Zimní semestr akademického roku 2014/ prosince 2014

Podobné dokumenty
Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2015/ ledna 2016

Zimní semestr akademického roku 2014/ prosince 2014

PŘEDNÁŠKA 2 POSLOUPNOSTI

Význam a výpočet derivace funkce a její užití

Základy matematické analýzy

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a jejich limity

Zimní semestr akademického roku 2013/ září 2014

Základy matematické analýzy (BI-ZMA)

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009

1. Posloupnosti čísel

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Zimní semestr akademického roku 2015/ listopadu 2015

Limita a spojitost funkce

Spojitost a limita funkce

Limita a spojitost LDF MENDELU

Řešení 1a Budeme provádět úpravu rozšířením směřující k odstranění odmocniny v čitateli. =lim = 0

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

Limita ve vlastním bodě

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Matematická analýza pro informatiky I. Limita posloupnosti (I)

Posloupnosti a jejich konvergence

3. LIMITA A SPOJITOST FUNKCE

NMAF 051, ZS Zkoušková písemná práce 17. února ( sin (π 2 arctann) lim + 3. n 2. π 2arctan n. = lim + 3.

1 Posloupnosti a řady.

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

7B. Výpočet limit L Hospitalovo pravidlo

V této kapitole si zobecníme dříve probraný pojem limita posloupnosti pro libovolné funkce.

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

10. cvičení - LS 2017

Požadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15

NMAF 051, ZS Zkoušková písemná práce 4. února 2009

Diferenciální počet funkcí jedné proměnné

Číselné posloupnosti

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

Použití derivací L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT. Monotónie. Konvexita. V této části budou uvedena některá použití derivací.

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina

Limita a spojitost funkce

Kapitola 4: Průběh funkce 1/11

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

LIMITA FUNKCE, SPOJITOST FUNKCE

Matematika I A ukázkový test 1 pro 2014/2015

Přednáška 3: Limita a spojitost

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Management rekreace a sportu. 10. Derivace

Funkce komplexní proměnné a integrální transformace

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Kapitola 1: Reálné funkce 1/13

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Posloupnosti a jejich konvergence POSLOUPNOSTI

Katedra aplikované matematiky, VŠB TU Ostrava.

Kapitola 4: Průběh funkce 1/11

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice

Metody výpočtu limit funkcí a posloupností

Derivace funkcí více proměnných

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

MATEMATIKA A Metodický list č. 1

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

MATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a

MATURITNÍ TÉMATA Z MATEMATIKY

Limita posloupnosti a funkce

Kapitola 2: Spojitost a limita funkce 1/20

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

Označení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Bakalářská matematika I

Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25

Kapitola 1: Reálné funkce 1/20

IX. Vyšetřování průběhu funkce

1 L Hospitalovo pravidlo

MATEMATICKÁ ANALÝZA 1, NMMA101, ZIMNÍ SEMESTR POPIS PŘEDMĚTU A INFORMACE K ZÁPOČTU A KE ZKOUŠCE

Posloupnosti a řady. a n+1 = a n + 4, a 1 = 5 a n+1 = a n + 5, a 1 = 5. a n+1 = a n+1 = n + 1 n a n, a 1 = 1 2

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital

Riemannův určitý integrál

Michal Fusek. 10. přednáška z AMA1. Ústav matematiky FEKT VUT, Michal Fusek 1 / 62

Maturitní témata z matematiky

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

0.1 Úvod do matematické analýzy

Funkce, elementární funkce.

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27

ŘADY KOMPLEXNÍCH FUNKCÍ

Aplikace derivace a průběh funkce

Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19

11. Číselné a mocninné řady

NMAF 051, ZS Zkoušková písemná práce 26. ledna x. x 1 + x dx. q 1. u = x = 1 u2. = 1 u. u 2 (1 + u 2 ) (1 u 2 du = 2.

Transkript:

Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva ii 1 Úvod 1 Sumační zápis, manipulace se sumami, aritmetická a geometrická posloupnost, důkaz matematickou indukcí. 2 Zobrazení a funkce 6 Relace, zobrazení, definiční obor, obor hodnot, obraz a vzor množiny, vlastnosti zobrazení, reálná funkce reálné proměnné, spočetnost množiny. 1 Posloupnosti 1 Posloupnosti, ita posloupnosti (definice a výpočet), vybraná posloupnost. 4 Posloupnosti, pokračování 17 Věta o sevřené posloupnosti, Eulerovo číslo, podílové kritérium. 5 Číselné řady 22 Opakování příkladů na ity, číselné řady. 6 Limita funkce 26 Limita funkce; jednostranná ita; existence ity; výpočet it. 7 Spojitost a derivace funkce 31 Spojitost funkce; různé případy nespojitosti; derivace; výpočet derivace. 8 Extrémy reálných funkcí 38 Extrémy reálných funkcí; vyšetřování průběhu reálných funkcí. 9 L Hospitalovo pravidlo, Taylorova věta, opakování 44 L Hospitalovo pravidlo; Taylorova věta a její využití k přibližným výpočtům. 10 Neurčitý integrál 49 Primitivní funkce, substituce, per partes. Cvičení BI-ZMA, FIT ČVUT i ZS 2014/2015

11 Určitý integrál 56 Riemannův určitý integrál; výpočet obsahů ploch ohraničených křivkami; objem a obsah rotačního tělesa; délka křivky. Cvičení BI-ZMA, FIT ČVUT ii ZS 2014/2015

Předmluva Tento dokument slouží jako osnova cvičení k předmětu BI-ZMA. Jeho cílem je pochopení a osvojení si látky probírané na přednáškách. Každá kapitola obsahuje vždy několik typických řešených příkladů na dané téma a další příklady k procvičení či k samostnému počítání. Studentům je dále k dispozici elektronická cvičebnice MARAST. V případě nejasností týkajících se tohoto textu kontaktuje autora 1. Podrobné informace o předmětu BI-ZMA lze dále nalézt na jeho EDUXové stránce. 1 tomas.kalvoda@fit.cvut.cz Cvičení BI-ZMA, FIT ČVUT iii ZS 2014/2015

Cvičení č. 3 Posloupnosti Posloupnosti, ita posloupnosti (definice a výpočet), vybraná posloupnost. Značení (a n ) n=1 nebo stručněji (a n)....................................................posloupnost a n................................................................ ita posloupnosti n R = R {, + }................................................... rozšířená reálná osa H a....................................................................... okolí bodu a R Příklad 3.1: Nalezněte explicitní předpis pro n-člen člen zadaných posloupností. Posloupnosti indexujte od jedné. a) Posloupnost všech po sobě jdoucích sudých čísel větších nebo rovno osmi. b) Posloupnost 1, 1, 2, 2, 3, 3,... c) Periodicky se opakující posloupnost 0, 1, 0, 1, 0, 1, 0, 1,... Řešení. Samozřejmě existuje mnoho možných způsobů jak tyto posloupnosti popsat. Například: a) a n = 8 + 2(n 1), n = 1, 2,..., b) Pomocí dolní celé části můžeme psát n + 1 a n =, 2 případně a n = n 2 + 1 4 ( 1 + ( 1) n+1). c) Stačí vhodně volit hodnoty funkce sin, a n = sin (n 1)π, n = 1, 2, 3,... 2 Připomeňme definici několika různých typů posloupností. Posloupnost (a n ) n=1 nazýváme rostoucí, pokud a n < a n+1, klesající, pokud a n > a n+1, nerostoucí, pokud a n a n+1, Cvičení BI-ZMA, FIT ČVUT 10 ZS 2014/2015

neklesající, pokud a n a n+1, kde se všude požaduje, aby daná nerovnost platila pro všechna n z N. Posloupnost nazýváme monotónní, pokud je nerostoucí nebo neklesající. Příklad 3.2: Rozhodněte o monotonii následujících posloupností 1 a) a n = n, n = 1, 2, 3,..., n + 1 b) a n = Řešení. (n + 2)2 2 n, n = 1, 2, 3,... a) Je rostoucí. Protože pro každé n = 1, 2, 3,... platí a n < a n+1 n n + 1 < n + 1 n + 2 n2 + 2n < n 2 + 2n + 1 0 < 1. b) Je klesající. Podmínka a n > a n+1 je ekvivalentní požadavku (n + 2) 2 (n + 3)2 2 n > 2 n+1 2n 2 + 8n + 8 > n 2 + 6n + 9 n 2 + 2n 1 > 0 pro každé n N. Ten je ale splněn, protože kvadratická rovnice má řešení splňující x ± = 1 ± 2 < 1. x 2 + 2x 1 = 0 Příklad 3.3: Rozhodněte o monotonii následujících posloupností. a) ( n 2 2n ) n=1, b) ( n 2 3n ) c) n=1, ( n + 1 n ) d) ( n + ( 1) n) n=1. n=1, a) rostoucí, b) neklesající, c) klesající, d) ani jednoho typu. Je-li (a n ) n=1 posloupnost a (k n) n=1 rostoucí posloupnost přirozených čísel, pak o posloupnosti (a kn ) n=1 mluvíme jako o posloupnosti vybrané z (a n) n=1, případně jako o podposloupnosti posloupnosti (a n ) n=1. Příklad 3.4: Uvažte posloupnost a n = ( 1) n+1 n 2, n = 1, 2, 3,... Která z následujících posloupností je vybraná z (a n ) n=1? a) ( ( 1) n+1) n=1, b) (1) n=1, 1 Podrobněji: určete zda-li se jedná o posloupnost rostoucí, klesající, nerostoucí, neklesající či monotonní. Cvičení BI-ZMA, FIT ČVUT 11 ZS 2014/2015

c) ( n 2) n=1, d) ( 4n 2) n=1. a) Ne b) Ne c) Ne d) Ano. Připomeňme definici ity číselné posloupnosti, kterou nejlépe zapíšeme pomocí kvantifikátorů: a n = α n def ( H α )( n 0 N)( n N)(n > n 0 a n H α ). Zde H α označuje okolí bodu α R. Stručně řečeno, posloupnost (a n ) má itu α, právě když v každém okolí bodu α leží všechny členy posloupnosti až na konečný počet výjimek. Ukažme si nyní, jak podmínku v definici ity posloupnosti ověřit na konkrétních příkladech. Příklad 3.5: Pomocí definice ity dokažte, že sin(n) = 0. n n Řešení. Pro ε > 0 zvolíme libovolné n 0 N splňující n 0 > 1 ε. Pak pro n > n 0 platí sin(n) n 0 1 n < 1 < ε. n 0 Jinak řečeno, pro n > n 0 platí sin(n) n H 0 (ε). Příklad 3.6: Pomocí definice ity dokažte, že a) (n + ( 1)n ) = +, ) b) (1 + ( 1)n = 1. n Definici ity bezprostředně k výpočtu it používáme zřídka, častěji se opíráme o známé základní ity, například na přednášce zmiňované +, a > 0, na = 1, a = 0, 0, a < 0. V kombinaci se znalostí vět o součtu, součinu a podílu it 2 pak můžeme počítat i ity komplikovanějších posloupností. 2 Nechť a n = a a b n = b, kde a, b R. Potom (a n + b n) = a + b, a n b n = a b, an b n = a b, za předpokladu, že jsou výrazy na pravých stranách definovány. Cvičení BI-ZMA, FIT ČVUT 12 ZS 2014/2015

Příklad 3.7: Vypočtěte ity: a) (5n3 7n + 1) 5n 3 7n + 1 b) n 2 3 5n 3 7n + 1 c) n 3 3 5n 3 7n + 1 d) n 4 3 Řešení. a) Abychom mohli použít zmiňovanou větu, je nutné výraz nejprve vhodně upravit (vytknutí nejvíce rostoucího členu), ( 5n 3 7n + 1 ) = (5 n3 7 n 2 + 1 ) n 3 = + (5 0 0) = +. b) Limita čitatele i jmenovatele je nekonečná, čelíme nedefinovanému výrazu + +. Musíme tedy opět upravovat: ( ) 5n 3 7n + 1 n 3 5 7 + 1 n n 2 = 2 n ( ) 3 = 3 n 2 1 n 5 7 + 1 n 2 n 3 3 1 3 = + 5 1 = +. n 2 n 2 c) Podobným postupem jako v b) dostaneme d) Podobným postupem jako v b) dostaneme 5n 3 7n + 1 n 3 = 5. 3 5n 3 7n + 1 n 4 = 0. 3 Příklad 3.8: Vypočtěte itu: 5/4. Příklad 3.9: Vypočtěte itu: 1 n+1 1 n 4 1 n+2 1 n 2 ( 1 n 2 + 2 n 2 + 3 n 2 + + n 1 ) n 2.. Cvičení BI-ZMA, FIT ČVUT 13 ZS 2014/2015

Řešení. Podle formulky odvozené na prvních cvičeních 1 + 2 + 3 + + n 1 = (n 1)n/2 a tudíž: ( 1 n 2 + 2 n 2 + 3 n 2 + + n 1 ) 1 (n 1)n n 2 = n 2 = 1 2 2. Zdůrazněme, že nelze použít větu o itě součtu, neboť počet sčítanců roste s n do nekonečna. Pokud bychom nesprávně tuto větu použili, získali bychom nesprávný výsledek 0 + 0 + 0 + + 0 = 0. Příklad 3.10: Vypočtěte itu ( n 2 n + 1 + 1 ) n3 n 2 1 Je zkoumaná posloupnost nerostoucí nebo neklesající? -1, je nerostoucí i neklesající. K větě o itě součtu poznamenejme, že ji nelze obrátit. Z existence ity (a n + b n ) obecně neplyne existence it a n a b n. Např. uvažte a n = ( 1) n a b n = ( 1) n+1, pak a n + b n = 0. Z obou těchto posloupností lze totiž vybrat podposloupnosti (1) a ( 1) s rozdílnou itou, a proto (a n ) ani (b n ) nemají itu. Příklad 3.11: Vypočtěte ity ( ) n + 1 n a. n2/3( 3 n + 1 3 ) n. Řešení. V obou se vyskytuje nedefinovaný výraz + (+ ). Rozšíříme-li vhodnou jedničkou dostáváme ( ) n + 1 n n + 1 n = = 0, n + 1 + n n2/3( 3 n + 1 3 ) n + 1 n n = n2/3 (n + 1) 2/3 + ((n + 1)n) 1/3 + n 2/3 = 1 3. Poznamenejme, že výrazy podobného typu lze výhodně upravovat použitím vzorce pro a n b n odvozeného na prvním cvičení. Zde ve tvaru n a n b = Příklad 3.12: Vypočtěte itu: a b a (n 1)/n + a (n 2)/n b 1/n + + a 1/n b (n 2)/n + b (n 1)/n. ( ) 2n + 1 n. +. Příklad 3.13: Vypočtěte itu: n(n+1) n ( 1) 2 n n + 1. Cvičení BI-ZMA, FIT ČVUT 14 ZS 2014/2015

Řešení. Exponent u 1 není nic jiného než součet prvních n členů aritmetické posloupnosti, ten je s rostoucím n napřeskáčku dvakrát sudý a dvakrát lichý. Limita tedy neexistuje, lze sestrojit vybrané posloupnosti jdoucí k ±1. Další základní itou z přednášky, která se nám bude ve zbytku cvičení hodit, je +, a > 1, 1, a = 1, an = 0, a < 1, neexistuje, a 1. Příklad 3.14: Vypočtěte itu: 1. Příklad 3.15: Spočtěte itu: 2 n 2 n 2 n + 2 n. n ( n 2 ( ) n 2 1 2) 1 3 ( ) n 2 +1 ( n 1 2 1 3) 2 +1. 2. Příklad 3.16: Buď a > 0. Vypočtěte následující ity: i. ii. Řešení. 2n+1 a, 2n+1 a. i. Na přednášce zaznělo n a = 1 (případně zazní, připomeňte). Máme určit itu vybrané posloupnosti a ta je stejná. ii. Vzhledem k lichým odmocninám 2n+1 a = 2n+1 a. Limita je potom 1. Domácí cvičení 3.17: Vypočtěte následující ity, nebo dokažte jejich neexistenci. a) cos(n + 1), n b) (1 + ( 1)n ) n, c) 1 2 + 1 n 3 n 2 3 n + 1 2 n. a) 0, b) neexistuje, c) 1. Domácí cvičení 3.18: Vypočtěte itu: ( ) n n 2 + 1 n. Cvičení BI-ZMA, FIT ČVUT 15 ZS 2014/2015

1 2. Domácí cvičení 3.19: Vypočtěte ity (n + 1) 3 (n 1) 3 a) (n + 1) 2 + (n 1) 2, b) 3 n 3 + n n + 1, 1 + 1 2 c) + 1 4 + + 1 2 n 1 + 1 3 + 1 9 + + 1 d) a) 3, b) 1, c) 4/3, d) 4. ( n 2 + 2 n + 4 1 + 2n 2 + 1 n, 3 n ) Domácí cvičení 3.20: Dokažte 100n a) n 2 + 1 = 0,, b) 3 n 2 sin n! n + 1 n c) 2 n = 0. = 0, Cvičení BI-ZMA, FIT ČVUT 16 ZS 2014/2015