Princip virtuálních prací (PVP)



Podobné dokumenty
Kinematická metoda výpočtu reakcí staticky určitých soustav

Platnost Bernoulli Navierovy hypotézy

Princip virtuálních posunutí (obecný princip rovnováhy)

Platnost Bernoulli Navierovy hypotézy

Princip virtuálních posunutí (obecný princip rovnováhy)

Vybrané metody řešení soustavy rovnic. Podmínky rovnováhy či ekvivalence vedou často na soustavu rovnic, např.

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu

Jednoosá tahová zkouška betonářské oceli

Složené soustavy v rovině, stupně volnosti

Stupně volnosti a vazby hmotných objektů

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)

Redukční věta princip

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)

Vícerozměrné úlohy pružnosti

Integrální definice vnitřních sil na prutu

Přednáška 10. Kroucení prutů

Přednáška 08. Obecná trojosá napjatost

Jednoosá tahová zkouška betonářské oceli

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady

Přednáška 10. Kroucení prutů

SMA2 Přednáška 09 Desky

Stavební mechanika 1 - K132SM1 Structural mechanics

Přednáška 10. Kroucení prutů

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady

Vícerozměrné úlohy pružnosti

Název materiálu: Hydrostatická tlaková síla a hydrostatický tlak

Rovnoměrně ohýbaný prut

Přednáška 09. Smyk za ohybu

Přednáška 05. Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady

Přednáška 01 PRPE + PPA Organizace výuky

Rekapitulace princip virtuálních sil pro tah/tlak

Přibližné řešení úloh mechaniky

Přednáška 01 Úvod + Jednoosá napjatost

Zjednodušená deformační metoda (2):

Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků

Přednáška 1 Obecná deformační metoda, podstata DM

Rastrová reprezentace geoprvků model polí Porovnání rastrové a vektorové reprezentace geoprvků Digitální model terénu GIS 1 153GS01 / 153GIS1

Pružnost a plasticita II CD03

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

4.6 Složené soustavy

Lokalizace QGIS, GRASS

Betonové konstrukce (S) Přednáška 3

Statika soustavy těles.

Stavební mechanika 1 (K132SM01)

Složené soustavy. Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí)

6. Statika rovnováha vázaného tělesa

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

Střední škola automobilní Ústí nad Orlicí

PostGIS Topology. Topologická správa vektorových dat v geodatabázi PostGIS. Martin Landa

Dynamika vázaných soustav těles

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Příhradové konstrukce

Obecná soustava sil a momentů v prostoru

Petr Kabele

Moment síly výpočet

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních děl

Výpočet přetvoření a dimenzování pilotové skupiny

Úlohy rovnováhy staticky určitých konstrukcí

Martin NESLÁDEK. 14. listopadu 2017

Rozdíly mezi MKP a MHP, oblasti jejich využití.

PRUŽNOST A PEVNOST II

PostGIS Raster. Správa rastrových dat v geodatabázi PostGIS. Martin Landa. 155UZPD Úvod do zpracování prostorových dat, zimní semestr

Pohybové možnosti volných hmotných objektů v rovině

Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění )

Pružnost a pevnost. zimní semestr 2013/14

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

STATIKA. Vyšetřování reakcí soustav. Úloha jednoduchá. Ústav mechaniky a materiálů K618

Stavební mechanika 2 (K132SM02)

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

Dynamika soustav hmotných bodů

Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

Úvod do analytické mechaniky

3 Mechanická energie Kinetická energie Potenciální energie Zákon zachování mechanické energie... 9

Autor: Vladimír Švehla

Materiály ke 12. přednášce z předmětu KME/MECHB

DNSSEC. Adam Tkac, Red Hat, Inc. 23. dubna 2009

Kˇriv e pruty Martin Fiˇser Martin Fiˇ ser Kˇ riv e pruty

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.

Globální matice konstrukce

Mechanika tuhého tělesa

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky

Lineární stabilita a teorie II. řádu

Statika 1. Úvod & Soustavy sil. Miroslav Vokáč 22. února ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč.

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

4.6.3 Příhradové konstrukce

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)

Téma 12, modely podloží

FAKULTA STAVEBNÍ. Telefon: WWW:

Předpjatý beton Přednáška 4

GIS 1 155GIS1. Martin Landa Lena Halounová. Katedra geomatiky ČVUT v Praze, Fakulta stavební

Práce, výkon, energie

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví

Mechanika úvodní přednáška

α = 210 A x =... kn A y =... kn A M =... knm

2.5 Rovnováha rovinné soustavy sil

Transkript:

Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu mění, je nutné provést integraci po dráze zatížení W=W int =W ext = 0u F d u= 0 u F du= 0 u ku du= 1 2 k u2 = 1 2 F u [J=Nm ] Zde je síla vždy v rovnováze s účinkem pružiny, vnější práce síly je shodná s vnitřní energií pružiny. Na rovnováhu lze tedy pohlížet také energeticky. V PVP zavádíme virtuální veličiny. Virtuálním posunem u rozumíme velmi malý (infinitezimální) posun, který není v rozporu s vazbami soustavy. Virtuální posun nezávisí na skutečném zatížení F. Virtuální síla F je myšlená (fiktivní) síla, kterou libovolně umístíme na soustavu. Virtuální síla nezávisí na skutečných posunech soustavy u. F k W ext F=ku Copyright (c) 2007-2010 Vít Šmilauer Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Czech Republic Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License" found at http://www.gnu.org/licenses/ 1

Podle výpočtu virtuální práce W rozeznáváme dva principy Princip virtuálních přemístění (PVp, Lagrangeův princip), práce skutečných sil F na virtuálních přemístěních u Tuhá tělesa Pružná tělesa W = F u Použití: metoda konečných prvků, deformační metoda, kinematická metoda výpočtu reakcí staticky a kinematicky určitých soustav Princip virtuálních sil (PVs, Castiglianův princip), práce virtuálních sil na skutečných přemístěních Použití: výpočet přetvoření konstrukcí, silová metoda Pro tuhá tělesa lze skutečnou a virtuální práci zapsat W = u T F d u T b d T d W = u F W W= F F u u = F u Skutečná síla Skutečné přemístění (nulové u staticky určitého podepření) W Vnější virtuální práce F uu F F u W Skutečná síla Virtuální libovolné přemístění Vnitřní virtuální práce Nemá fyzikální význam virtuální síly i posuny však mohou být libovolné Skutečné přemístění Virtuální libovolná síla 2

Dále uvažujme PVp na tuhých tělesech. Libovolná virtuální přemístění u na skutečných silách F vyvolají virtuální práci W = F u. Je nutné vytvořit kinematicky neurčitou soustavu, aby virtuální přemístění nebyla v rozporu s vazbami. Postupujeme stejně jako u výpočtu reakcí zrušenou vazbu nahradíme silou u x F x W =F x Pro volnou tuhou desku v rovině lze virtuální přemístění popsat Posunutím u bodu ' (i jakéhokoli jiného bodu na tuhé desce) x u x A u z z ' A' u=u x ; u z 3

Pootočením vzhledem k bodu ' (A' A'') x z u x ' u z i r i x i z i A' x i =r i sin i z i =r i cos i r i A'' r i A' i A'' r i sin i = x i r i cos i =z i malé rotace: 0 sin = cos=1 tan = Celkové virtuální přemístění A A' A'' rovina u ix = z i u iz = u z x i zobecněný prostor u ix = z i y y i z u iy = u y x i z z i x u iz = u z y i x x i y Z daného posunu Z daného natočení 4

Virtuální práce síly Pokud v bodě A působí síla F i = (F ix ; F iz ) pak při virtuálním přemístění (posunu a rotaci) vykoná virtuální práci W i z x i F i z i A ' x u ix A'' u iz F' i Virtuální práce síly F i vztažené k bodu W i =F ix u ix F iz u iz =F ix F iz u z F ix z i F iz x i =F ix F iz u z M i vektorově = F i u i = F i u r i F i = F i um i Síla na virtuálním posunu Moment od síly na virtuálním natočení Moment k! ( W od natočení je stejná od F' k bodu ' jako od F k bodu ) 5

Virtuální práce soustavy sil a momentů na tuhé uvolněné desce Pro soustavu sil a momentů využijeme principu superpozice x z M 1 ' F 1 F i M j W = W F i W M j = F ix F iz u z M F i i j i j =F rx F ry u y M r M M j = Pro prostor lze zobecnit W = F r um 6

Princip virtuálních přemístění Uvažujme soustavu sil a momentů na tuhé desce, která je v rovnováze F rx = i F ry = i M r = j F ix =0 F iy =0 M j =0 Pak virtuální práce pro libovolné virtuální přemístění je nulová W =F rx F ry u y M r =0 Princip virtuálních přemístění: Virtuální práce rovnovážné soustavy sil působící na tuhé těleso je při libovolném virtuálním přemístění tělesa nulová. Princip virtuálních přemístění (alternativní formulace): Soustava sil působící na tuhé těleso je v rovnováze právě tehdy, je li při virtuálním přemístění tuhého tělesa vykonaná virtuální práce nulová. 7

PVp lze odvodit i z vynásobení podmínek rovnováhy virtuálními přemístěními i u y i j F ix =0 F iy =0 M j =0 Přímým důsledkem PVp je splnění podmínek rovnováhy. PVp (i PVs) vyjadřuje energetickou formulaci, tj. zákon zachování energie. Význam PVP je zejména u poddajných těles, kde umožňuje získat jejich přemístění a doplnit chybějící podmínky (např. přetvárné) k podmínkám rovnováhy na staticky neurčitých soustavách. PVP je využíván pro přibližné určení neznámých sil. Při určité aproximaci u a neznámých F (plynoucí z napětí a z deformací poddajných těles) je možné splnit energetickou formulaci i tehdy pokud nejsou splněny podmínky rovnováhy v každém bodě konstrukce ale pouze v průměru (tzv. slabé řešení). PVP je tedy obecnější princip, kdy aplikace ve formě PVp je známa jako metoda konečných prvků, která je snadno algoritmizovatelná, přibližná a za určitých podmínek je dokázána konvergence k přesnému řešení. 8

Aplikace PVp na případ rovnováhy Zjistěte pomocí PVp zda jsou uvedené síly v rovnováze L F L 2 2F L / 2 L / 2 se považuje za nekonečně malé, neovlivní tedy polohu sil vlivem natočení (odpovídá předpokladům nulových deformací tuhých těles) Výpočet W ze součinu virtuální posun síla =0 W =L F L 2 F= 2 LF L 2 F 2 momentová podm. rovn. Výpočet W ze součinu virtuální otočení moment k =0 W = LF L 2 F= 2 LF L 2 F 2 momentová podm. rovn. Protože může být libovolné, je momentová podmínka rovnováhy splněna Pozn. síla F může znázorňovat i reakci k síle 2F a naopak 9

věřte PVp rovnováhu na kladce Rovnováha na kladce r Výpočet W ze součinu síla virtuální posun W =F u G u= u F G =0 F= G u G u Výpočet W ze součinu moment k virtuální otočení W =Fr Gr = r F G =0 F=G F 10

Pomocí PVp určete moment M, který je v rovnováze se zatížením u /cos30 o 3 m 6 m u /2cos30 o 30 o F=5 kn 30 o 3 cos 30 o F=5 kn M u r=0,1 m u u /cos30 o 30 o Alt.1 W =M u r 3 cos30o F u 6cos 30 o =0 W = u M r F 2 =0 M = rf 2 =250 Nm M r=0,1 m 30 o F=5 kn 3 m 3 m Alt. 2 W = M r u F cos30o u 2cos 30 o =0 W = u M r F 2 =0 11

Které dva principy plynou z PVP? Co je přímým důsledkem PVp? Lze úlohy rovnováhy řešit PVp? tázky Jak velké mohou být virtuální posuny a natočení, lze určit libovolně jejich velikosti? Čemu se rovná virtuální práce kinematicky určitě podepřeného tuhého tělesa? Proč musíme uvolnit alespoň jednu vazbu při výpočtu virtuální práce na kinematicky určitých soustavách? Lze PVP řešit i staticky neurčité konstrukce? bsahuje virtuální práce v PVp silové i momentové příspěvky? Jaké jsou jednotky virtuální práce? Kolik virtuálních posunutí a natočení má smysl definovat na tuhé desce? Kolik na tuhém tělese v prostoru? 12

Přednášky z předmětu SM1, Stavební fakulta ČVUT v Praze Autor Vít Šmilauer Náměty, připomínky, úpravy, vylepšení zasílejte prosím na vit.smilauer@fsv.cvut.cz Created 12/2007 in penffice 2.3, ubuntu linux 6.06 Last update Feb 21, 2011 13