Katedra aplikované matematiky, VŠB TU Ostrava.

Rozměr: px
Začít zobrazení ze stránky:

Download "Katedra aplikované matematiky, VŠB TU Ostrava."

Transkript

1 SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY JIŘÍ BOUCHALA Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz

2 3 Předmluva Cílem této sbírky je poskytnout studentům vhodné příklady k přemýšlení a k procvičování látky obsažené ve skriptech Matematická analýza. Tento tet není ukončen. Průběžně ho měním a doplňuji. Prosím proto čtenáře o shovívavost a sdělení všech připomínek.. prosince 999 Jiří Bouchala

3 5 Příklad. Dokažte matematickou indukcí: a) n N : n ) = 3nn + )n ) b) n N : n n+) n+) = c) n N) k N) : n 3 + 3n + n = 6k n n+3) 4 n+) n+) d) n N) q R \ {}) : + q + q + q q n = qn+ q e), + )) n N) : + ) n + n f) n N : n > 4 n > n. Příklad. Určete eistují-li) min M, ma M, sup M a inf M, je-li: a) M = { p q : p N q N p q} b) M = { 5 999n 5 999n : n N} c) M = {, 9,, 99,, 999,, 9999,, 99999,... } d) M = { R : cos ) = }. Příklad 3. Buď A, B R. Dokažte platnost následujících tvrzení: a) A = + = inf A > sup A = b) A inf A sup A c) A má alespoň dva prvky inf A < sup A d) A má nejvýše jedno supremum a nejvýše jedno infimum e) supa B) = ma{sup A, sup B} f) infa B) = min{inf A, inf B} g) A B = sup A sup B.

4 6 Příklad 4. Určete definiční obor funkce f dané předpisem: a) f) = ln ) ) b) f) = arcsin + c) f) = arccosln 3 ) d) f) = ln + + ) e) f) = ln ln ln ). Příklad 5. Načrtněte graf funkce f dané předpisem: a) f) = + b) f) = 6 c) f) = arctgsgn ) d) f) = arcsinsin ) e) f) = sinarcsin ) f) f) = cosarcsin ) g) f) = arcsincos ). Příklad 6. Sestrojte graf funkce f, víte-li: Df = R, f je lichá, f) = = f 3 ), f je periodická s periodou 3,, ) 3 : f) =. Vypočtěte f), fπ), f ).

5 7 Příklad 7. Najděte eistuje-li) inverzní funkci k funkci f, je-li: a) f) = 4 + b) f) = + c) f) = 9, Df = 3, d) f) = 9, Df =, 3 e) f) = sin sin, Df =, π) f) f) = cos, Df = π, π. Příklad 8. Určete, zda je funkce f g rostoucí případně klesající), víte-li, že: a) f a g jsou rostoucí funkce b) f a g jsou klesající funkce c) f je rostoucí funkce a g je klesající funkce d) f je klesající funkce a g je rostoucí funkce. Příklad 9. Najděte všechna R, pro která platí: a) sin 5 cos + = b) cos + sin) c) tg +tg = cos) d) sin = 3 tg e) tg 3 + tg = + tg f) tg + cos +sin =.

6 8 Příklad. Vypočtěte: a) lim n 4 + 5n 3 + ) b) lim n 4 5n 3 + ) c) lim 3n + 6n n 7n n d) lim n n e) lim + 6n ) 3 n 4 + 8n f) lim 4n n n ) n ) n 3n n g) lim h) lim 3n 3n ) n 3n i) lim j) lim 3n n n k) lim n n 4 n + 3n l) lim 6n + 4 n n m) lim 6 n+ 3 n n + )! n! n sinn!) n) lim 3n + )! + n + o) lim n3 + n 3 3n + 5 p) lim n + ) n 4 n q) lim n + n ) n r) lim + ) n 5n s) lim + n) n+5 t) lim + n) 5n u) lim n v) lim n 3 4 8n 6 n n w) lim sinln n) n) ) lim n + n + n sinn) n cos3n) + n + sin4n)) y) dalších alespoň) 6 limit z libovolné sbírky příkladů. Příklad. Najděte geometrickou posloupnost a n ), pro kterou platí: a a = 3, a 4 a 3 =. Příklad. Dokažte ekvivalenci: a n a n +. Příklad 3. Nechť a R a nechť a n ), b n ) a c n ) jsou takové posloupnosti, že: n N : b n = a n c n = a n. Dokažte, že potom platí ekvivalence: a n a b n a c n a).

7 Příklad 4. Definujme posloupnost a n ) rekurentně rovnostmi: a =, a n+ = + a n. Vypočtěte lim a n. 9 Příklad 5. Určete, zda daná limita eistuje, a pokud ano, vypočtěte ji: a) lim 3 + ) b) lim + c) lim tg) d) lim sin5) cos3) e) lim f) lim ) + g) lim h) lim i) lim sin + ) + k ), k R j) lim + a) + b) ), a, b R + sin3) sin k) lim l) lim + 3 m) lim ln sin + n) lim + tg tg o) lim sin) ) p) lim ) tg π ) ) sin3) + sin5) e sin cos q) lim r) lim sin) s) lim tg ) sin3) sin + u) lim sin w) lim arccotg v) lim cos + t) lim cos ) lim arccos sin + )) +. Příklad 6. Rozhodněte, zda je funkce f spojitá v R, je-li: , f) =, je-li =, pro R \ {,, }, 3, je-li =, 4, je-li =.

8 Příklad 7. Vypočtěte f ) a určete Df, je-li funkce f daná předpisem: a) f) = b) f) = 3 c) f) = 3 d) f) = 3 e) f) = + f) f) = g) f) = + ) + h) f) = e a ln a), a R+ \ {e} i) f) = e arctg e ) j) f) = ln k) f) = sin ) cos l) f) = m) f) = ln arcsin n) f) = ln 3 ln ) o) f) = arcsin 3 ) p) f) = sincos tg )) q) f) = a+b c+d r) f) = ln, a, b, c, d R, ad bc s) f) = arcsin + + arctg t) f) = ln cos arctg e e u) f) = arccos + ln +.

9 Příklad 8. Určete teď, když znáte l Hospitalovo pravidlo, zda daná limita eistuje, a pokud ano, vypočtěte ji: ln a) lim n, n R b) lim c) lim 4 d) lim cossin ) sin5) + 5 ) e) lim cos4) f) lim ) tg3) + n ln, n R + g) lim sin ) + h) lim i) lim cos 3) + 6 cos) j) lim 8 lnsin ) n k) lim l) lim ln n, n R \ {} + ) m) lim sin n) lim o) lim ) p) lim ln e q) lim + n, n R+ r) lim π e tg + π ) ). Příklad 9. Najděte nějakou) funkci f : R R, pro niž platí: f je spojitá na intervalu,, f) = f) =, neeistuje, ) takové, že f ) =. Příklad. Najděte intervaly ryzí monotonie funkce f dané předpisem: a) f) = b) f) = sin + cos) c) f) = e d) f) = ln e) f) = 8 f) f) = arccos g) f) = 3 + h) f) = e 3 + i) f) = ) j) f) = arctg.

10 Příklad. Najděte všechny lokální etrémy funkce f dané předpisem: a) f) = b) f) = sin + cos c) f) = arctg d) f) = e) f) = f) f) = sin 3 + cos 3 g) f) = + ) 3) 3 h) f) = + i) f) = 4 3 tg j) f) = 3 3 k) f) = arctgln )) l) f) = ln. Příklad. Najděte všechny globální etrémy funkce f na intervalu J, je-li: a) f) = sin) +, J =, π b) f) = tg 4, J = π, π ) c) f) = + 4, J =, 3) d) f) =, J =, + ) e) f) = arctgln )), J = Df f) f) = 3 4 +, J =, 8). Příklad 3. Najděte obdélník daného obvodu s s R + ), jehož úhlopříčka má: a) maimální velikost b) minimální velikost. Příklad 4. Do rotačního kužele o poloměru podstavy r a výšce h r, h R + ) je vepsán rotační válec s maimálním objemem. Určete poloměr podstavy a výšku tohoto válce. Příklad 5. Dvě chodby široké 3m a 7m se křižují v pravém úhlu. Zjistěte maimální délku žebříku, který je možno přenést ve vodorovné poloze z jedné chodby do druhé. Výsledek zaokrouhlete na centimetry.)

11 Příklad 6. Najděte co největší intervaly, na nichž je funkce f ryze konvení resp. ryze konkávní), a určete všechny inflení body funkce f, je-li: a) f) = π b) f) = c) f) = ) d) f) = e) f) = + 3 f) f) = g) f) = e h) f) = cos i) f) = k) f) = arctg j) f) = 3 + ) 7 5 ) l) f) = ln. 3 Příklad 7. Najděte všechny asymptoty grafu) funkce f dané předpisem: a) f) = c) f) = sin b) f) = j) f) = Příklad 8. Vyšetřete průběh funkce f dané předpisem: a) f) = b) f) = 3 c) f) = e d) f) = ln ) e) f) = cos + sin f) f) = arcsinsin ) g) f) = arcsincos ) h) f) = arccotg i) f) = arcsin + j) f) = ln + 3 4) k) f) = e + l) f) = arcsin ln ) m) f) = sin + cos n) f) = ln3 + ) o) f) = e + p) f) = 4 3 q) f) = e r) f) = 3 3 s) f) = t) f) = ln + +.

12 4 Příklad 9. Vyšetřete průběh funkce f dané předpisem: a) f) = A) f) = 3 e b) f) = B) f) = arcsin + c) f) = C) f) = + arccotg) d) f) = 3 3) D) f) = sin lnsin ) e) f) = E) f) = arccos + f) f) = + F) f) = e tg g) f) = + 4 G) f) = + lncos ) h) f) = + + ln H) f) = i) f) = 3 I) f) = ln j) f) = + 3 J) f) = + ) ln k) f) = + 3 l) f) = m) f) = 4 sin K) f) = cos 3 L) f) = tg ) 3 M) f) = e + ) n) f) = N) f) = e o) f) = 4 O) f) = e p) f) = P) f) = ln q) f) = 3 + ) 3 ) Q) f) = + sin r) f) = e R) f) = lncos ) s) f) = 4 S) f) = ln + ) t) f) = + e T) f) = ln 4 u) f) = ln U) f) = e v) f) = ln + V) f) = 3 ) ) f) = 3 X) f) = e + 3.

13 5 Příklad 3. Určete Maclaurinův polynom n tého řádu funkce f dané předpisem: a) f) = + ) s s R) b) f) = cosh c) f) = ln + 7). Příklad 3. Určete Taylorův polynom n tého řádu funkce f v bodě, je-li: a) f) = 3, =, n = 3 b) f) =, =, n = 3 c) f) = ++ +, =, n = 3 d) f) = tg, =, n = 5 e) f) = ln cos, =, n = 6. Příklad 3. Pomocí Taylorovy věty vypočtěte přibližně s chybou menší než 4 ): a) b) π c) arctg, 7 d) 3 e e), ),. Příklad 33. Rozviňte funkci f podle mocnin c), je-li: a) f) = 4 3 +, c = b) f) = 3 + 5, c = c) f) = , c =.

14 6 Příklad 34. Vypočtěte: a) d) π b) e) 3 c) 3 ) f) 5 ) Příklad 35. Vypočtěte integrací per partes: a) d) + )e b) ln e) 6) cos c) arctg f) sin 3 ln. Příklad 36. Najděte rekurentní vzorce pro výpočet integrálů: sin n, cos n n N). Příklad 37. Vypočtěte pomocí první substituční metody: a) d) π) b) 3 + e) sin 5) cos 5) c) f) ) arccos 3. Příklad 38. Vypočtěte pomocí uvedené substituce: a) c) e) 3 3, = t b) + 3, 3 = t d) ln 3 + ln ), ln = t f), = t 3 + e, = t +, + = t.

15 7 Příklad 39. Vypočtěte: 3 a) b) + ) 6) + ) + ) c) d) ) + ) ) ) e) 3 8 f) ) + ) g) h) + + ) + 3) ) i) j) ) k) + 4 l) m) n) o) p) ) + ) q) r) s) t) ) u) 3 + v) w) ) y) 3 6 z) Příklad 4. Vypočtěte: a) cos 5 b) sin 3 cos c) sin 4 d) cos 3 sin) e) sin 5 cos3 f) sin 4 cos 4 + cos g) 4 sin 7 cos 7 h) + cos cos 5 cos 4 i) sin 4 j) sin 3.

16 8 Příklad 4. Vypočtěte: a) 8 b) c) d) + + e) 3 + ) ) f) ) 3 g) + ) 4 + h) Příklad 4. Vypočtěte: a) b) + c) + d) 3 e) f) g) h) i) j) ) ). Příklad 43. Vypočtěte: a) c) e) g) i) 8 3π π e e 3 b) sin d) sin 3 cos f) ln h) 4 j) 3 ln e arccos 3

17 9 k) m) o) q) 4 e e l) ln p) + ) + r) n) π 3 π 4 π ) sin cos 3 3 sin. Příklad 44. Vypočtěte obsah plochy ohraničené křivkami: a) y = 5, =, y = 3 b) = y, y = 3 3 c) y =, y = ) d) y = arcsin, y = π, = e) 3 + y = f) = y, y =, y =. Příklad 45. Vypočtěte délku křivky: a) {, y) R : y = 3} b) {, y) R : y = ln 3 8} c) {, y) R : y = arcsin + } d) {, y) R : y = 3 4} e) {, y) R : y = 3 5 3} f) {, y) R : y = }.

18 Příklad 46. Vypočtěte: a) c) e) e 3 ln b) ) f) d) ). Příklad 47. Rozhodněte o konvergenci integrálu: a) c) e 3 b) arctg 4 + d) e 4 +.

19 Literatura [] J. Bouchala, Matematická analýza, VŠB TU, Ostrava, 998. [] J. Charvát, M. Hála, Z. Šibrava, Příklady k Matematice I, ČVUT, Praha, 99. [3] J. Eliaš, J. Horváth, J. Kajan, Zbierka úloh z vyššej matematiky. časť), Alfa, Bratislava, 969. [4] L. Zajíček, Vybrané úlohy z matematické analýzy pro. a. ročník, Matfyzpress, Praha, 998. [5] J. Veselý, Matematická analýza pro učitele první díl), Matfyzpress, Praha, 997. [6] J. Veselý, Matematická analýza pro učitele druhý díl), Matfyzpress, Praha, 997. [7] K. Rektorys a spol., Přehled užité matematiky I a II, Prometheus, Praha, 995.

MATEMATIKA I - vybrané úlohy ze zkoušek v letech

MATEMATIKA I - vybrané úlohy ze zkoušek v letech MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu,

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu, Příklad Najděte intervaly monotonie a lokální etrémy funkce f() = +. ( + ) ( rostoucí v intervalech (, ) a 7, + ) klesající v intervalu ( ), 7 5 5 v bodě = 7 5 je lokální minimum 4. Najděte intervaly monotonie

Více

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017 Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................

Více

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, ) Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.) Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika AA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2005 () Jsou dány matice A = AB BA. [ AB BA

Více

1. Písemka skupina A...

1. Písemka skupina A... . Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce

Více

Příklady ke cvičením z matematické analýzy- ZS 2008/2009- Série I.

Příklady ke cvičením z matematické analýzy- ZS 2008/2009- Série I. Příklady ke cvičením z matematické analýzy- ZS 008/009- Série I. Jako slunce zastiňuje hvězdy svým jasem, tak i vzdělaný člověk může zastínit slávu druhých lidí ze společnosti, bude-li předkládat matematické

Více

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0. Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo

Více

2. Vlastnosti elementárních funkcí, složené, inverzní a cyklometrické funkce,

2. Vlastnosti elementárních funkcí, složené, inverzní a cyklometrické funkce, . Určete vlastnosti funkcí: (i) f : y = x (ii) f : y = x 4 (iii) f : y = cotgx (iv) f 4 : y = arccosx (v) f 5 : y = 4 x (vi) f 6 : y = ( 4 )x (vii) f 7 : y = lnx (viii) f 8 : y = x. Uveďte příklad: (i)

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY 3 Jiří Bouchala. Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.

SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY 3 Jiří Bouchala. Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb. SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY 3 Jiří Bouchala Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala 2000 3 Předmluva Tato sbírka doplňuje přednášky z Matematické

Více

Soubor příkladů z Matematické analýzy 1 (M1100) 1

Soubor příkladů z Matematické analýzy 1 (M1100) 1 Soubor příkladů z Matematické analýzy (M00). Opakování. Upravte následující výrazy: 3 3 +3 3 3 6+ (+) 3 [ a+b a b ] ( b ) (a a b a+b b a b a b ) (a b) 3 [(a b) 4 (a+b) 5 ] 6 3 a 4 a 3 a 3 aa 3 (f) 3 +

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva

Více

NMAF 051, ZS Zkoušková písemná práce 4. února 2009

NMAF 051, ZS Zkoušková písemná práce 4. února 2009 Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 4 4

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika BA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 005 () Určete rovnici kručnice o poloměru

Více

Funkce. Vlastnosti funkcí

Funkce. Vlastnosti funkcí FUNKCE Funkce zobrazení (na číselných množinách) předpis, který každému prvku z množiny M přiřazuje právě jeden prvek z množiny N zapisujeme ve tvaru y = f () značíme D( f ) Vlastnosti funkcí 1. Definiční

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. /8 3. Elementární funkce. 3. Elementární funkce. Matematická analýza ve Vesmíru.

Více

Seminární práce z matematiky

Seminární práce z matematiky Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina Instrukce: Příklady řešte výhradně elementárně, bez použití nástrojů z diferenciálního a integrálního počtu. Je-li součástí řešení úlohy podmnožina reálných čísel, vyjádřete ji jako disjunktní sjednocení

Více

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(

Více

Matematická analýza I

Matematická analýza I Matematická analýza I Cvičení 1 (4. 10. 2016) Definice absolutní hodnoty. Řešení nerovnic s absolutními hodnotami. Geometrická interpretace řešení nerovnice x + 1 < 3. Komplexní čísla a operace s nimi,

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické

Více

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.

Více

Logika. 1. cvičení. Matematika 1, NMMA701, Ondřej Bouchala

Logika. 1. cvičení. Matematika 1, NMMA701, Ondřej Bouchala Logika 1. cvičení Teorie: Konjunkce A B A B 1 1 1 1 0 0 0 1 0 0 0 0 Disjunkce A B A B 1 1 1 1 0 1 0 1 1 0 0 0 Implikace A B A B 1 1 1 1 0 0 0 1 1 0 0 1 Ekvivalence A B A B 1 1 1 1 0 0 0 1 0 0 0 1 Příklady:

Více

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)

Více

Proseminář z matematiky pro fyziky

Proseminář z matematiky pro fyziky Proseminář z matematiky pro fyziky Mgr. Jan Říha, Ph.D. e-mail: riha@prfnw.upol.cz http://www.ictphysics.upol.cz/proseminar/inde.html Katedra eperimentální fyziky Přírodovědecká fakulta UP Olomouc Podmínky

Více

NMAF 051, ZS Zkoušková písemná práce 17. února ( sin (π 2 arctann) lim + 3. n 2. π 2arctan n. = lim + 3.

NMAF 051, ZS Zkoušková písemná práce 17. února ( sin (π 2 arctann) lim + 3. n 2. π 2arctan n. = lim + 3. Jednotlivé kroky při výpočtech stručně ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 Celkem bodů Bodů 5 7 0

Více

Cyklometrické funkce

Cyklometrické funkce 4 Cyklometrické funkce V minulé kapitole jsme zkoumali první funkci inverzní ke funkci goniometrické (tyto funkce se nazývají cyklometrické) funkci y = arcsin x (inverzní k funkci y = sin x ) Př: Nakresli

Více

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x Příkad Nalezněte definiční obor funkce f(x) = ln arcsin + x x Určete definiční obor funkce f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech [;?] a Určete definiční obor

Více

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce MATA P1 Užití derivací Funkce rostoucí a klesající: Deinice rostoucí a klesající unkce Funkce je rostoucí v intervalu (a,b), právě když platí: ( ) ( ) ( ), a, b : 1 1 1 Funkce je klesající v intervalu

Více

1 L Hospitalovo pravidlo

1 L Hospitalovo pravidlo L Hospitalovo pravidlo Věta.. Bud R R R {± }). Necht je splněna jedna z podmínek i) ii) f) g), g). Eistuje-li vlastní nebo nevlastní) f ) g ) Obdobné tvrzení platí i pro jednostranné ity., pak eistuje

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009 Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 5 Celkem bodů Bodů 8

Více

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů 3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

Základy matematické analýzy (BI-ZMA)

Základy matematické analýzy (BI-ZMA) Příklady ke cvičení z předmětu Základy matematické analýzy (BI-ZMA) Matěj Tušek Katedra matematiky České vysoké učení technické v Praze BI-ZMA ZS 009/00 Evropský sociální fond Praha & EU: Investujeme do

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace

Více

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16 Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.

Více

2. FUNKCE JEDNÉ PROMĚNNÉ

2. FUNKCE JEDNÉ PROMĚNNÉ 2. FUNKCE JEDNÉ PROMĚNNÉ Funkce 2.. Definice Říkáme, že na množině D reálných čísel je definována funkce f jedné reálné proměnné, je-li dán předpis, podle kterého je ke každému číslu x D přiřazeno právě

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných

Více

Obsah. Derivace funkce. Petr Hasil. L Hospitalovo pravidlo. Konvexnost, konkávnost a inflexní body Asymptoty

Obsah. Derivace funkce. Petr Hasil. L Hospitalovo pravidlo. Konvexnost, konkávnost a inflexní body Asymptoty Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) MA I (M0) / 46 Obsah Základní vlastnosti derivace Geometrický význam derivace Věty o střední hodnotě L Hospitalovo pravidlo 2 Etrémy Konvenost,

Více

Funkce. b) D =N a H je množina všech kladných celých čísel,

Funkce. b) D =N a H je množina všech kladných celých čísel, Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? 2n M = 3n + 1 n N.

Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? 2n M = 3n + 1 n N. 4 4. týden 4.1 supremum a infimum množiny Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? Příklad 4.2 Zkuste uhádnout sup M, inf

Více

Integrální počet - I. část (neurčitý integrál a základní integrační metody)

Integrální počet - I. část (neurčitý integrál a základní integrační metody) Integrální počet - I. část (neurčitý integrál a základní integrační metody) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 6. přednáška z AMA Michal Fusek (fusekmi@feec.vutbr.cz) / 23 Obsah

Více

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

Příklady k přednášce 3

Příklady k přednášce 3 Příklad k přednášce 3 1. Určete, zda závislost a daná uvedeným vztahem je funkce = f(). V případě záporné odpovědi stanovte, kterými funkcemi je možné příslušnou závislost popsat. 1. =3 2, (, + ) je funkcí,

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

x 2 +1 x 3 3x 2 4x = x 2 +3

x 2 +1 x 3 3x 2 4x = x 2 +3 I. Určitý integrál I.. Eistence určitých integrálů Zjistěte, zda eistují určité integrály : Příklad. + + d Řešení : Ano eistuje, protože funkce f() + + je spojitá na intervalu,. Příklad. + 4 d Řešení :

Více

Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou

Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou 4 Cíle Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou funkce, jejichž ita v bodě 0 je rovna funkční hodnotě v tomto bodě Seznámíme se s vlastnostmi takových funkcí

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2

Více

5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky. Definice 5.1. Mějme funkci f : D R a bod x 0 R.

5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky. Definice 5.1. Mějme funkci f : D R a bod x 0 R. 5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky Definice 5.1. Mějme funkci f : D R a bod 0 R. a) Číslo c R je částečná ita funkce f v bodě 0, pokud eistuje posloupnost ( n ) taková, že platí

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH

Více

h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R

h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R .4. Cíle V této kapitole jsou deinován nejdůležitější pojm týkající se vlastností unkcí. Při dalším studiu budou tto vlastnosti často používán. Je proto nutné si jejich deinice dobře zapamatovat. Deinice.4..

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie MATEMATIKA I Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva

Více

Základní elementární funkce

Základní elementární funkce Základní elementární funkce Základní elementární funkce Za základní elementární funkce považujeme funkce: a) eponenciální a logaritmické; b) obecné mocninné; c) goniometrické a cklometrické; d) hperbolické

Více

Matematika 1. Matematika 1

Matematika 1. Matematika 1 5. přednáška Elementární funkce 24. října 2012 Logaritmus a exponenciální funkce Věta 5.1 Existuje právě jedna funkce (značíme ji ln a nazýváme ji přirozeným logaritmem), s následujícími vlastnostmi: D(ln)

Více

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) =

1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) = I. L'HOSPITALOVO PRAVIDLO A TAYLOR V POLYNOM. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) a) lim tg sin ( + ) / e e) lim a a i) lim a a, a > P ipome me si: 3 tg 4 2 tg b) lim 3 sin 4 2 sin

Více

4.2. CYKLOMETRICKÉ FUNKCE

4.2. CYKLOMETRICKÉ FUNKCE 4.. CYKLOMETRICKÉ FUNKCE V této kapitole se dozvíte: jak jsou definovány cyklometrické funkce a jaký je jejich vztah k funkcím goniometrickým; základní vlastnosti cyklometrických funkcí; nejdůležitější

Více

Ukázka závěrečného testu

Ukázka závěrečného testu Okruhy otázek pro závěrečný test ) Vlastnosti funkce ) Graf funkce ) Definiční obor funkce ) imita funkce ) Derivace funkce 6) Užití derivace 7) Matice 8) Řešení soustavy lineárních rovnic 9) Určitý integrál

Více

Zimní semestr akademického roku 2015/ ledna 2016

Zimní semestr akademického roku 2015/ ledna 2016 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Příklady z matematiky(pro ITS)

Příklady z matematiky(pro ITS) Příklady z matematikypro ITS) František Mošna Definiční obor: Zjistěte maimální definiční obor funkce:. f)=ln 2 8 9 ) + +2 Df= 2, ) 9, ).2 f)=ln 2 4 5 ) 36 2 Df= 6, ) 5,6.3 f)=ln 2 7 8 ) 00 2 Df= 0, 9)

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

MATEMATICKÁ ANALÝZA STUDIJNÍ OPORA PRO KOMBINOVANÉ

MATEMATICKÁ ANALÝZA STUDIJNÍ OPORA PRO KOMBINOVANÉ MATEMATICKÁ ANALÝZA STUDIJNÍ OPORA PRO KOMBINOVANÉ STUDIUM MATEMATICKÁ ANALÝZA RNDr. Vladimíra MÁDROVÁ, CSc., RNDr. Vratislava MOŠOVÁ, CSc., Moravská vysoká škola Olomouc, o.p.s., 8 Moravská vysoká škola

Více

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx. Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál

Více

MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18

MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18 MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,

Více

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Dierenciální počet unkcí jedné reálné proměnné - 5 - PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Cílem vyšetřování průběhu unkce je umět nakreslit její gra Obvykle postupujeme tak že nalezneme její maimální deiniční

Více

Prùbìh funkce. d) f(x) = x sin x [rostoucí v R] d) f(x) =ln 1+x [nemá lokální extrém] x = 1 inexní body

Prùbìh funkce. d) f(x) = x sin x [rostoucí v R] d) f(x) =ln 1+x [nemá lokální extrém] x = 1 inexní body Urèete, kde je unkce rostoucí a kde klesající: Prùbìh unkce a) () =ln 0; e klesající ; e ; + rostoucí b) () =+ [( ; 0) [ (0; ) klesající ; ( ; ) [ (; +) rostoucí] c) () =e jj [ ( ; 0) rostoucí ; (0; +)

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

NMAF 051, ZS Zkoušková písemná práce 26. ledna x. x 1 + x dx. q 1. u = x = 1 u2. = 1 u. u 2 (1 + u 2 ) (1 u 2 du = 2.

NMAF 051, ZS Zkoušková písemná práce 26. ledna x. x 1 + x dx. q 1. u = x = 1 u2. = 1 u. u 2 (1 + u 2 ) (1 u 2 du = 2. Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 5 6 8

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních

Více

Zimní semestr akademického roku 2013/2014. 3. září 2014

Zimní semestr akademického roku 2013/2014. 3. září 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 03/04 3. září 04 Předmluva ii Rozjezd

Více

CVIČENÍ Z MATEMATIKY I

CVIČENÍ Z MATEMATIKY I Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav fyziky CVIČENÍ Z MATEMATIKY I Sbírka příkladů Andrea Kotrlová Opava Obsah Příklady k opakování středoškolské látky. Úprava algebraických

Více

27. června Abstrakt. druhá odmocnina a pod. jsou vynechány. Také je vynechán např. tangensu.) 1 x ln x. e x sin x. arcsin x. cos x.

27. června Abstrakt. druhá odmocnina a pod. jsou vynechány. Také je vynechán např. tangensu.) 1 x ln x. e x sin x. arcsin x. cos x. Základní elementární funkce Robert Mařík 7. června 00 ln e sin arcsin cos arccos tg arctg Abstrakt V tomto dokumentu jsou uvedeny základní vlastnosti nejdůležitějších základních elementárních funkcí. (Triviální

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y

Více

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného

Více