3. Charakteristiky a parametry náhodných veličin

Podobné dokumenty
3. Charakteristiky a parametry náhodných veličin

Pravděpodobnost a aplikovaná statistika

12. N á h o d n ý v ý b ě r

z možností, jak tuto veličinu charakterizovat, je určit součet

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

14. B o d o v é o d h a d y p a r a m e t r ů

NEPARAMETRICKÉ METODY

2. Náhodná veličina. je konečná nebo spočetná množina;

4. B o d o v é o d h a d y p a r a m e t r ů

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

Náhodný výběr 1. Náhodný výběr

Intervalové odhady parametrů některých rozdělení.

5. Lineární diferenciální rovnice n-tého řádu

Pravděpodobnost a aplikovaná statistika

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

Matematika I, část II

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a a N. n=1

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze

V. Normální rozdělení

Deskriptivní statistika 1

3. část: Teorie hromadné obsluhy. Ing. Michal Dorda, Ph.D.

1. Přirozená topologie v R n

Číselné charakteristiky náhodných veličin

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

8. Analýza rozptylu.

n 3 lim 3 1 = lim Je vidět, že posloupnost je neklesající, tedy z Leibnize řada konverguje, ( 1) k 1 k=1

Přednáška č. 2 náhodné veličiny

Posloupnosti a číselné řady. n + 1. n n n n. n n n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b b n) = 1 b

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

17. Statistické hypotézy parametrické testy

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

PRAVDĚPODOBNOST A STATISTIKA

STATISTIKA. Základní pojmy

P2: Statistické zpracování dat

Pravděpodobnost a statistika Výpisky z cvičení Ondřeje Chocholy

Odhady parametrů 1. Odhady parametrů

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

PRAVDĚPODOBNOST A STATISTIKA

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

Náhodné jevy, jevové pole, pravděpodobnost

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

7. Odhady populačních průměrů a ostatních parametrů populace

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Pravděpodobnostní modely

Popisná statistika. Zdeněk Janák 9. prosince 2007

Intervalové odhady parametrů

4. Opakované pokusy a Bernoulliho schema

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

Matematická statistika (Opravená a rozšířená verze textu přednášky z LS 2001/2002)

P. Girg. 23. listopadu 2012

n-rozměrné normální rozdělení pravděpodobnosti

Národní informační středisko pro podporu kvality

ŘADY Jiří Bouchala a Petr Vodstrčil

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

3. Lineární diferenciální rovnice úvod do teorie

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Lineární regrese ( ) 2

6. Posloupnosti a jejich limity, řady

Pravděpodobnostní model doby setrvání ministra školství ve funkci

5. Posloupnosti a řady

(3n + 1) 3n Příklady pro samostatnou práci

Pravděpodobnost a matematická statistika

Masarykova univerzita Přírodovědecká fakulta

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná vybraná rozdělení

1.3. POLYNOMY. V této kapitole se dozvíte:

2 Diferenciální počet funkcí více reálných proměnných

Spojitost a limita funkcí jedné reálné proměnné

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Úloha II.S... odhadnutelná

Závislost slovních znaků

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Statistika pro metrologii

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

Matematická analýza I

Testujeme hypotézu: proti alternativě. Jednoduché třídění:

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

Pravděpodobnost a statistika - absolutní minumum

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

8. Odhady parametrů rozdělení pravděpodobnosti

Transkript:

3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo charateristiy áhodé veličiy. Obecě je dělíme a parametry polohy a parametry variability. 3. Mediá a vatily Defiice 3. Nechť X je áhodá veličia a F je její distribučí fuce. 00p% vatilem této áhodé veličiy azveme číslo x p taové, že pro daé p œ (0, ) je F(x p ) p lim F( x) p. (3.) + x x p Něteré vatily mají speciálí ozačeí: x = x 0,5... mediá 50% vatil x 0,5... dolí vartil 5% vatil x 0,75.... horí vartil 75% vatil x, =,,...,9... tý decil 0 x, =,,...,99... tý percetil 00 Pozáma 3. Předchozí charateristiu budeme využívat především v matematicé statistice. Přílad. Nechť X je áhodá veličia typu Bi(30;0,4). Jde tedy o biomicé rozděleí s parametry =30 a p=0,4. Podle předchozí části můžeme zjistit jedotlivé vatily: Kvatily 0% 0% 30% 40% 50% 60% 70% 80% 90% 9 0 3 3 4 5 Dolí vartil je v tomto případě 0 a horí vartil je 4. Přílad. Zjistěme hodoty příslušých vatilů rozděleí N(0,). 5% 0% 5% 0% 5% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% -,64 -,8 -,04-0,84-0,67-0,5-0,39-0,5-0,3 0,00 0,3 0,5 0,39 0,5 0,67 0,84,04,8,64 3. Modus Defiice 3. Nechť X je disrétí áhodá veličia. Potom bod x azveme modusem áhodé veličiy X, jestliže pro ěj platí PX ( = x ) PX ( = y), y x. (3.) Nechť X je spojitá áhodá veličia s hustotou f. Potom bod x azveme modulem áhodé veličiy X, jestliže pro ěj platí f ( x ) f( x), x x. (3.3) V případě disrétí áhodé veličiy je modusem ejčetější hodota, v případě spojité áhodé veličiy hodota,v íž je hustota maximálí. V případě, že taovéto možosti astávají ve více ež v jedom bodě, jsou všechy taové body prohlášey modusem áhodé veličiy X.

Přílad Modusem áhodé veličiy N(0,) je hodota 0, eboť v této hodotě abývá hustota áhodé veličiy maximum.π. Modusem áhodé veličiy Bi(0;0,7) je ejčetější hodota tedy modus je rove 7. 3.3 Středí hodota áhodé veličiy Teto parametr je jede z ejdůležitějších parametrů, má velé využití v statisticých studiích, proto se jím budeme zabývat obšírěji. Defiice 3.3 Nechť X je áhodá veličia. Řeeme, že tato áhodá veličia má středí hodotu E(X), jestliže absolutě overguje řada resp. existuje itegrál: x. P( X = x ) = x. p, disrétí áhodá veličia EX = i i i i x. f ( x) dx, spojitá áhodá veličia.(3.4) Kovergece řady resp. existece itegrálu v (3.4) je podstatá! Bez důazu uvedeme ěterá tvrzeí o vlastostech středí hodoty! Věta 3. Vlastosti středí hodoty áhodé veličiy. Nechť X je áhodá veličia typu ostata. Potom její středí hodota E(X) existuje a je rova hodotě.. Nechť X je áhodá veličia, c > 0. Nechť dále existuje E(X). Potom áhodá veličia c.x má středí hodotu c. E(X) 3. Nechť X je áhodá veličia, echť dále X 0. Potom E(X) 0. 4. Nechť X, Y jsou áhodé veličiy, echť existuje E(X) a E(Y). Potom má áhodá veličia X + Y středí hodotu E(X) + E(Y). Pozáma 3. Vlastost. v předchozí větě se obecě azývá homogeita, vlastost 4. aditivita, dohromady tyto dvě vlastosti azýváme liearitou. Vlastost 3. se azývá ezáporost zobrazeí. Každé zobrazeí do prostoru azýváme obecě fucioářem. Středí hodota jao zobrazeí E :, je prostor áhodých veliči, je tedy lieárí a ezáporý fucioář a možiě áhodých veliči, teré mají středí hodotu. Přílady a staoveí středích hodot áhodých veliči uvedeme v další apitole. Bez důazu uvedeme důležité tvrzeí. Věta 3.3 Nechť X je áhodá veličia a g: -> je spojitá fuce. Potom g ë X je áhodá veličia, terá má středí hodotu právě, dyž existuje itegrál g(). t f( t) dt. Dále je Eg ( X) = gt. ftdt. Důaz: Provede apřílad v [],[].

Pozáma 3. V předchozí větě je dá ávod ja počítat středí hodoty áhodých veliči typu X, (X a ) atd. Taovéto výpočty se provádí sutečě velmi často. Přílad 3. Házíme 3 x micí, jestliže pade 0 x líc zaplatíme 5 Kč, jestliže pade x líc zaplatíme Kč, jestliže pade x líc eplatíme ic a jestliže pade líc 3 x dostaeme 6 Kč. Zjistěte středí hodotu áhodé veličiy padutí líce a středí hodotu výhry! Řešeí: Podle (3.4) musíme ejdříve zjistit pravděpodobosti jedotlivých áhodých jevů padutí lícu x. Výsledy uvedeme v tabulce: 0 3 p 0,5 0,375 0,375 0,5 Tyto hodoty yí využijeme výpočtu středí hodoty áhodé veličiy X: E( X ) = 0.0,5 +.0,375 +.0,375 + 3.0,5 =,5 Nyí budeme počítat středí hodotu výhry. Výpočet provedeme podle věty 3.3. Nejdříve si musíme upravit výše uvedeou tabulu: 0 3 Výhra při x -5-0 6 padutí líce p 0,5 0,375 0,375 0,5 Tyto hodoty již umožňují vypočítat středí hodotu výhry: E( výhry ) = 5.0,5.0,375 + 0.0,375 + 6.0,5 = 0,65 Průměrá výhra je tedy -0,65 Kč. 3.4 Rozptyl áhodé veličiy Defiice 3.4 Nechť X je áhodá veličia, pro terou existuje středí hodota. Jestliže má áhodá veličia (X E(X)) středí hodotu, potom VAR( X ) = E( X E( X )) (3.8) azveme rozptylem áhodá veličia X. Číslo σ ( X ) = VAR( X ) se azývá směrodatá odchyla áhodá veličia X. Věta 3.4 Vlastosti rozptylu áhodé veličiy Nechť áhodá veličia X má rozptyl VAR(X). Potom:. VAR(X) = E(X ) (E(X)) (3.9). Nechť dále a œ, potom VAR(a. X ) = a. VAR(X) (3.0) 3. Nechť b œ, potom VAR(X + b ) = VAR(X) (3.) Důaz těchto tvrzeí ebudeme opět provádět. Něteré další vlastosti rozptylu áhodých veliči budeme vyšetřovat v apitole věovaé ezávislosti áhodých veliči.

Uvedeme ještě ěteré další typy charateristi áhodých veliči. Přílady a výpočet taovýchto čísel poecháme a závěrečou část této apitoly. Poračováí příladu 3. a) Nejdříve budeme hledat rozptyl áhodé veličiy X. Přímo z tabuly pro staoveí rozděleí pravděpodobostí této áhodé veličiy vyplývá, že E( X ) = 0.0,5 +.0,375 +.0,375 + 3.0,5 =,5 Využijeme yí vlastost (3.9) a zísáváme : VAR( X ) =,5, 5 =,5, 5 = 0, 5 b) Podobě yí budeme počítat rozptyl výhry: E výhra = ( 5).0,5 + ( ).0,375 + 0.0,375 + 6.0,5 = 9,5 Využijeme yí opět vlastosti (3.9) VAR( výhra ) = 9,5 ( 0, 65) = 9,5 0,39065 = 8, 734375 Závěr : Náhodá veličia X má hodoty ( ) rozložey relativě ompatě ( tj. a malém itervalu ), proto je její rozptyl malý, zatímco áhodá veličia výhra má hodoty rozložey a podstatě širším itervalu, proto je její rozptyl podstatě větší. 3.5 Momety áhodé veličiy Defiice 3.5 Nechť X je áhodá veličia, œ Í. Potom číslo :. µ ( X ) = E( X ) (3.) azveme -tým mometem áhodé veličiy X, poud existuje.. ν ( X) = E( ( X E( X) ) ) (3.3) azveme -tým cetrálím mometem áhodé veličiy X, jestliže uvedeý výraz existuje µ ( X ) 3. δ ( X ) = (3.4) σ ( X ) azveme -tým ormovaým mometem áhodé veličiy X, mají li všechy výrazy smysl 4. Specielě 3. ormovaý momet azýváme oeficiet šimosti áhodé veličiy X α3( X ) = δ3( X ) (3.5) 5. Specielě dále určujeme oeficiet špičatosti áhodé veličiy X jao α ( X) = δ ( X) 3 (3.6) 4 4 Tyto dva oeficiety hrají velou roli ( respetive jejich tzv. výběrové tvary ) při vyšetřováí ormality dat. Normalita dat je velmi důležitý a záladí pojem. Moho záladích metod je a tomto pojmu založeo apř. regrese, orelace, testováí statisticých hypotéz parametricých, ANOVA atd.

3.6 Výpočet středí hodoty a rozptylu ěterých záladích typů áhodých veliči Disrétí áhodé veličiy 3.6. Degeerovaé rozděleí a) E(X) = x 0. = x 0 ; b) VAR(X) = x 0. (x 0 ) = 0 a) EX = xp. + x.( p), 3.6. Alterativí rozděleí b) VAR X = ( x p+ x p ) ( x p+ x p )...., Je li specielě x = a x = 0 je potom a) E(X) = p b) VAR(X) = p.(-p) = p. q 3.6.3 Biomicé rozděleí i i i i a) E( X) = i.. p.( p) =. p.. p.( p) = 0 i i j j = p... p.( p) = p..( p+ ( p) ) = p. j= 0 j b) i i i i VAR( X) = i p... p.( p) =. p.. p.. i.. p.( p) + 0 i 0 i i i! i i + i.. p.( p) =. p.. p +. p+. p.( p) = 0 i ( i )!.( i)! i ( ) ( i ) = p.. p +.( ). p.. p.( p) = p. p. = p..( p) = pq.. i 3.6.4 Poissoovo rozděleí i λ j λ. e λ λ λ λ a) EX = i. = λ. e. = λ. e. e = λ 0 i! j= 0 j! b) i λ i λ i λ i λ λ. e λ. e λ. e λ. e VAR( X ) = i λ. = λ.. λ. i. + i. = i! i! i! i! 0 0 0 0 i j λ λ λ λ = λ. λ + e. λ. i. = λ. λ + e. λ. ( j+ ). = ( i )! j! =. +... + =. + + = λ λ e λ λ λe λ e λ λ λ λ λ λ

Spojité áhodé veličiy 3.6.5 Rovoměré rozděleí b a+ b a) EX = xf. ( xdx ) = x. dx= b a a b a+ b b) VARX = x. f( xdx ) xf. ( xdx ) = x. dx = b a a a+ b a ab. + b =.( a + ab. + b ) = 3 3.6.6 Cauchyho rozděleí a a) = = π a + x posledě psaý itegrál ale eexistuje. EX xf. ( xdx ) x.. dx, Proto eexistuje ai středí hodota tohoto rozděleí b) Protože eexistuje středí hodota, emůže existovat ai rozptyl. 3.6.7 Normálí rozděleí a) x µ substituce t. σ EX = xf. ( xdx ) = x.. e dx= x µ = ( σ. t+ µ ).. e. σdt= σ.. π = t σ.. π σ t t = σ. t.. e. σ dt+ µ.. e. σ dt = 0 + µ.= µ σ.. π σ.. π ( x µ ) substituce. σ b) VAR( X ) = ( x µ ). f ( x) dx = ( x µ ).. e dx = x µ = σ.. π = t σ t t t... { }... lim. = σ t e σdt = σ te + e dt = σ.. 0+. π =. π. π N. π = σ Je zřejmé, že středí hodota rozděleí N(0,) je tedy rova 0 a rozptyl tohoto rozděleí je rove.

3.7 Smíšeé momety áhodých veliči V této části se zaměříme a případy, dy je uto vyšetřovat více áhodých veliči, teré jsou spolu spojeé v áhodém vetoru buď pomocí sdružeé hustoty ebo pomocí sdružeé pravděpodobostí fuce. Defiice 3.6 Nechť = (X, X,,X ) je áhodý vetor. Nechť dále X. X,..., X r, de r i 0 r r a ri = r, je áhodá veličia, terá má středí hodotu. Potom smíšeým mometem r E X X X. tého řádu áhodých veliči X, X,,X azveme hodotu ( r ). r,..., r Pozáma 3.3 a) V případě, že áhodý vetor = (X, X,,X ) je disrétí se sdružeou pravděpodobostí fucí P, hodota smíšeého mometu r tého řádu rova : r E X. X,..., X = x. x... x. P( X = x, X = x,..., X = x ) (3.7) r r r r r x, x,..., x v uvedeém součtu sčítáme samozřejmě přes všechy možé tice, v ichž je sdružeá pravděpodobostí fuce eulová. b) V případě, že áhodý vetor = (X, X,,X ) je spojitý se sdružeou hustotou f, je hodota smíšeého mometu r tého řádu rova : r r r r r r (.,..., ) =........ (,,..., )... (3.8). E X X X x x x f x x x dxdx dx Sdružeé momety áhodých veliči budeme vyšetřovat především v situacích, dy je uté zoumat vliv jedotlivých áhodých veliči ( prvů áhodého vetoru ) a sebe. Toto zoumáí budeme provádět především v ásledující apitole a potom dále v matematicé statistice.