ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu



Podobné dokumenty
ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY

DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ

Finanční řízení podniku. Téma: Časová hodnota peněz

Pojem času ve finančním rozhodování podniku

cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

I. Výpočet čisté současné hodnoty upravené

Varianta Pravděpodobnost Výnos A 1 Výnos A 2 1 0,1 1% 0,1 3% 0,3 2 0,2 12% 2,4 28% 5,6 3 0,3 6% 1,8 14% 4,2

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY

-1- Finanční matematika. Složené úrokování

I. Výpočet čisté současné hodnoty upravené

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

2. Finanční rozhodování firmy (řízení investic a inovací)

Přehled vztahů k problematice jednoduchého úročení a úrokové sazby

Pravděpodobnost a aplikovaná statistika

Deskriptivní statistika 1

12. N á h o d n ý v ý b ě r

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha

Příklady z finanční matematiky I

FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH

2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

II. METODICKÉ PŘÍKLADY SESTAVENÍ VÝKAZU PAP

DLUHOPISY. Třídění z hlediska doby splatnosti


PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

Vzorový příklad na rozhodování BPH_ZMAN

10.3 GEOMERTICKÝ PRŮMĚR

Závislost slovních znaků

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

Obligace obsah přednášky

8.3.1 Vklady, jednoduché a složené úrokování

P2: Statistické zpracování dat

České účetní standardy 006 Kurzové rozdíly

8. Základy statistiky. 8.1 Statistický soubor

Mod(x) = 2, Med(x) = = 2

FINANČNÍ A INVESTIČNÍ MATEMATIKA Metodický list č. 1

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

MATICOVÉ HRY MATICOVÝCH HER

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Náhodný výběr 1. Náhodný výběr

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

6. FUNKCE A POSLOUPNOSTI

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/

Mendelova univerzita v Brně Statistika projekt

Makroekonomie cvičení 1

Odhady parametrů 1. Odhady parametrů

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n

Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích

Doc. Ing. Dagmar Blatná, CSc.

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Elementární zpracování statistického souboru

Sekvenční logické obvody(lso)

( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N.

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

PENÍZE, BANKY, FINANČNÍ TRHY

Finanční matematika. Mgr. Tat ána Funioková, Ph.D Katedra matematických metod v ekonomice

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

17. Statistické hypotézy parametrické testy

FINANČNÍ A INVESTIČNÍ MATEMATIKA 2

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

8.2.1 Aritmetická posloupnost I

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení


Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7]

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

6. Posloupnosti a jejich limity, řady

1.3. POLYNOMY. V této kapitole se dozvíte:

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

pravděpodobnostn podobnostní jazykový model

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Obligace II obsah přednášky

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

NEPARAMETRICKÉ METODY

Popisná statistika. Zdeněk Janák 9. prosince 2007

Metodika projektů generujících příjmy

Příloha č. 7 Dodatku ke Smlouvě o službách Systém měření kvality Služeb

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

SPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem "restart". To oceníme při opakovaném použití dokumentu.

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Transkript:

ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období Připisováí úroků: p.a. ročí p.q. čtvrtletí p.d. deí p.s. půlročí p.m. měsíčí Doba splatosti () doba, po kterou je peěží částka zapůjčea Typy úročeí - jedoduché: vyplaceé úroky se epřičítají k původímu kapitálu a dále se eúročí - složeé: úroky se přičítají a dále úročí - spojité: počet úročeí roste do ekoeča Jedoduché FV PV * ( + i * ) Složeé FV PV * ( + i ) m* i (r) úroková sazba (t) doba splatosti m frekvece připisováí úroků FV future value PV prezet value m Závislost úroku a době splatosti kapitálu 00 Kapitál Úrok 75 i 0% 50 i 0% 5 00 úrok Počátečí kapitál čas 3 4 5 Př: Vypočítejte koečou hodotu vkladu 00 000 Kč uložeou a dobu 5 let s úrokovou sazbou 5% ( 0%, 0%) při jedoduchém úročeí.

Př: Jakou částku obdrží pa Neveselý ze svého šestiměsíčího termíovaého vkladu 00.000 Kč úročeého 5 % p.a.? Daň z úroků je 5 %. Př: Jaká je cea peěz půjčeých v zastavárě, účtuje-li si zastavára % za týde? 3 Počítejte: a) jedoduché úročeí b) složeé úročeí Př: Zjistěte, jakou hodotu bude mít vklad.000 Kč po 5 0-5 0 letech, bude-li 4 průměré zhodoceí 3 % - 8 % - 3 %. Zhodoceí doba 3 % 8 % 3 % 5 let 0 let 5 let 0 let Př: Idiái prodali Holaďaům ostrov Mahatta v roce 66 za 4 $. Kolik by měli 5 Idiái des, kdyby tuto hotovost eutratili za ohivou vodu, ale uložili do baky a úrok 5, 7 ebo 9 % p.a.? Uvažujte a) jedoduché úročeí b) složeé úročeí 4 $ od r. 66 5% 7% 9% jedoduché složeé Př: Jaké jsou úrokové áklady úvěru ve výši 00 000 Kč jedorázově splatého za 8 6 měsíců ( 30 dů ) včetě úroku, je-li úroková sazba 9% p.a.? Př: Jak velkou kupí sílu bude mít mil. Kč za 30 let, očekává-li se iflace 5% ročě? 7 Př: Spočítej a zázori, jak se měí výše zúročeého kapitálu (FV) s rostoucím počtem 8 úrokových období za rok, a vkladu 0.000,- a ročí úrokovou sazbou 0 %. Sestav tabulku a graf. 4 5 360 8640

. Přepočet ročích úrokových sazeb při růzé periodě připisováí úroků. Př: Zjistěte, jakou hodotu bude mít vklad 000 Kč po 5, 0, 5 0 letech, bude-li 9 průměré zhodoceí 3%. Porovejte jedoduché a složeé úrokováí. Graf. Př: Zjistěte, jakou hodotu bude mít vklad 000 Kč po 5 letech, bude-li průměré 0 zhodoceí 5% a úroky budou připisováy p.a., p.s., p.q., p.m., p.d.. Graf. Používaé kódy: - AT - započítává se skutečý počet dí smluvího vztahu. Obvykle se epočítá. de - 30E celé měsíce se započítávají bez ohledu a skutečý počet dí jako 30 dů - 30A liší se od 30E maximálě o jede de, který je započte pouze v případě, že koec smluvího vztahu připade a posledí de v měsíci a současě začátek eí posledí de v měsíci Délka roku je 365 ebo 360 dí - AT/365 aglická metoda - AT/360 fracouzská, či meziárodí - 30E/360 ěmecká, či obchodí Př: Rozhoděte, která variata termíovaého účtu je výhodější a) % ročí úroková sazba s p.d. b),5% ročí úroková sazba s p.s. Efektiví úroková sazba ( i e ) - ročí úroková sazba, která dává za rok při p.a. stejou budoucí hodotu jako ročí úroková sazba při častějším připisováí úroků. Saha o dosažeí stejého fiačího efektu při úročeí p.a. ( omiálí úr. sazba při ročím úrokovacím období je vyšší ež při úrokovacím období kratším ež rok) Umožňuje porovat růzé úrokové sazby srovávaé za stejé časové období, avšak s růzou četostí připisováí úroků. + i e ( + i ) m m Př: Najděte r, která odpovídá úrokové sazbě 0% p.a., jsou-li úroky připisováy a) p.s. b) p.q. c) p.m. Spojité připisováí úroků i e - azývá se úroková itezita FV PV * ( + i ) m* m lim ( + m FV PV * ( e i* ) r e e i - i ) m m e i Př: Na kolik vzroste kapitál 0 000 Kč za 5 let při spojitém úročeí a sazbě 5,5%? 3

3.DISKONT A RŮZNÉ DRUHY DISKONTOVÁNÍ (D) Je odměa ode de výplaty do de splatosti pohledávky (předlhůtí úročeí) - rozdíl mezi FV a PV - D FV*d* d diskotí míra (%) - Používá se ejčastěji pro eskot směek, část áhrady předem - Krátkodobé ceé papíry s jmeovitou hodotou jako hodotou budoucí. - státí pokladí poukázky (zisk je rozdíl mezi kupí a omiálí hodotou) - krátkodobá splatost Diskotováí: Výpočet současé hodoty z hodoty budoucí Př Osoba A vystavila osobě B směku a částku 0.000 Kč s dobou splatosti 4 rok, s diskotí mírou 8%. Kolik osoba A ve skutečosti obdrží? Př Vypočítejte, kolik dostae vyplaceo kliet, jemuž baka eskotuje směku 5 o omiálí hodotě 0.000 Kč 35 dí před dobou splatosti při diskotí sazbě 9% p.a. Vztah mezi polhůtí úrokovou sazbou a diskotí sazbou. Při použití diskotu je: současá hodota PV FV *( - d*) budoucí hodota Při použití jedoduchého polhůtího úročeí je: současá hodota budoucí hodota FV PV * ( + i*)

000 900 Nomiálí výše kapitálu diskot 800 d 0% 700 vyplaceý kapitál d 0% čas 0,5 0,5 0,75 Př Porovejte diskotí sazbu a polhůtí úrokovou sazbu. 6. Eskotováa směka splatá za půl roku o omiálí hodotě 00 000 Kč s ročí diskotí sazbou %.. Jedoduché úročeí s ročí úrokovou sazbou %, přičemž za půl roku se musí splatit 00 000 Kč. Shodé výosy: r d d Diskotí faktor (v) udává současou hodotu jedotkového vkladu, který je splatý za rok při úrokové sazbě r. Složeé: v ( + r ) - Jedoduché: v ( + r ) - Spojité: v e -r PV FV * v Smíšeé úročeí: Doba úročeí eí v celých letech, 0 je počet celých let, l je zbytek doby úročeí lomeý počtem příslušých jedotek za rok. FV Pv * ( + i ) 0 * ( + l * i ) Př Kolik musíme uložit, abychom za 5 let a 3 měsíce měli obos 00 000 Kč 7 při úrokové sazbě 9,6% p.a.? Úroky jsou připisováy jedou za rok, poecháváy a účtu a dále úročey. Př V ozámeí o aukci 9 deích SPP s omiálí hodotou mil. Kč je jako max. 8 akceptovatelá (ročí) úroková míra uvedeo 5,65%. Jaká cea SPP odpovídala této úrokové míře? Jakou (ročí) míru zisku realizoval ivestor, který SPP koupil za tuto ceu a prodal ji za 58 dí (tj. 33 dy před splatostí) za ceu 996 300 Kč? Př Směka a $0 000 je splatá za dva roky a 5 měsíců. Jaký je její základ 9 při spojitém úrokováí s ročí omiálí úrokovou mírou 5%?

VZTAH MEZI BUDOUÍ A SOUČASNOU HODNOTOU VÝNOS INVESTIE, VÝNOSOVÁ KŘIVKA. Výos do splatosti pro pokladičí poukázku či bezkupoovou obligaci Obligace (Dluhopisy) - je dlouhodobý ceý papír, který vyjadřuje dlužický závazek emiteta vůči oprávěému majiteli dluhopisu Doba splatosti kdy dochází ke splaceí omiálí hodoty dluhopisu - může být upravea emitet si vyhradí právo a předčasé splaceí dluhopisů - (call opce), toto právo může být dáo majiteli dluhopisu (put opce) - dluhopisy s pevou kupoovou úrokovou sazbou - dluhopisy s pohyblivou kupoovou úrokovou sazbou (PRIBOR, LIBOR) - dluhopisy s ulovým kupoem ea dluhopisu (P) trží, teoretická P + +. + + F + i ( + i) ( + i) ( + i) ročí kupoová úroková platba F omiálí hodota dluhopisu Počátečí - P ( + i) i * ( + i) - + F * i Koečá - P ( + i ) + F i Př: Vypočítej teoretickou ceu dluhopisu s pevou kupoovou sazbou 0% p.a., 0 omiálí hodotou 000 Kč, se splatostí 3 roky a při trží úrokové míře %. - je li kupo ulový Př: Vypočítejte teoretickou ceu dluhopisu s ulovým kupoem se splatostí 3 roky, omiálí hodota dluhopisu čií 000 Kč, při trží úrokové míře % p.a. Výos z dluhopisu (r) - kupoový úrokový výos - rozdíl mezi ceou kupí a prodejí (F) r NK FV PV Dluhopis s ulovým kupoem ( r NK ) Př: Jaký je výos dluhopisu s dobou splatosti 5 let, jestliže kupí cea byla 0 000 Kč a

prodejí cea 000 Kč? Úroky byly připisováy p.a., p.s., p.q. a p.m. Př: Kolik bude stát obligace s omiálí hodotou 000 Kč, splatá za 3 (5 let) roky, 3 jestliže její výos je 8% (9%)? Kupoová výosost Běžá výosost y k. 00 yb. 00 P trží cea F P Výosost do doby splatosti ( y DS ) P TR + +. + + F + y DS ( + y DS ) ( + y DS ) ( + y DS ) Výosost za dobu držby ( y DD ) P 0 + +. + + F + y DD ( + y DD ) ( + y DD ) ( + y DD ) P 0 aktuálí trží cea Alikvotí úrokový výos (AUV) - část kupoového úrokového výosu, odpovídající době od výplaty posledího kupou do de, ke kterému jej počítáme AUV % p k * t v 360 p k kupoová úroková sazba dluhopisu t v délka výosového období Výosové období AUV

Jiý ukazatel výososti- redita zjedodušeí výososti do doby splatosti P P0 r + Výosost za dobu držby: P0 k P0 Aproximace zjedodušeí výpočtů výososti do doby splatosti Hawawiy ( F P) + r DS 0,6P + 0, 4F Obchodí metoda ( F P) + r DS P Př: Uvažujte dva pětileté dluhopisy v omiálí hodotě 0 000 Kč s ročími kupoy, 4 přičemž dluhopis má kupoovou sazbu 6% a trží ceu 9 560 Kč a dluhopis má kupoovou sazbu 4% a trží ceu 0 670 Kč. Spočtěte a) běžý výos b) výos do splatosti c) aproximativí výosy. Př: Uvažujte tři pětileté dluhopisy v omiálí hodotě 0 000 Kč s ročími kupoy, 5 přičemž dluhopis má kupoovou sazbu 9,8% a trží ceu 0 000 Kč, dluhopis má kup. Sazbu 6% a trží ceu 8 840 Kč a dluhopis 3 má kup. Sazbu 4% a trží ceu 80 Kč. Spočtěte pro tyto dluhopisy a) hrubý výos do splatosti, b) čistý výos do splatosti s daňovou sazbou 5 %. Př: Jaké čisté výososti dosáhe kliet, jestliže uložil a počátku roku 00 000 Kč a 6 šestiměsíčí termíovaý vklad při 0% úrokové sazbě p.a. a v poloviě roku kapitál včetě vyplaceých úroků zovu okamžitě uložil a šestiměsíčí term. Vklad při % úrokové sazbě p.a.?úroky z vkladů podléhají dai z příjmů ve výši 5%. Př: Dluhopis s pevou kupoovou úrokovou platbou má kup. Sazbu 0% p.a., omiálí 7 hodotu 000 Kč a kupí ceu 950 Kč. Po jedom roce se dluhopis prodal za ceu 50 Kč. Jaká byla hrubá a čistá výosost, jestliže úroky podléhají dai z příjmu 5%.

VÝNOSOVÉ KŘIVKY - vztah mezi výosem do splatosti a dobou do splatosti dluhopisů (státí) - kokrétí dluhopisy lišící se pouze dobou do splatosti (shodé další vlastosti) - s delší dobou do splatosti větší výos (rostoucí) Výosová křivka: bezkupoových dluhopisů kupoových dluhopisů Forwardová Rostoucí Klesající Výos do splatosti Výos do splatosti Doba splatosti Doba splatosti Bezkup. dluh. Kup. dluh. Forward. výosy Bootstrappig odhad výosové křivky bezkupoových dluhopisů pomocí kupoových dluhopisů Př: Máme tři kupoové dluhopisy v om. hodotě 0 000 Kč s ročími kupoy. 8 - jedoletý s kup. sazbou 5,8% a trží ceou 9 980 Kč - dvouletý s kup. sazbou 7,% a trží ceou 9 960 Kč 3 - tříletý s kup. sazbou 8,9% a trží ceou 9 90 Kč. Odhaděte odpovídající hodoty výosové křivky bezkupoových dluhopisů.

FORWARDOVÁ KŘIVKA (očekáváí) - zázorňuje závislost mezi forwardovými výosy do splatosti a dobou do splatosti bezkupoových či kupoových dluhopisů - křivky rostoucí: forwardová leží vždy ad výosovými křivkami - je z roku a rok, z roku a dva, z roku a tři - křivky klesající: forwardová leží vždy pod výosovými křivkami - je-li rostoucí: trh očekává zvýšeí úrokových sazeb - je-li klesající, očekává sížeí úrokových sazeb Př: Zjistěte body forwardové výosové křivky, jestliže záte body výosové křivky: 9 y * 8%, y * 9%, y 3 * 0% při spojitém připisováí úroků. F, k ( k + ) yk + k y k DURAE Je to aritmetický průměr dob do splatosti jedotlivých plateb (kromě pořizovací cey), které souvisejí s dluhopisem a jsou vážey velikostmi plateb diskotovaých ke di emise. - průměrá doba do splatosti - průměrá doba pro získáí příjmů spojeých s dluhopisem (Macaulayova) D Mac F + + +... + ( + y) ( + y) ( + y) P - dále je durace mírou citlivosti dluhopisu a změy tržích sazeb (modifikovaá)

D mod D Mac ( + y) D mod durace je tím ižší čím: P P y vyšší jsou platby plyoucí z dluhopisu do splatosti dříve platba z daého istrumetu astává kratší je celková doba do splatosti PV - čím meší hodota durace, tím meší jsou změy v jeho trží ceě vzhledem ke změám tržích úrokových sazeb P + 4% y - % y Př: Vypočítejte D Mac, D mod dluhopisu s pevou kupoovou úrokovou sazbou 8%, jestliže 30 omiálí hodota dluhopisu je.000 Kč, doba do splatosti 3 roky, aktuálí trží cea je 950,5 Kč a výosost do doby splatosti tedy 0%. (Kupoové platby jsou vyplácey x ročě, prví bude ásledovat za rok). O kolik se změí cea tohoto dluhopisu, jestliže se změí úrokové sazby o %. Změy hodot dluhopisu při změách trží úrokové míry. Př: V tabulce jsou uvedey změy počátečí a kocové hodoty tříletého dluhopisu 3 v omiálí hodotě 0.000 Kč s ročími kupoy a kup. sazbou 0% při trží úrokové míře 0%, jestliže trží úroková míra klese (vzroste) o 5% (tj. i + 5 %). i PV PV FV FV -5% 36,6 36,6 3 5,50-57,5 0% 0 000,00 3 30,00 5% 8 858,39-4,6 3 47,50 6,5 Zpřesěí aproximací výpočtu durace se azývá kovexita.(x) X. t (t +). ( + i) -t + (+) FV ( + i) -

( + i) PV DLUHOPISOVÉ PORTFOLIO DURAE Je aritmetický průměr dob do splatosti jedotlivých plateb (kromě pořizovací cey), které souvisejí s dluhopisem a jsou vážey velikostmi plateb diskotovaých ke di emise. D - průměrá doba do splatosti - průměrá doba pro získáí příjmů spojeých s dluhopisem (Macaulayova) + F + + + + y ( + y) ( + y) P + P + + P Dmac P P mac Př: Vypočítej durace pro dluhopis s trží úrokovou mírou 0% Doba do Kupoová sazba c: splatosti 5% 0% 5%,0000,0000,0000 3,8490,7355,647 5 4,699 0 6,7590 0 9,3649 50 0,9063 00 0,999 - dále je durace mírou citlivosti dluhopisu a změy tržích sazeb (modifikovaá), o kolik se změí cea dluhopisu opačým směrem při změě výosů D - P P y durace je tím ižší čím: vyšší jsou platby plyoucí z dluhopisu do splatosti dříve platba z daého istrumetu astává kratší je celková doba do splatosti mod čím meší hodota durace, tím meší jsou změy v jeho trží ceě vzhledem ke změám tržích úrokových sazeb - vztah mezi ceou dluhopisu a výosem:. PV y. PV y Př: Uvažujme tříletý bezkupóový dluhopis, který má omiálí hodotu FV.000 Kč a poskytuje výos 5%. Do tohoto kupou ivestujeme a) a roky b) a 5 let. Vypočtěte výos, ztrátu, jestliže de po ákupu se výosy síží, respektive zvýší o %.

Při změě ve výosech hrozí: a) riziko kapitálové ztráty ( zvýší-li se výosy) b) riziko ztráty z reivestice (síží-li se výosy) Ivestičí horizot: krátký utrpíme ztrátu při vzestupu výosů (kapitálová ztráta > výos z reivestice) dlouhý utrpíme ztrátu při poklesu výosů (ztráta z reivestice > kapitálový výos) Saha o elimiaci obou uvedeých rizik (imuizaci): Je-li ivestičí horizot rove (Macaulayově) duraci, potom se výosy a ztráty avzájem pokrývají, a to při vzestupu i poklesu výosů. Durace kupóového dluhopisu je vážeý průměr durací (dob do splatosti) jedotlivých peěžích toků reprezetovaých kupóy a omiálí hodotou, kde váhy odpovídají podílu jedotlivých diskotovaých peěžích toků a celkové ceě dluhopisu. Durace kupóového dluhopisu je středí (průměrá) doba života tohoto dluhopisu. D D P + D P +... + D P P + P +... + P Durace portfolia složeého z dluhopisů je vážeý průměr durací jedotlivých dluhopisů, přičemž váhy odpovídají podílu ce jedotlivých dluhopisů a celkové ceě portfolia. D w D + w D +. + w D Př: hceme ivestovat částku.000.000 Kč a dobu 3 let, přičemž k dispozici máme bezkupóové dluhopisy s dobou splatosti,, 3, 4, 5 let s jedotým výosem 5% (uvažujeme plochou výosovou křivku). Vytvoříme portfolia A, B, takto: A 3, FV.57.65 Kč B, FV 55.50 Kč 4, FV 607.753 Kč, FV 55.000 Kč 5, FV 638.4 Kč Kovexita portfolia složeého z dluhopisů je vážeý průměr kovexit jedotlivých dluhopisů, přičemž váhy odpovídají podílu ce jedotlivých dluhopisů a celkové ceě portfolia. X X P+ X P+... + X P+ P+... + P P

P.000.000 B A 5% Y (%) Klesou-li výosy o %, zhodotí se portfolio o větší výos (koruový i procetí) ež o kolik klese jeho hodota, zvýší-li se výosy o % Př: hceme ivestovat částku.000.000 Kč, přičemž máme k dispozici dluhopisy A, B s ásledujícími parametry: A: 5, c %, y % B:, c 0%, y 0% Jak budeme ivestovat a 3 roky?

AKIOVÉ PORTFOLIO Ivestičí strategie, kdy je optimalizová výos vzhledem k riziku ivestice. Akcie A, A, A 3, Váhy a, a, a 3, Výosové proceto r p (průměrá míra zisku) Riziko p směrodatá odchylka Korelace stupeň závislosti mezi dvěma ebo více proměými Kovariace statistický pojem odvozeý od běžého rozptylu, který popisuje rozsah, v jakém se dvě proměé pohybují stejou měrou r p k a k r k r p N k pkr ( k) p k p k ( r ( k) r p ) ij N ( rik ri )( rjk rj ) k p k ρ ij i ij j Kovariačí koeficiet ij Korelačí koeficiet ρ ij Rozptyl: součet druhých moci odchylek jedotlivých hodot od aritmetického průměru děleý počtem hodot ( ). Směrodatá odchylka: druhá odmocia rozptylu (). Př: Je dáo portfolio P s vahami a 0,7 a a 0,3 a jeho tři výosové variaty s těmito parametry: Variata Pravděpodobost Výos A Výos A 0, % 3% 0, % 8% 3 0,3 6% 4% 4 0,4 -% -5% a) alezěte výos a riziko portfolia P b) alezěte kovariačí matici

Korelačí koeficiet: - ρ ij dokoalá pozitiví korelace - ρ ij - dokoalá egativí korelace - ρ ij 0 výosová proceta ekorelují Př: Zjisti korelaci mezi výosovými procety akcií: a) A 4-6 - 8-0 b) c) A 0-9 -3 7 - - 9-4 A 4-6 - 8-0 A 3 3-5 0 7-3 A 3 3 3 3 3 A 3 3 3 3 3 Riziko portfolia ( p ): Směrodatá odchylka p a + aa + a Kovariačí matice: Př: Jsou dáy kovariace -3, 6, 5, 0. Určete kovariačí matici a riziko portfolia, jestliže a 0,7 a a 0,3. Jak se změí riziko portfolia, jestliže se váhy prohodí?