Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,



Podobné dokumenty
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Úvod do lineární algebry

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.

Matematika B101MA1, B101MA2

VĚTY Z LINEÁRNÍ ALGEBRY

6. ANALYTICKÁ GEOMETRIE

6.1 Vektorový prostor

Základní pojmy teorie množin Vektorové prostory

ANALYTICKÁ GEOMETRIE V ROVINĚ

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n,

Matematika B101MA1, B101MA2

(ne)závislost. α 1 x 1 + α 2 x α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

ALGEBRA. Téma 5: Vektorové prostory

Kapitola 11: Vektory a matice:

Základy matematiky pro FEK

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

Lineární algebra Operace s vektory a maticemi

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

0.1 Úvod do lineární algebry

Matematika 2 pro PEF PaE

0.1 Úvod do lineární algebry

Lineární algebra : Lineární (ne)závislost

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Kapitola 11: Vektory a matice 1/19

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

1 Řešení soustav lineárních rovnic

Lineární algebra : Lineární prostor

1 Linearní prostory nad komplexními čísly

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A

1 Vektorové prostory.

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

Soustavy lineárních rovnic

Soustavy linea rnı ch rovnic

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

ALGEBRA. Téma 4: Grupy, okruhy a pole

DEFINICE Z LINEÁRNÍ ALGEBRY

Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008

1 Báze a dimenze vektorového prostoru 1

1 Soustavy lineárních rovnic

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:

8 Matice a determinanty

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x

7. Lineární vektorové prostory

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a a 2 2 1

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.

Vektorový prostor. d) Ke každému prvku u V n existuje tzv. opačný prvek u, pro který platí, že u + u = o (vektor u nazýváme opačný vektor k vektoru u)

Operace s maticemi. 19. února 2018

Program SMP pro kombinované studium

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.

1/10. Kapitola 12: Soustavy lineárních algebraických rovnic

Úvodní informace Soustavy lineárních rovnic. 12. února 2018

Matematika. Kamila Hasilová. Matematika 1/34

NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

Vybrané kapitoly z matematiky

Číselné vektory, matice, determinanty

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

Operace s maticemi

6. Lineární nezávislost a báze p. 1/18

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.

Základy matematiky pro FEK

α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0

1 Determinanty a inverzní matice

Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a

Vektory a matice. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

M - Příprava na 1. čtvrtletku pro třídu 4ODK

Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Lineární algebra - I. část (vektory, matice a jejich využití)

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

2.6. Vlastní čísla a vlastní vektory matice

Báze a dimenze vektorových prostorů

7. Důležité pojmy ve vektorových prostorech

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

Lineární prostory. - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem

Základy maticového počtu Matice, determinant, definitnost

1 Lineární prostory a podprostory

Transkript:

Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ), násobek vektoru u číslem λ je vektor λ u = (λu 1,...λu n ). Př. 2. V (E 2 )...množina vektorů v E 2, vektor je množina všech navzájem ekvivalentních orientovaných úseček v E 2. V (E 3 )...množina vektorů v E 3, Tyto dvě operace mají následující vlastnosti (pišme obecně množinu V ): Vektory, závislost, báze (František Mráz FS ČVUT, 2015) 1 / 10

(a) Pro libovolné vektory u, v V a libovolné λ R patří součet u + v i součin λ u do V. (b) Tyto dvě operace jsou tzv. rozumné, tj. komutativní, asociativní, distributivní. Pro libovolné vektory u, v, w V a libovolná reálná čísla α, β platí: (b1) u + v = v + u, (b2) (u + v) + w = u + (v + w), (b3) 1 u = u, (b4) α (β u) = (α β) u, (b5) α (u + v) = α u + α v. (b6) (α + β) u = α u + β u. (c) Ve V existuje tzv. nulový vektor o. Pro libovolný vektor u pak platí: u + o = u. (d) Ke každému vektoru u V existuje vektor ( u) V (tzv. opačný vektor k vektoru u) tak, že platí: u + ( u) = o. Poznámka. Vlastnosti (a) se říká uzavřenost množiny V vůči oběma operacím. Vektory, závislost, báze (František Mráz FS ČVUT, 2015) 2 / 10

Definice. Množina V s operacemi sčítání prvků (vektorů) a násobení vektorů reálnými čísly, které mají vlastnosti a) až d) se nazývá vektorový prostor. Věta 1.4. Ve vektorovém prostoru V existuje jediný nulový vektor. Věta 1.7. Pro libovolný vektor u V a pro libovolné číslo α R platí: 1) 0 u = o, 2) ( 1) u = u, 3) α o = o. Vektory, závislost, báze (František Mráz FS ČVUT, 2015) 3 / 10

Další příklady (se standardně definovanými operacemi): Př. 3. C a,b... mn. spojitých funkcí v a, b je vektorový prostor Př. 4. P 2... mn. všech polynomů stupně právě dva, tj. funkce tvaru P (x) = ax 2 + bx + c, a 0 není vektorový prostor Př. 5. P 2... mn. všech polynomů stupně nejvýše dva je vektorový prostor Př. 6. Množina všech matic téhož typu m n je vektorový prostor Poznámka. Podprostor vektorového prostoru. Příklad Prostor P 2 je podprostorem vektorového prostoru C (, ) Vektory, závislost, báze (František Mráz FS ČVUT, 2015) 4 / 10

Lineární závislost, nezávislost (skupiny vektorů) Příklad 0. Určete vektor w, který je lin. kombinací vektorů u = (2, 3, 1), v = ( 1, 2, 2) s koeficienty α = 2, β = 2. Výsledek: w = αu + βv = ( 6, 2, 6). Definice. Skupinu vektorů u 1..., u n nazýváme lineárně závislou, jestliže existují reálná čísla α 1,..., α n (aspoň jedno je 0) tak, že platí α 1 u 1 + α 2 u 2 +... + α n u n = o. (*). Skupinu vektorů, která není lineárně závislá, nazýváme lineárně nezávislou. Poznámka. Skupina vektorů je lin. nezávislá právě tehdy, když vektorová rovnice (*) má pouze nulové řešení α i = 0 pro i. Poznámka. V tomto textu použijeme zkratky LN (lin. nezávislá) a LZ (lin. závislá). Věta 1.7. Jestliže skupina vektorů obsahuje nulový vektor, pak je tato skupina LZ. Věta 1.8. Skupina vektorů je LZ právě tehdy, když alespoň jeden z nich lze vyjádřit jako lineární kombinaci ostatních. Vektory, závislost, báze (František Mráz FS ČVUT, 2015) 5 / 10

Skupina dvou nenulových vektorů je tedy LZ právě tehdy, když jeden z nich je násobkem druhého. Příklad 1. Skupina vektorů u = (6, 3), v = ( 2, 1) je LZ, zatímco skupina a = (3, 2, 3), b = (6, 4, 5) je LN. Příklad 2. Určete, pro které hodnoty parametrů α, β je LN (resp. LZ) skupina dvou vektorů u = (1, 2, 3), v = ( 2, α + 2, β). Výsledek: α = 6, β = 6. Vektory, závislost, báze (František Mráz FS ČVUT, 2015) 6 / 10

ÚLOHA. Určete, zda daná skupina (tří a více vektorů) je LN nebo LZ. Postup. 1. možnost: Pomocí matice sestavené z daných vektorů (někdy i pomocí determinantu). 2. možnost: Postupujeme podle definice, tj. 1. Sestavíme vektorovou rovnici (*) pro hledané koeficienty ( vhodný je zápis vektorů ve sloupcovém tvaru). 2. Rovnici (*) rozepíšeme do souřadnic a takto vzniklou soustavu rovnic vyřešíme. 3. Závěr: Má-li soustava pouze nulové řešení, pak je daná skupina lin. nezávislá. Má-li soustava i nenulové řešení (a v tomto případě už jich má nekonečně mnoho), pak je tato skupina lin. závislá. Vektory, závislost, báze (František Mráz FS ČVUT, 2015) 7 / 10

Příklad 3. Skupina tří vektorů u = (1, 1, 0), v = (0, 2, 3), w = (3, 5, 4) je LZ nebo LN? Výsledek: Daná skupina je LN. Příklad 4. Vektory u = (2, 3, 1), v = ( 1, 2, 2), w = ( 6, 2, 6) z Př. 0 jsou LZ. Ověřte! Poznámka. Libovolné dva z daných tří vektorů jsou LN (ověřte si). Jaká je vzájemná poloha těchto tří vektorů? Příklad 1*. (Obměna př. 4a z kap. Úlohy ze ZK) Dána skupina LN vektorů. a) Co lze říci o skupině, která vznikne přidáním jednoho vektoru (je LN, nebo LZ, nebo nelze říci)? b) Co lze říci o skupině, která vznikne z té původní odebráním jednoho vektoru? Vektory, závislost, báze (František Mráz FS ČVUT, 2015) 8 / 10

Dimenze a báze vektorového prostoru Definice. Vektorový prostor V se nazývá n rozměrný (má dimenzi n, dim V =n), jestliže a) ve V existuje skupina n vektorů, která je LN, b) každá skupina více než n vektorů je LZ. Každou lin. nezáv. skupinu n vektorů z V nazýváme bází prostoru V. Poznámka. Dimenze prostoru V je tedy rovna maximálnímu počtu LN vektorů z V. Počet vektorů v libovolné bázi je stejný a je roven dim V. Věta 1.15. Libovolný vektor z V lze vyjádřit jediným způsobem jako lineární kombinaci vektorů dané báze. Příklad 5. a) Vektory e 1 = (1; 0); e 2 = (0; 1) tvoří bázi prostoru V (E 2 ). b) Vektory a = (1; 2); b = (3; 1) tvoří bázi prostoru V (E 2 ). Vektory, závislost, báze (František Mráz FS ČVUT, 2015) 9 / 10

Příklad 6. Vektory i = (1; 0; 0); j = (0; 1; 0); k = (0; 0; 1) tvoří bázi prostoru V (E 3 ). Příklad 7. Báze v prostoru R n. Příklad 8. a) Určete, zda vektory z př. 3, tj. u = (1, 1, 0), v = (0, 2, 3), w = (3, 5, 4) tvoří bázi vektorového prostoru V (E 3 ). b) Pokud je to možné, vyjádřete vektor a = ( 2, 1, 4) ve tvaru lineární kombinace těchto vektorů. c) Jaká je vzájemná poloha těchto čtyř vektorů (geometrická interpretace)? Příklad 2*. (viz Úlohy ze ZK) Dána skupina n + 1 vektorů v prostoru dimenze n. Je tato skupina LZ, nebo LN nebo nelze jednoznačně odpovědět? Dána skupina n 1 vektorů... Dána skupina n vektorů... Vektory, závislost, báze (František Mráz FS ČVUT, 2015) 10 / 10