1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

Podobné dokumenty
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

3. Lineární diferenciální rovnice úvod do teorie

Kapitola 4 Euklidovské prostory

Analytická geometrie

Přednáška 7: Soustavy lineárních rovnic

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

GEOMETRIE I. Pavel Burda

Komplexní čísla. Definice komplexních čísel

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

11. přednáška 16. prosince Úvod do komplexní analýzy.

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg České Budějovice

Matematika I, část II

7. Analytická geometrie

Kapitola 5 - Matice (nad tělesem)

1. Číselné obory, dělitelnost, výrazy

1.3. POLYNOMY. V této kapitole se dozvíte:

Analytická geometrie

7.2.4 Násobení vektoru číslem

definované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),

20. Eukleidovský prostor

2. Náhodná veličina. je konečná nebo spočetná množina;

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení

1 Uzavřená Gaussova rovina a její topologie

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a a N. n=1

6. Posloupnosti a jejich limity, řady

1.2. NORMA A SKALÁRNÍ SOUČIN

12. N á h o d n ý v ý b ě r

Užití binomické věty

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

2.4. INVERZNÍ MATICE

1 Trochu o kritériích dělitelnosti

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

5 Křivkové a plošné integrály

8.1.3 Rekurentní zadání posloupnosti I

Přednáška 7, 14. listopadu 2014

1. K o m b i n a t o r i k a

1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A );

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

3. ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI. 3.1 Základní elementární funkce. Nejprve uvedeme základní elementární funkce: KONSTANTNÍ FUNKCE

5. Lineární diferenciální rovnice n-tého řádu

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

Petr Šedivý Šedivá matematika

1 Základní pojmy a vlastnosti

8.2.1 Aritmetická posloupnost

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n.

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

Zkoušková písemná práce č. 1 z předmětu 01MAB3

8.2.1 Aritmetická posloupnost I

3. DIFERENCIÁLNÍ ROVNICE

I. TAYLORŮV POLYNOM ( 1

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

8. Analýza rozptylu.

MATICOVÉ HRY MATICOVÝCH HER

Matematická analýza I

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):

z možností, jak tuto veličinu charakterizovat, je určit součet

n-rozměrné normální rozdělení pravděpodobnosti

Analýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace

Permutace s opakováním

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

ŘADY Jiří Bouchala a Petr Vodstrčil

Definice obecné mocniny

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL

5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor.

1 Základní matematické pojmy Logika Množiny a jejich zobrazení... 7

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

DIM PaS Připomenutí poznatků ze střední školy. Faktoriály a kombinační čísla základní vzorce: n = k. (binomická věta) Příklady: 1.

1 Diferenciální počet funkcí jedné reálné proměnné

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Lineární programování

Iterační metody řešení soustav lineárních rovnic

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

Deskriptivní statistika 1

Náhodný výběr 1. Náhodný výběr

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

IAJCE Přednáška č. 12

5. Posloupnosti a řady

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

1 Základy Z-transformace. pro aplikace v oblasti

M - Posloupnosti VARIACE

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =

Transkript:

Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být defiováy pro všechy prvky vektorového prostoru (které azýváme vektory) a musí mít stejé vlastosti (tedy musejí fugovat stejě ) jako sčítáí a ásobeí reálých čísel 11 Defiice Reálým vektorovým prostorem azýváme možiu V, pro jejíž prvky jsou defiováy operace sčítáí + :V V V a ásobeí skalárem : R V V tak, že pro každé vektory u, v, w V a každé skaláry a, b R platí: 1 u + v = v + u, tzv komutativí záko, ( u + v ) + w = u + ( v + w ) a ( ab) u = a ( bu), tzv asociativí zákoy, 3 a( u + v) = au + av a ( a + b) u = au + bu, tzv distributiví zákoy, 4 existuje prvek o V, azýváme jej ulový vektor, tak, že u + o = u, 5 ke každému vektoru v V existuje vektor v V, azýváme jej opačý vektor, tak, že v + ( v ) = o, 6 1 u = u Pozámky (i) Operací + :V V V rozumíme předpis, který libovolým dvěma vektorům u, v (prvkům možiy V ) přiřadí jejich součet, tedy vektor u + v (opět prvek možiy V ) Operací : R V V rozumíme předpis, který libovolému reálému číslu k a libovolému vektoru u přiřadí k -ásobek vektoru u, tedy vektor ku Všiměte si, že ve vektorovém prostoru emáme defiová souči dvou vektorů! (ii) Možia skalárů může být i jiá ež R (často potřebujeme mít skaláry zejméa z možiy komplexích čísel C), je v í musí mít sčítáí a ásobeí stejé vlastosti jako v R ; Říkáme, že musí splňovat axiomy komutativího tělesa V tomto textu budeme pracovat pouze s reálými vektorovými prostory, a proto budeme přívlastek reálý vyechávat (iii) Všiměme si, že ve vektorovém prostoru ejsou defiováy body v geometrickém smyslu, vektor zde eí defiová rovicí u = B A jako orietovaá úsečka spojující dva body Prvky vektorového prostoru jsou pouze vektory (iv) Při defiici kokrétího vektorového prostoru je uté zadat jak možiu V tak i defiovat operace sčítáí a ásobeí Růzými defiicemi operací dostáváme růzé vektorové prostory Proto bychom měli vektorový prostor defiovat jako trojici ( V, +, ) My se však ve saze o stručé a jasé vyjadřováí vědomě dopouštíme epřesosti a mluvíme o vektorovém prostoru V 1 Příklady (i) Možia R (ii) Možia všech uspořádaých -tic R s aalogicky defiovaými operacemi 1

(iii) Buď C [ 0,1 ] možia všech reálých fukcí spojitých a uzavřeém itervalu [0,1] R (iv) Možia Z všech celých čísel etvoří vektorový prostor V ásledující větě uvedeme tři užitečé vlastosti počítáí s vektory: 13 Věta Nechť je V vektorový prostor a echť v V Pak platí 1 0 v = o, je-li v + w = o, pak je w = v (jedozačost opačého vektoru), 3 ( 1) v = v Důkaz Lieárí (e)závislost vektorů Již z defiice vektorového prostoru vidíme, že sčítáí vektorů a ásobeí vektoru reálým číslem hrají při studiu vektorů podstatou roli Tyto operace určují dále pojem lieárí kombiace vektorů 14 Defiice Lieárí kombiací vektorů u, v s koeficiety a, b R rozumíme vektor au + bv Obecěji, lieárí kombiací vektorů u 1, u s koeficiety c1, c,, c R rozumíme vektor c1u 1 + cu + + cu Je-li c1 = c = = c = 0, azýváme lieárí kombiaci triviálí 15 Aplikace (i) Ve fyzikálích oborech, které mají lieárí charakter (a těch je většia), jsou základími rovicemi tzv lieárí difereciálí rovice, pro jejichž řešeí platí pricip superpozice Například v kvatové mechaice platí Pricip superpozice stavů: Jestliže se kvatový systém může acházet ve stavech popsaých vektory ψ1, ψ, pak je také v pricipu realizovatelý také stav ψ = kψ 1 + lψ, kde k, l jsou libovolá komplexí čísla Toho se využívá při formulaci zámého myšlekového experimetu o Schrödigerově kočce (ii) Jsou-li x 1, x dvě řešeí homogeí soustavy lieárích rovic, pak je x = ax + bx 1 také řešeím (pro všecha a, b ), viz čtvrtá předáška,věta 44

Pomocí pojmu lieárí kombiace defiujeme velmi důležité pojmy lieárí závislosti (a také lieárí ezávislosti) Motivací ám budou ásledující dva speciálí případy z geometrie: 1 Uvažujme dva vektory u, v Jsou-li u, v kolieárí, tedy platí-li u = k v (často se epřesě říká, že leží a jedé přímce ), pak platí, že k v + ( 1) u = o a tedy, že ulový vektor lze apsat jako etriviálí lieárí kombiaci vektorů u, v Podobě jsou-li tři vektory u, v, w komplaárí (často epřesě říkáme, že leží v jedé roviě ), pak se dá ulový vektor apsat jako etriviálí lieárí kombiace vektorů u, v, w 16 Defiice Říkáme, že vektory u 1, u jsou lieárě závislé, lze-li aspoň jede z ich vyjádřit jako etriviálí lieárí kombiaci ostatích V opačém případě říkáme, že vektory jsou lieárě ezávislé u u w v u Obrázek 1 Lieárě závislé vektory 17 Věta (1) Platí-li pro ějakou etriviálí lieárí kombiaci vektorů u 1, u rovost c1u 1 + cu + + cu = o, (11) tedy je-li alespoň jedo z čísel c1, c,, c růzé od uly, jsou vektory u 1, u lieárě závislé () Je-li rovice (11) splěa pouze pro triviálí lieárí kombiaci, tedy platí-li c1 = c = = c = 0, azýváme vektory u 1, u jsou lieárě ezávislé 18 Příklady (LNZ): (i) Ukažte, že vektory u = (1,0, 1), v = (,,0), w = ( 3,,1) jsou lieárě závislé 3

(ii) Zjistěte, zda jsou vektory u = (1,,3), v = (1,1,0), w = ( 1,0,0) lieárě závislé 19 Aplikace: Rovoběžost lieárích útvarů v geometrii Jsou-li dvě přímky p, q rovoběžé, pak jsou jejich směrové vektory s, s lieárě závislé Je-li přímka p rovoběžá s roviou ρ, pak je její směrový s p vektor lieárí kombiací směrových vektorů s 1, s roviy ρ Jsou-li dvě roviy α, β rovoběžé, pak lze každý směrový vektor roviy α vyjádřit jako lieárí kombiaci směrových vektorů roviy β 1 Rychleji a saději se ovšem zkotroluje lieárí závislost jejich ormálových vektorů Podrobosti viz šestá předáška, odstavec 63 p q Báze, souřadice, dimeze Pojmy lieárí kombiace a lieárí ezávislosti ám umoží vybrat ze všech vektorů prostoru V meší možiu výzačých vektorů, z ichž půjde jakýkoliv vektor v V vytvořit pomocí lieárí kombiace Pro áš ejčastější model V =R bude tato možia koečá, a dokoce ukážeme, že bude mít právě prvků 1 Pochopitelě lze také každý směrový vektor roviy β vyjádřit jako lieárí kombiaci směrových vektorů roviy α 4

110 Defiice Bází vektorového prostoru V azýváme možiu vektorů u 1, u takovou, že 1 u 1, u jsou lieárě ezávislé, u 1, u,, u geerují vektorový prostor V, tedy pro každý vektor v V existují skaláry c1, c,, c takové, že Píšeme V = u 1, u v = c u + c u + + c u (1) 1 1 111 Příklad Ve vektorových prostorech Speciálě v R je to báze (1,0), (0,1) R existuje tzv kaoická (eboli přirozeá) báze e1 = (1,0,0,,0), e = (0,1,0,,0), e = (0,0,0,,1) (13) 11 Pozámka V každém prostoru existuje ekoečě moho bází Máme-li a vektorovém prostoru V defiová skalárí souči, můžeme vybírat báze, jejichž vektory mají velikost rovu jedé (jsou ormalizovaé) a každé jejich dva růzé bázové vektory jsou avzájem kolmé (eboli ortogoálí) Tyto výzamé báze azýváme ortoormálí Kaoická báze do této skupiy také patří 113 Příklad (báze) Ukažte, že vektory u = (1,,3), v = (1,1, 0), w = ( 1, 0, 0) tvoří bázi vektorového prostoru 3 R 114 Věta Buď V = u 1, u Pak je vyjádřeí libovolého vektoru v ve tvaru lieárí kombiace z rovice (1) jedozačé Důkaz 5

e v u 1 e 1 u Obrázek Vektor a jeho souřadice ve dvou růzých bázích Díky této větě můžeme pomocí báze defiovat a vektorovém prostoru V soustavu souřadic: 115 Defiice Koeficiety c1, c,, c z rovice (1) azýváme souřadicemi vektoru v vzhledem k bázi u 1, u 116 Příklad: 3 Určete souřadice vektoru (7,11,1) vzhledem ke kaoické bázi v R a vzhledem k bázi u = (1,,3), v = (1,1,0), w = ( 1,0,0) 1) vzhledem ke kaoické bázi platí, že čley uspořádaé -tice jsou přímo souřadice vektoru, jelikož platí (7,11,1) = 7 (1, 0, 0) + 11 (0,1, 0) + 1 (0, 0,1) Hledaé souřadice jsou tedy (7,11,1) To, co jsme doposud rozuměli pod pojmem souřadice vektoru, jsou tedy souřadice vzhledem k přirozeé bázi prostoru R Tato kaoická báze je takto těsě spjata se strukturou R, je přítoma aiž bychom vůbec o ějakou bázi usilovali To ilustruje její edoceitelý výzam ) vzhledem k bázi u = (1,, 3), v = (1,1, 0), w = ( 1, 0, 0) zjistíme souřadice vektoru (7,11,1) jako koeficiety lieárí kombiace bázových vektorů Hledáme tedy koeficiety 3 ( a, b, c) R tak, aby a (1,,3) + b (1,1,0) + c ( 1,0,0) = (7,11,1) Porováím souřadic vektorů a obou straách rovosti dostáváme soustavu lieárích rovic a + b c = 7 a + b = 11 3a = 1 Jediým řešeím této soustavy je uspořádaá trojice (4,3,0), což jsou hledaé souřadice vzhledem k bázi u, v, w 6

Buď V vektorový prostor Jelikož všechy jeho báze mají stejý počet vektorů, můžeme takto velmi sado defiovat dimezi prostoru: 117 Defiice Dimezí vektorového prostoru V rozumíme počet prvků jeho libovolé báze Píšeme dimv = Vektorový prostor dimeze začíme V 118 Příklad Pro V =R máme k dispozici kaoickou bázi (13), která má samozřejmě právě prvků Proto je dimr = 119 Věta Každý vektorový prostor V, <, lze jedozačě popsat pomocí prostoru R v tom smyslu, že existuje předpis, který každému vektoru v V jedozačě přiřadí uspořádaou -tici ( v1,, v ) R, tedy souřadice vektoru v v kaoické bázi prostoru R Vektorový podprostor Vektorové prostory často obsahují podmožiy, které jsou samy o sobě též vektorovými prostory To ám jedak umožňuje studovat strukturu vektorových prostorů, apř rozkládat vektorové prostory a meší stavebí celky, ale také má velké využití v aplikacích, apříklad řešeí soustavy homogeích lieárích algebraických rovic o ezámých tvoří vždy podprostor ve V 10 Defiice Bud V vektorový prostor Podmožiu U V azýváme podprostorem, jestliže platí 1 0 U, u + v U pro všechy u, v U (uzavřeost a sčítáí); 3 ku U pro každý vektor u U a každý skalár k R Vektorový podprostor je sám o sobě vektorovým prostorem, proto můžeme ajít jeho bázi a spočítat jeho dimezi Mějme k -dimezioálí podprostor U s bází u 1, u k Pak říkáme, že U je geerová vektory u 1, u k Pro ízkodimezioálí vektorové prostory se ujalo geometrické ozačeí i pojmeováí podprostorů: Jedodimezioálí podprostory se často ozačují malými písmey p, q, k, a mluví se o ich jako o přímkách, dvoudimezioálí podprostory se ozačují malými písmey řecké abecedy a mluví se o ich jako o roviách Uveďme si kokrétí příklady 7

11 Aplikace v aalytické geometrii (i) Možia všech vektorů p = {( t, t) R t R } je jedorozměrý podprostor v R, který je geerová vektorem s = (1, ) Ukažme, že p splňuje požadavky předchozí defiice: Geometricky můžeme podprostor p iterpretovat jako přímku v roviě, která prochází počátkem a má parametrické vyjádřeí p : x = t, y = t, t R, resp obecou rovici p : x y = 0 (ii) Možia všech vektorů je dvourozměrý podprostor v α = {( r, r,0),(0, s, s) r, s R } u = (1,,0) a u = (0,1, ) 3 R, který je geerová vektory 1 Aalogicky jako v předchozím případě se dá kázat, že α splňuje požadavky defiice 10 Geometricky jej můžeme iterpretovat jako roviu v prostoru, která prochází počátkem a má parametrické vyjádřeí α : x = r, y = r + s, z = s, r, s R, resp obecou rovici α : x y + z = 0, viz pátá předáška, odstavce 57 a 510 Pozameejme, že vektorový prostor jsme zde chápali jako speciálí případ tzv afiího prostoru, ve kterém se vektory defiují vztahem u = B A zámým ze středí školy Afií prostor je jedozačě urče defiováím počátku Souřadice bodů pak získáme jako souřadice polohových vektorů v = V P V ašem případě (pro vektorové prostory) jsme 0,0 P = 0,0,0 zvolili počátek v bodě P = [ ], resp [ ] 1 Aplikace pro řešeí soustav rovic Možia všech řešeí homogeí soustavy lieárích rovic tvoří vektorový podprostor, více viz čtvrtá předáška, Věta 44 8