Potom ê p + êq =, a tedy podle Hölderovy erovosti E»X» r E êp» X» p r E êq Y q = E êp» X» s <.

Examples+Solutios.b Podmíěé pravděpodobosti a ezávislost jevů 4.. Tři střelci, jejichž dlouhodobé úspěšosti, tj. pravděpodobosti zásahu, jsou po řadě 0 %, 40 % a 60 %, vystřelili současě a terč. V terči byl poté zjiště jediý zásah. Jaká je pravděpodobost, že terč zasáhl prví střelec? I. Za možiu elemetárích jevů můžeme zřejmě považovat možiu W všech posloupostí a =Ha, a, a 3 L ul a jediček, přičemž jedička a i-tém místě zameá, že i-tý střelec terč zasáhl, a ula zameá, že terč ezasáhl. Pravděpodobosti elemetárích jevů však ejsou stejé, eboť podle zadáí PHaL = J 3 4 NH al 3 NH al NH a3l 5 Na J 5 Na J 5 Na3 J J J. 5 5 5 Skutečost, že v terči byl zjiště jediý zásah, zameá, že astal jev A = 8H, 0, 0L< 8H0,, 0L< 8H0, 0, L< = A A A 3. Pravděpodobost, že terč zasáhl prví střelec, je proto rova PHA» AL = PHA A L = PHAL PHA L PHA L + PHA L + PHA 3 L = 3 3 + 4 + 4 3 3 = 3 9. II. Ozačíme-li A i jev spočívající v tom, že i-tý střelec zasáhl cíl, potom jevy A, A, A 3 jsou ezávislé, jejich pravděpodobosti jsou po řadě rovy ê5, ê5 a 3ê5 a skutečost, že v terči byl zjiště jediý zásah, zameá, že astal jev A = HA A c A 3 c L HA c A A 3 c L HA c A c A 3 L = B B B 3, c kde A i je jev komplemetárí k jevu A i. Protože jevy B, B, B 3 se vzájemě vylučují a PHB L = 3, PHB 5 L = 4, PHB 5 3 L = 4 3 3, 5 pravděpodobost, že terč zasáhl prví střelec, je rova PHA» AL = PHA A L = PHAL PHB L PHB L + PHB L + PHB 3 L = 3 3 + 4 + 4 4 3 = 3 9. 4.. Laboratoř provádějící rozbor krve potvrdí s pravděpodobostí 95 % existeci protilátek a virus určité emoci, jestliže jí paciet opravdu trpí. Zároveň určí test jako pozitiví % osob, které tuto emoc emají. Jestliže 0.5 % populace zmíěou emocí trpí, jaká je pravděpodobost, že osoba s pozitivím testem tuto emoc skutečě má? Nechť W je (koečá) možia všech osob v uvažovaé populaci, echť N + resp. N - je podmožia všech osob, které určitou emocí trpí resp. etrpí, echť T + resp T - je podmožia všech osob, u ichž rozbor krve potvrdí resp. epotvrdí existeci protilátek a virus této emoci a echť je ejmeší s-algebra a W obsahující zmíěé 4 podmožiy. Za vhodý model pro situaci popsaou v zadáí pak můžeme zřejmě považovat pravděpodobostí prostor HW,, PL, kde P je blíže eurčeá pravděpodobost a, pro kterou však platí PHT +» N + L = 95 00, PHT +» N L = 00, PHN +L = 5 000. Pravděpodobost, že osoba s pozitivím testem je skutečě emocá, je rova podmíěé pravděpodobosti PHN +» T + L a podle Bayesova vzorce PHT PHN +» T + L = +» N + L PHN + L PHT +» N + L PHN + L + PHT +» N L PHN L = 95 5 95 5 + 995 = 95 94 U 0.339. 4.3. Zamýšlíte koupit v bazaru vůz určité začky. Je ovšem zámo, že 30 % takových vozů má vadou převodovku. Abyste získali více iformací, ajmete si mechaika, který je po zkušebí projížďce schope odhadout stav vozu a mýlí se pouze s pravděpodobostí ê0. Jaká je pravděpodobost, že vámi vybraý vůz bude mít vadou převodovku, jestliže mechaik po zkušebí jízdě prohlásí, že vůz je dobrý? Nechť W je (koečá) možia všech aut přicházejících do úvahy, echť V + resp. V - je podmožia všech aut, které mají resp. emají vadou převodovku, echť M + resp M - je podmožia všech aut, o ichž mechaik po zkušebí projížďce prohlásí, že mají resp. emají vadou převodovku a echť je ejmeší s-algebra a W

Examples+Solutios.b obsahující zmíěé 4 podmožiy. Za vhodý model pro situaci popsaou v zadáí pak můžeme zřejmě považovat pravděpodobostí prostor HW,, PL, kde P je blíže eurčeá pravděpodobost a, pro kterou však platí PHM +» V + L = 0, PHM +» V L = 9 0, PHV +L = 3 0. Pravděpodobost, že vybraý vůz bude mít vadou převodovku, jestliže mechaik po zkušebí jízdě prohlásí, že vůz je dobrý, je rova podmíěé pravděpodobosti PHV +» M + L a podle Bayesova vzorce PHV +» M + L = PHM +» V + L PHV + L PHM +» V + L PHV + L + PHM +» V L PHV L = 3 3 + 9 7 = U 0.0454545. 4.4. Dokažte: Jestliže PHA A L > 0, potom PHA A + L = PHA L PHA i+» A A i L. Tvrzeí zřejmě platí pro = a proto podle pricipu matematické idukce stačí dokázat, že platí + jevů, platí-li pro + jevů. Předpokládejme tedy, že jevy A,..., A + splňují podmíku PHA A + L > 0. Potom v důsledku ikluse A A + Œ A A je kladá i pravděpodobost PHA A L, a proto podle defiice podmíěé pravděpodobosti a podle idukčího předpokladu což bylo třeba dokázat. i= PHA... A + A + L = = PHA +» A... A + L PHA... A + L = = PHA +» A... A + L PHA i+» A A i L = PHA i+» A A i L, 4.5. Pravděpodobost jevu A závisí a áhodé veličiě X podle vzorce i= Určete PHAL, jestliže X má ormálí rozděleí NHm, sl. + i= PHA»X = xl = : k x, x 0, 0, x < 0. Podle defiice podmíěé pravděpodobosti pro každou borelovskou podmožiu B Œ PHA @X BDL = PHA»X = xl µhxl, B kde m je rozděleí pravděpodobosti áhodé veličiy X, tj. míra a s-algebře borelovských podmoži možiy defiovaá vztahem mhbl = P@XD, a itegrál je Lebesgueovým itegrálem podle míry m. Je-li X spojitá s hustotou f, potom PHA»X = xl µhxl = PHA»X = xl fhxl x, B itegrál vpravo je itegrál podle Lebesgueovy míry a, tj. itegrál v obvyklém smyslu. Pro jev A a áhodou veličiu ze zadáí proto platí P HAL = σ è!!!!!!! π 0 B PHA»X = xl fhxl x = σ è!!!!!!! π H k x L exp i Hx µl y j 0 k σ z x = exp i Hx µl y j k σ z x σ è!!!!!!! π 0 k x exp i Hx µl y j k σ z x = I I. Zřejmě I = - FH-mêsL, kde F je distribučí fukce stadardího ormálího rozděleí, a pro I po úpravě itegradu k x exp i Hx µl y j k σ z = exp J x x Hµ k σ L + µ σ N = = exp i j Hx µ + k σ L + k µ σ k σ 4 y σ k z = σ k µlê Hk exp J Hx µ + k σ L σ N

Examples+Solutios.b 3 dostaeme I = expi k s -k m ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅM I - FI k s -m ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅMM. Celkem tedy vzhledem ke vztahu - FH-xL = FHxL s PHAL = Φ I µ σ M exp J k σ k µ N Φ J µ k σ N. σ 4.6. Určete pravděpodobost zásahu cíle jedím výstřelem, jestliže vzdáleost D k cíli v okamžiku výstřelu vyjádřeá v metrech je áhodá veličia s rovoměrým rozděleím pravděpodobosti a itervalu X00, 00\ a podmíěá pravděpodobost zásahu je 3000ê D. Nechť A zameá zasažeí cíle a echť f je hustota pravděpodobosti áhodé veličiy D. Podle předpokladu a tedy ze stejých důvodů jako v příkladu 4.5 PHAL = PHA»D = xl fhxl x = PHA»D = xl = 3000êx, 00 00 3000 00 x x = 30B x F 00 00 = 3 0 = 5 %. 4.7. V kruhu je rovoběžě s daým směrem sestrojea tětiva, jejíž vzdáleost od středu kruhu je áhodá veličia s rovoměrým rozděleím pravděpodobosti. Jaká je pravděpodobost, že dva body áhodě zvoleé uvitř kruhu leží a stejé straě tětivy? Nechť D je vzdáleost áhodě zvoleé tětivy rovoběžé s daým směrem od středu kruhu, echť X, Y jsou dva body áhodě zvoleé uvitř tohoto kruhu a echť A zameá, že oba body leží v jedé a téže části, a ěž tětiva dělí kruh. Protože, viz příklady 4.5 a 4.6, PHAL = PHA»D = xl fhxl x = R PHA»D = xl x, 0 kde fhxl je hustota pravděpodobosti áhodé veličiy D, klíčem k řešeí je určeí podmíěé pravděpodobosti PHA»D = xl. Pravděpodobost, že bod áhodě zvoleý uvitř kruhu pade do jeho borelovské podmožiy B, je rova lhblêhp R L, kde lhbl je Lebesgueova míra možiy B a R je poloměr kruhu. Ozačíme-li meší resp. větší ze dvou částí, a ěž tětiva dělí kruh, stejě jako a obrázku R V α U písmeem U resp. V, potom pravděpodobost, že oba ezávisle áhodě zvoleé body X, Y padou do jedé z těchto částí, je rova λ HUL + λ HVL π R 4 = Hπ R λhvll + λ HVL π R 4 Protože, jak je sado vidět z obrázku, po dosazeí a jedoduchém výpočtu dostaeme λ HUL + λ HVL π R 4 = λhvl π R λhvl = α π π R R sihαl cos HαL = α R R = α π sih αl + π + α π + λ HVL π R 4. sih αl, α si H αl π + si H αl π.