Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při důkazech. emám rád, když se čláek odvolává a ěco, se eí dostupé. Hed zkraje pozameejme, že pro pochopeí a používáí kombiatoriky eí ezbyté zát PMI a umět ji používat v důkazech. Stačí přijmout vlastosti faktoriálů a kombiačích čísel za své bez důkazu a je to. Takoví studeti mohou teto tet opustit a avázat dalším v pořadí. PMI je 5. aiom teorie přirozeých čísel Peaovy aiomy). Protože jde o aiom, edokazuje se viz výroková logika). Při formulováí aiomů se vychází ze všeobecé zkušeosti. Každé přirozeé číslo má svého ásledíka tj. číslo o jeda vyšší). PMI vychází ze zkušeosti lieárího uspořádáí přirozeých čísel. Jestliže ějaké tvrzeí platí pro jedičku a dále, z předpokladu, že platí pro číslo k lze dokázat, že platí i pro ásledíka k+, bereme za dokázaé, věříme jde o aiom), že tvrzeí platí pro všecha přirozeá čísla. Jde o řetězeí platí pro, když pro tak i pro +=, když pro tak i pro,. Teto postup se ěkdy přirovává k domiu. Obě tyto části jsou totiž podobé domiovému efektu Spade prví kostka domia. Pokud spade ějaká kostka domia, spade i její ejbližší soused. Výsledkem potom je, že spadou všechy kostky. Zformulujme PMI yí přesě v duchu výrokové logiky jiý kurz tohoto webu) Pricip matematické idukce echť V) je výroková forma, 0. Ozačme P={ 0 V)} pravdivostí možiu výrokové formy V). Jestliže jsou splěy předpoklady ) a 0 a P tj. P je eprázdá, tj. eistuje ějaké přirozeé číslo, které po dosazeí do výrokové formy tuto změí v pravdivý výrok) ) Je-li k 0 pevé číslo k a a zároveň k P, pak také k+ P pak platí tvrzeí 0 a => P tj. výrokovou formu V) splňují všecha přirozeá čísla větší ebo rova a. Pozámka 0 je možia přirozeých čísel plus 0. Věčé dohady, jestli ula patří do možiy přirozeých čísel emá smysl. Peaovy aiomy platí jak pro možiu 0, tak pro možiu.
Číslo a je ějaké přirozeé číslo. Původě se začíalo 0 resp., ale ukázalo se, že ějaké tvrzeí emusí platit pro prvích pár přirozeých čísel, ale počíaje od jistého přirozeého čísla a už platí vždy. Proto tedy te libovolý začátek. Pro druhou idukčí) část dokazováí a základě dlouholeté katorské zkušeosti doporučuji důsledě používat písmeo k obecě jié ež ), abychom si teto krok i vizuálě odlišili od tvrzeí, kde vystupuje písmeo. Další zkušeost praví u. kroku si dobře popište co je idukčí předpoklad IP) a co se má dokázat MD) a teprve pak proveďte vlastí důkaz. kroku podle pravidel dokazováí matematických tvrzeí. Kdybychom si MD eapsali, často bychom je tápali do jakého tvaru máme úpravu výrazů dotáhout. Varováí Žádý krok elze vyechat A) Když vyecháme.krok, můžeme dokázat, že lichá čísla jsou dělitelá, tedy tvrzeí a, kde a = + hleďte.krok IP echť tvrzeí platí pro k, tj. a k MD máme dokázat, že platí i pro k+, tj. a k+ vlastí důkaz a k+ = k+)+ = k + = k + + = a k + podle předpokladu je a k dělitelé a je též dělitelá => a k+ přesto eajdeme to prví číslo a = a = 5, atp B) Když vyecháme.krok, můžeme dokázat, že číslo 60 je dělitelé všemi přirozeými čísly, tj. tvrzeí 60.krok vyzkoušíme ěkolik prvích přirozeých čísel 60, 60, 60, 4 60, 5 60, 6 60 - vše je pravda zkusíme ějaká čísla další čísla amátkou 0 60, 5 60, to stačí tedy mylě usoudíme, že tvrzeí platí ale 7 60 že by chyba pozorováí????? Ukažme si ěkolik typických příkladů a důkaz PMI. Příklad Dokažte, že platí 5 => +) < Důkaz Toto tvrzeí opravdu eplatí pro,,, 4, jak dosazeím zjistíme ukázka, že se vždycky jedičkou začíat edá..krok dělá se vesměs dosazeím pozor a logicky správé dokazováí idetit, viz výroková logika) =5 5.6 =0 < = 5 => 5 P pro =5 tvrzeí platí)
.krok IP idukčí předpoklad) echť platí pro k P tj. kk+) < k MD máme dokázat) k+) P tj. k+l)k+) < k+ vlastí důkaz. kroku k+)k+) = k+)k + k+) pouhé rozásobeí < kk+) + kk+) protože <k, musí být i k+)<kk+) < k + k dvakrát použit IP =. k = k+ vlastost moci tedy jsme dokázali, že tvrzeí platí i pro k+) P Jsou tedy splěy předpoklady PMI a dokazovaý výrok je pravdivý v plém rozsahu. Příklad Dokažte, že platí => < Důkaz.krok = < 4 = => P.krok IP echť platí pro k P tj. k < k MD k+) P tj. k+) < k+) vlastí důkaz. kroku k+ < k + podle idukčího předpokladu IP < k +k + přidáí k>0 určitě pravou strau zvýší a použijeme zámý vzorec = k+) tedy k+) P q.e.d Příklad Dokažte, že platí Beroulli-ova erovost +) + <-, + ) Důkaz.krok = +) +. => P.krok IP k P tj +) k + k MD k+) P tj +) k+ + k+) vlastí důkaz. kroku +) k+ = +) k +) vlastost moci + k)+) použit IP = + k + + k rozásobeí + k+) tj k+) P
Příklad 4 Dokažte, že všechy čley poslouposti ) jsou dělitelé 7. Jiými slovy, máme dokázat, že platí 7 + + + ) Důkaz.krok = + + + ) = 8 + 7 = 5 = 7.5 => P.krok IP k P tj. 7 a k a k = k+ + k+ MD k+) P tj. 7 a k+ a k+ = k+)+ + k+)+ = k+ + k+ vlastí důkaz. kroku a k+ = k+ + k+ =. k+ + 9. k+ = k+ + k+ ) + 7. k+ = a k + 7. k+ tj. k+) P Příklad 5 Dokažte, že součet prvích přirozeých čísel se rová +)/ Důkaz +++4+ +-)+ = +)/.krok = L =, P = +)/ = L -levá straa dokazovaé rovosti P - pravá straa dokazovaé rovosti).krok IP k P tj. +++ +k = kk+)/ MD k+) P tj. +++4+ +k+k+) = k+)k+)/ vlastí důkaz. kroku levá straa dokazovaé rovosti pro k+) L k+ = +++ +k+k+) = kk+)/ + k+) = použit IP = k+)k/ + ) = vytkuto k+) = k+)k+)/ = úprava. závorky = P k+ což je pravá straa, tedy k+) P Další příklady a dokazováí pomocí PMI pro tréik 5 6 )
) 6 ) ) ) ) 4 ) ) ) ) ) ) ) )