Přemysl Žiška, Pravoslav Martinek. Katedra teorie obvodů, ČVUT Praha, Česká republika. Abstrakt

Rozměr: px
Začít zobrazení ze stránky:

Download "Přemysl Žiška, Pravoslav Martinek. Katedra teorie obvodů, ČVUT Praha, Česká republika. Abstrakt"

Transkript

1 ALGORITMUS DIFERENCIÁLNÍ EVOLUCE A JEHO UŽITÍ PRO IDENTIFIKACI NUL A PÓLŮ PŘE- NOSOVÉ FUNKCE FILTRU Přemysl Žška, Pravoslav Martnek Katedra teore obvodů, ČVUT Praha, Česká republka Abstrakt V příspěvku je popsána metoda pro dentfkac nul a pólů přenosové funkce dskrétně pracujícího fltru z jeho známé kmtočtové modulové charakterstky. Metoda je založena na použtí dferenčního evolučního algortmu, který byl naprogramován v prostředí MATLAB, verze Jde o progresvní metodu, která je schopna nalézt globální mnmum účelové funkce a její aplkace přnesla velm dobré výsledky. Metoda je demonstrována na příkladu dentfkace parametrů přenosové funkce číslcového fltru 0. řádu se známou modulovou charakterstkou která naznačuje, že byl navržen pomocí Cauerovy aproxmace. Identfkace přenosové funkce fltru proběhla úspěšně.. Úvod Problém určení, resp. výpočtu přenosové funkce je často řešená úloha v mnoha případech návrhu a dentfkace parametrů elektrckých systémů. V současnost exstuje více cest jak řešt tento problém, například v článku Sdman et al. [6] jsou prezentovány výsledky ve kterých jsou použty Bodeho "šablony" pro modulové frekvenční charakterstky nulových bodů a pólů k dentfkac přenosové funkce analogového obvodu, nebo v článcích Martnek - Vondraš [2, 3] jsou prezentovány výsledky, kde byla řešena úloha aproxmace přenosové funkce analogového fltru př současných požadavcích na ampltudovou modulovou charakterstku a skupnové zpoždění. V tomto příspěvku je řešená odlšná aproxmační úloha, kdy na základě známé kmtočtové modulové charakterstky jsou dentfkovány nuly a póly přenosové funkce dskrétně pracujícího obvodu, ať jž číslcového fltru nebo dskrétně pracujícího analogového fltru SC, resp. SI. Exstuje více metod, kterým je možno určt parametry vybraného modelu z jeho charakterstk jakým jsou např. kmtočtové charakterstky, přechodové nebo mpulsní odezvy. Obecný prncp dentfkace je ukázán na obrázku. Výstupní charakterstka neznámého systému y S, která je daná v dskrétních bodech, je porovnávána s výstupní charakterstkou jeho modelu y M. Chybová funkce e je pak vyhodnocována podle vhodně zvoleného krtéra. Často používaným krtér pro dentfkac parametrů modelu je metoda mnmální stejnoměrné odchylky nebo metoda nejmenších čtverců. Poslední část je pak výpočet parametrů modelů podle výsledků získaných vyhodnocením chybové funkce e. Obr. : Základní prncp dentfkace přenosové funkce neznámého systému

2 V tomto příspěvku je popsána nová jednoduchá metoda pro dentfkac přenosové funkce dskrétně pracujícího lnearzovaného obvodu založená na použtí Dferenčního Evolučního algortmu (DE). Aplkujeme-l termnolog použtou v obrázku na zadanou úlohu, označuje v tomto příspěvku symbol y S ampltudovou modulovou charakterstku neznámého obvodu (fltru) a y M modulovou charakterstku jeho modelu. Výpočtem parametrů modelu je zde míněn výpočet nul a pólů přenosové funkce použtím algortmu DE. Evoluční algortmy jsou výkonné robustní algortmy, které smulují evoluční proces v přírodě a jsou vhodné pro hledání globálního mnma funkcí. Pracují s množnam možných řešení sestavených do tzv. populační matce. Evolučním algortmy můžeme mnmalzovat nejen standardní funkce, ale také nelneární a po částech nedferencovatelné funkce s mnoha lokálním extrémy. Dferenční evoluční algortmus vytvořl K. Prce a poprvé ho prezentoval v roce 995. Na konferenc Frst Internatonal Contest of Evolutonary Computaton (sticeo), která se konala v Nagoy v květnu 996, byl tento algortmus oceněn jako nejvýkonnější evoluční algortmus pro řešení funkcí s reálným proměnným. Obecnou nevýhodou evolučních algortmů je jejch stochastcké chování, což znamená, že nejsme schopn exaktně určt předem rychlost konvergence. Ncméně expermenty ukazují dobré konvergenční vlastnost př zadání vhodných počátečních podmínek. Úspěšné aplkace algortmu DE př řešení problému aproxmace přenosové funkce byly prezentovány ve [2, 3], ovšem v rozdílně formulovaných specfkacích. 2. Dferenční evoluční algortmus DE je paralelní přímo vyhledávací metoda pro hledání neznámých parametrů, která používá reprezentac reálným čísly. Tato technka pracuje s množnou NP D-dmenzonálních parametrckých vektorů: x G,, =,2,..., NP () které vytvářejí populac pro každou generac G řešení úlohy; tzn. v průběhu mnmalzace je př každé terac vytvářena nová populace. Počet vektorů NP se nemění během optmalzačního procesu. Počáteční populace může být generována náhodně, pokud nemáme žádné blžší nformace o řešeném systému. Př mplementac algortmu v MATLABu je pak generována populace jako matce o rozměrech NP x D, kde NP je počet členů populace a D je počet neznámých proměnných řešeného problému. Každý prvek v matc je generován jako náhodné číslo r s rovnoměrným rozložením pravděpodobnost v rozsahu (0..) podle vzorce: x j, = mn+ r (max mn), (2) kde =...NP, j =...D a rozsah neznámých hledaných proměnných je (mn..max). DE generuje nový vektor tak, že vypočítá vážený rozdílový vektor ze dvou náhodně vybraných členů populace a tento přčte ke třetím členu populace. Jestlže má tento nový výsledný vektor nžší hodnotu účelové funkce (tzv. ftness), než předem vybraný vektor, pak je tento předem vybraný vektor nahrazen nově vygenerovaným vektorem s kterým byl porovnáván. Navíc je vždy zachováván nejlepší vektor x best, G pro zajštění zlepšování výsledku optmalzace. Exstuje několk varant tohoto algortmu. Zde budou podrobněj popsány dvě varanty. První z nch je označována jako DE/rand//exp. Funkc algortmu můžeme popsat takto:. pro každý cílový vektor z populační matce x, G, =, 2,..., NP, je vygenerován zkušební vektor v podle následujícího vztahu ( x x ) v x r G + F r, G r, G = (3), 2 3 kde ndexy r, r 2, r 3 [, NP], jsou celočíselné a navzájem různé a F>0.

3 Čísla r, r 2 a r 3 jsou náhodně vybrána z ntervalu [, NP] a navíc jsou rozdílná od ndexu. Symbol F označuje reálnou konstantu, která ovlvňuje velkost odchylky (x r2, G - x r3, G ). Obrázek 2 ukazuje 2-dmenzonální příklad, který lustruje funkc rozdílového vektoru v algortmu DE. Obr. 2: Příklad 2-dmenzonální účelové funkce, kde je ukázán proces generování vektoru v ve schématu algortmu DE 2. V dalším kroku je vybírán každý prvek vybraného cílového vektoru x, G, =, 2,..., NP, a zároveň každý prvek ze zkušebního vektoru v (první prvek z obou, druhý prvek z obou ). Pro každý pár těchto prvků je vygenerované náhodné číslo s rovnoměrným rozdělením pravděpodobnost v rozsahu (0-). Toto náhodné číslo je porovnáváno s konstantou křížení CR. Jestlže je toto náhodné číslo menší než CR, pak je odpovídající prvek z vektoru x, G vložen do nového vektoru u, G. V opačném případě je do nového vektoru u, G vložen odpovídající prvek ze zkušebního vektoru v. Takto získáme celý nový vektor u, G. Tato operace představuje operac křížení v teor evoluční stratege. Nakonec je porovnávána hodnota ftness vektoru u, G s hodnotou ftness cílového vektoru x, G. Vektor s nžší hodnotou ftness je vybrán do nové populace G+. Tento proces je opakován tak dlouho, dokud není nalezeno požadované řešení anebo dokud není dosažen předem zadaný počet generací. Nyní ještě popíšeme druhou varantu DE označovanou jako DE/best//exp. Jedný rozdíl spočívá v modfkac vztahu (3), kdy v této varantě platí pro vytváření vektoru v předps ( x x ) v xbest G + F r, G r, G =. (4), 2 3 Zde x best,g je nejlepší vektor, který představuje nejlepší dosavadní řešení v běhu algortmu. Zbývající část algortmu je shodná s předchozí varantou. Důležtým faktorem je zde volba konstant F a CR. Podrobnost o vlvu těchto konstant na běh algortmu a o jejch vhodné volbě jsou popsány v lteratuře [4, 5]. 3. Úloha dentfkace přenosové funkce číslcového IIR fltru Vstupním daty pro řešení úlohy jsou známé hodnoty kmtočtové modulové charakterstky v dskrétních kmtočtech. Jedná se tedy o vzorkovanou kmtočtovou charakterstku. Vzorkovací nterval nemusí být ekvdstantní, naopak je výhodné, když se jeho hodnota zmenšuje v okolí meze propustného pásma fltru. Tato data můžeme získat měřením anebo jakýmkolv jným způsobem. Konkrétním příkladem mohou být ukázky kmtočtových charakterstk číslcového fltru IIR na obr. 3 a 4. Získaná data slouží pro vytvoření testovacího vektoru v prostředí MATLAB.

4 Obr. 3: Získaná modulová charakterstka neznámého číslcového IIR fltru Obr. 4: Detal propustného pásma modulové charakterstky 3. Určení řádu přenosové funkce fltru Prvním krokem př dentfkac přenosové funkce IIR fltru je určení řádu této funkce. V této úloze dává průběh kmtočtové charakterstky aprorní nformac o tom, že fltr byl navržen pomocí Cauerovy aproxmace. Jak je známo o této aproxmac, počet extrémů p v propustném pásmu fltru je úměrný řádu fltru, což můžeme napsat jako p = n +, (5) kde p je počet extrémů v propustném pásmu a n je řád fltru. Z obrázku 4 je zřejmé, že v propustném pásmu má modulová charakterstka extrémů. Odtud vyplývá, že řád přenosové funkce je n = 0. Přenosovou funkc fltru desátého řádu můžeme defnovat jako součn dílčích funkcí 2.řádu ve tvaru

5 5 K = H ( z) = 5 j ϕ ( j ϕ z r e ) ( z r e ) j ϕ ( 2 j ϕ z r2 ) ( 2 2 e z r e ) =. (6) Ampltudovou modulovou charakterstku můžeme vypočítat podle následujícího vztahu ( ˆ ω) = 20 H ( z) j ˆ ω H db log 0, (7) z= e kde proměnná ωˆ znamená normalzovanou frekvenc defnovanou výrazem kde T je vzorkovací peroda. ωˆ = ω T, (8) Kmtočtová modulová charakterstka dskrétně pracujícího systému popsaného obvodovou funkcí H(z) v rovně z může být vypočítána v prostředí MATLAB prostřednctvím vestavěné vntřní funkce freqz. 3.2 Identfkace nul a pólů přenosové funkce číslcového IIR fltru Hlavní prncp spočívá v systematckém hledání nul a pólů přenosové funkce modelu dskrétně pracujícího systému tak, aby byl mnmalzován rozdíl mez zadanou modulovou charakterstkou neznámého obvodu a modulovou charakterstkou jeho modelu. Na tomto základě vytvoříme chybovou funkc e, kterou můžeme defnovat ve tvaru (9) S ( ˆ ω ) H ( ˆ ω ) e( ˆ ω ) = H, (9) kde H S (ωˆ ) je zadaná kmtočtová modulová charakterstka neznámého obvodu a H M (ωˆ ) je modulová charakterstka jeho modelu. Tato chybová funkce je pak vypočítávána v jednotlvých dskrétních frekvencích a ndvduální chyby jsou sčítány podle způsobu defnce účelové funkce. V prezentovaném případě jsou sčítány čtverce odchylek modulových charakterstk. Mnmum této účelové funkce hledáme pomocí DE algortmu. Matematcká formulace účelové funkce př vzorkování modulové charakterstky v N stejně vzdálených bodech přes celé frekvenční pásmo je defnována vztahem (0) M N 4 2 F( x) = [ e( ˆ ω )] + Pk. (0) = k= Vzhledem k tomu, že v této úloze se jedná o fltr 0. řádu navržený pomocí Cauerovy aproxmace, můžeme zjednodušt prostor hledaných řešení, neboť nuly přenosové funkce leží na jednotkové kružnc a pro jejch moduly pak platí, že r = r 2 = r 3 = r 4 = r 5 =. Tím nám klesne počet hledaných proměnných a prohledávaný prostor se zmenší o 5 dmenzí. Potom vektor x = [x,.., x 6 ] je mapován takto: x = r 2, x 2 = r 22, x 3 = r 23, x 4 = r 24, x 5 = r 25, x 6 = ϕ, x 7 = ϕ 2, x 8 = ϕ 3, x 9 = ϕ 4, x 0 = ϕ 5, x = ϕ 2, x 2 = ϕ 22, x 3 = ϕ 23, x 4 = ϕ 24, x 5 = ϕ 25, x 6 = Κ. () P k jsou penalzační funkce, pro které platí následující relace:

6 P P P 2 3 P 4 = = = 5 = x jestlže x 0 jnak 6 = x jestlže x < 0 0 jnak 5 = x jestlže x > π 0 jnak x6 jestlže x6 > = 0 jnak (2) (3) (4) (5) Penalzační funkce P je vložená do účelové funkce proto, aby byla zajštěna stablta navrženého číslcového IIR fltru. Jak je známo moduly komplexních pólů musí ležet uvntř jednotkové kružnce v komplexní rovně z. Penalzační funkce P 2 zajšťuje kladné hodnoty modulů a fází nul a pólů přenosové funkce a společně s penalzační funkcí P 3 je zajštěn rozsah fází nul a pólů v rozmezí (0..π). Penalzační funkce P 4 zajšťuje hodnotu zesílení v rozsahu (0..). Vzhledem k tomu, že momentálně nemáme velké zkušenost s optmálním nastavením penalzačních funkcí, byly použty mírně obměněné penalzační funkce z článku [7]. Vektor x opt, pro který má účelová funkce F(x) mnmum, představuje hledané řešení úlohy dentfkace přenosové funkce číslcového IIR fltru. 3.3 Výsledky dentfkace přenosové funkce číslcového IIR fltru Výše zmíněná dentfkační úloha byla řešena př volbě parametrů DE algortmu: NP=900, CR=0.9, F=0.9, rozsah hledaných proměnných byl x - x 5, x 6 (0..), x 6 - x 5 (0..π). Modulová charakterstka byla vzorkována v 64 stejně vzdálených bodech přes celé kmtočtové pásmo. Algortmus nalezl následující řešení úlohy po výpočtu 263 generací: r 2 = r 22 = r 23 = r 24 = r 25 = K = ϕ = ϕ 2 = ϕ 2 = ϕ 22 = ϕ 3 = ϕ 23 = ϕ 4 = ϕ 24 = ϕ 5 = ϕ 25 = Dosažená hodnota mnma účelové funkce F(x) = 3, Ze získaných hodnot nul a pólů byla sestavena přenosová funkce, která byla smulována v prostředí MATLAB. Výsledná ampltudová modulová charakterstka získaná touto smulac plně odpovídá modulové charakterstce neznámého číslcového IIR fltru, která je vykreslena na obrázcích 3 a Závěr Aplkace dferenčního evolučního algortmu pro mnmalzac chybové funkce je nová nekonvenční metoda, která byla použtá pro řešení úlohy dentfkace přenosové funkce číslcového IIR fltru o kterém máme aprorní nformac, že byl navržen pomocí Cauerovy aproxmace. Přenosová funkce ve vzorovém příkladu byla dentfkována úspěšně. Výsledná modulová charakterstka plně odpovídá předem zadané charakterstce neznámého fltru. Na základě výsledků expermentů je třeba poznamenat, že je velce důležté zvolt vhodnou varantu algo-

7 rtmu DE. V první fáz řešení byla použta varanta DE/rand//exp, ale pro fltry řádu vyšších než 6 docházelo ke konvergenčním problémům. Lepší výsledky, zejména vyšší rychlost konvergence a vyšší přesnost řešení dala varanta DE/best//exp. To je dokumentováno možností řešt úspěšně dentfkace parametrů přenosových funkcí vyšších řádů. V případě výpočtu parametrů přenosových funkcí řádu vyššího jak 0 zatím není vyloučeno selhání konvergence a to jak s ohledem na rozšíření prostoru možných řešení, tak z důvodů lmtované numercké přesnost. Vzhledem k stochastckému charakteru DE algortmu může být v těchto případech výhodné výpočet opakovat několkrát po sobě. Další zdokonalení algortmu vlastní metody výpočtu je předmětem další, právě probíhající etapy prací na využtí evolučních a genetckých algortmů pro nekonvenční řešení úloh optmalzace a návrhu elektronckých obvodů. 5. Poděkování Tato práce byla podporována grantem GAČR No. 02/02/ Lteratura [] V. Davídek, M. Lapert, M. Vlček, Analogové a číslcové fltry, ČVUT Praha, 2000 [2] P. Martnek, J. Vondraš, New Approach to Flters and Group Delay Equalser Transfer Functon Desgn. In: ICECS The 8th IEEE Internatonal Conference on Electroncs, Crcuts and Systems. St. Julan s: ICECS 200, 200, vol., p. 70. [3] P. Martnek, J. Vondraš, Mult-crteron Flter Desgn va Dfferental Evoluton Method for Functon Mnmzaton. In: ICCSC'02 st IEEE Internatonal Conference on Crcuts and Systems for Communcatons - Proceedngs. St. Petersburg: Sant-Petersburg State Techncal Unversty, 2002, vol., p ISBN [4] V. Mařík, O. Štěpánková, J. Lažanský a kolektv, Umělá ntelgence (4), Vyd.., Academa Praha, [5] I. Zelnka, Umělá ntelgence v problémech globální optmalzace, Vyd.., BENtechncká lteratura, Praha 2002 [6] M. D. Sdman, F. E. DeAngels, G. C. Verghese, Parametrc System Identfcaton on Logarthmc Frequency Response Data, IEEE Trans. Automatc Control, 36, No.9 (September 99), pp [7] R. Storn, Dfferental Evoluton Desgn of an IIR-Flter wth Requrements for Magntude and Group Delay, Techncal Report TR , ICSI, May Kontaktní nformace Ing. Přemysl Žška Katedra teore obvodů, ČVUT Praha, Techncká 2, Praha, Česká republka e-mal: Doc. Ing. Pravoslav Martnek, Csc. Katedra teore obvodů, ČVUT Praha, Techncká 2, Praha, Česká republka e-mal:

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits

MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits Techncká 4, 66 07 Praha 6 MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electrc Parameter Measurement n PWM Powered Crcuts Martn Novák, Marek Čambál, Jaroslav Novák Abstrakt: V

Více

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého

Více

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT J. Tuma Summary: The paper deals wth dfferentaton and ntegraton of sampled tme sgnals n the frequency doman usng the FFT and

Více

MĚRENÍ V ELEKTROTECHNICE

MĚRENÍ V ELEKTROTECHNICE EAICKÉ OKHY ĚENÍ V ELEKOECHNICE. řesnost měření. Chyby analogových a číslcových měřcích přístrojů. Chyby nepřímých a opakovaných měření. rmární etalon napětí. Zdroje referenčních napětí. rmární etalon

Více

popsat činnost základních zapojení převodníků U-f a f-u samostatně změřit zadanou úlohu

popsat činnost základních zapojení převodníků U-f a f-u samostatně změřit zadanou úlohu 7. Převodníky - f, f - Čas ke studu: 5 mnut Cíl Po prostudování tohoto odstavce budete umět popsat čnnost základních zapojení převodníků -f a f- samostatně změřt zadanou úlohu Výklad 7.. Převodníky - f

Více

Numerické metody optimalizace

Numerické metody optimalizace Numercké metody optmalzace Numercal optmzaton methods Bc. Mloš Jurek Dplomová práce 2007 Abstrakt Abstrakt česky Optmalzační metody představují vyhledávání etrémů reálných funkcí jedné nebo více reálných

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

Konverze kmitočtu Štěpán Matějka

Konverze kmitočtu Štěpán Matějka 1.Úvod teoretcký pops Konverze kmtočtu Štěpán Matějka Směšovač měnč kmtočtu je obvod, který přeměňuje vstupní sgnál s kmtočtem na výstupní sgnál o kmtočtu IF. Někdy bývá tento proces označován také jako

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

HUDEBNÍ EFEKT DISTORTION VYUŽÍVAJÍCÍ ZPRACOVÁNÍ PŘÍRŮSTKŮ SIGNÁLŮ ČASOVĚ

HUDEBNÍ EFEKT DISTORTION VYUŽÍVAJÍCÍ ZPRACOVÁNÍ PŘÍRŮSTKŮ SIGNÁLŮ ČASOVĚ HUDEBÍ EFEKT DISTORTIO VYUŽÍVAJÍCÍ ZPRACOVÁÍ PŘÍRŮSTKŮ SIGÁLŮ ČASOVĚ VARIATÍM SYSTÉMEM Ing. Jaromír Mačák Ústav telekomunkací, FEKT VUT, Purkyňova 118, Brno Emal: xmacak04@stud.feec.vutbr.cz Hudební efekt

Více

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny 0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí

Více

Porovnání GUM a metody Monte Carlo

Porovnání GUM a metody Monte Carlo Porovnání GUM a metody Monte Carlo Ing. Tomáš Hajduk Nejstota měření Parametr přřazený k výsledku měření Vymezuje nterval, o němž se s určtou úrovní pravděpodobnost předpokládá, že v něm leží skutečná

Více

1 Elektrotechnika 1. 9:00 hod. G 0, 25

1 Elektrotechnika 1. 9:00 hod. G 0, 25 A 9: hod. Elektrotechnka a) Napětí stejnosměrného zdroje naprázdno je = 5 V. Př proudu A je svorkové napětí V. Vytvořte napěťový a proudový model tohoto reálného zdroje. b) Pomocí přepočtu napěťových zdrojů

Více

Impedanční děliče - příklady

Impedanční děliče - příklady Impedanční děliče - příklady Postup řešení: Vyznačení impedancí, tvořících dělič Z Z : podélná impedance, mezi svorkami a Z : příčná impedance, mezi svorkami a ' ' Z ' Obecné vyjádření impedancí nebo admitancí

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl ČVUT FEL X16FIM Fnanční Management Semestrální projekt Téma: Optmalzace zásobování teplem Vypracoval: Marek Handl Datum: květen 2008 Formulace úlohy Pro novou výstavbu 100 bytových jednotek je třeba zvolt

Více

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST Abstrakt ANALÝZA ZKA A CTLOST JAKO SOUČÁST STUDE POVEDTELNOST 1. ČÁST Jří Marek Úspěšnost nvestce závsí na tom, jaké nejstoty ovlvní její předpokládaný žvotní cyklus. Pomocí managementu rzka a analýzy

Více

Simulační metody hromadné obsluhy

Simulační metody hromadné obsluhy Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro

Více

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů Optmalzační přístup př plánování rekonstrukcí vodovodních řadů Ladslav Tuhovčák*, Pavel Dvořák**, Jaroslav Raclavský*, Pavel Vščor*, Pavel Valkovč* * Ústav vodního hospodářství obcí, Fakulta stavební VUT

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Teorie efektivních trhů (E.Fama (1965))

Teorie efektivních trhů (E.Fama (1965)) Teore efektvních trhů (E.Fama (965)) Efektvní efektvní zpracování nových nformací Efektvní trh trh, který rychle a přesně absorbuje nové nf. Ceny II (akcí) náhodná procházka Předpoklady: na trhu partcpuje

Více

Optimalizace metod pro multimediální aplikace v geodézii v prostředí IP sítí

Optimalizace metod pro multimediální aplikace v geodézii v prostředí IP sítí Acta Montanstca Slovaca Ročník 12 (2007), mmoradne číslo 3, 311-317 Optmalzace metod pro multmedální aplkace v geodéz v prostředí IP sítí Mlan Berka 1 Optmzaton of Methods for Geodetc Data for Multcast

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium Vysoká škola báňská - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky LOGICKÉ OBVODY pro kombnované a dstanční studum Zdeněk Dvš Zdeňka Chmelíková Iva Petříková Ostrava ZDENĚK DIVIŠ, ZDEŇKA

Více

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce . meznárodní konference Řízení a modelování fnančních rzk Ostrava VŠB-TU Ostrava, Ekonomcká fakulta, katedra Fnancí 8. - 9. září 200 Metody vícekrterálního hodnocení varant a ech využtí př výběru produktu

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně nverzta Tomáše Bat ve líně LABOATOÍ CČEÍ ELETOTECHY A PŮMYSLOÉ ELETOY ázev úlohy: ávrh dělče napětí pracoval: Petr Luzar, Josef Moravčík Skupna: T / Datum měření:.února 8 Obor: nformační technologe Hodnocení:

Více

VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1

VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1 VÝVOJ SOFWARU NA PLÁNOVÁNÍ PŘESNOSI PROSOROVÝCH SÍÍ PRECISPLANNER 3D DEVELOPMEN OF HE MEASUREMEN ACCURACY PLANNING OF HE 3D GEODEIC NES PRECISPLANNER 3D Martn Štroner 1 Abstract A software for modellng

Více

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i.

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i. Odborná skupna Mechanka kompoztních materálů a konstrukcí České společnost pro mechanku s podporou frmy Letov letecká výroba, s. r. o. a Ústavu teoretcké a aplkované mechanky AV ČR v. v.. Semnář KOMPOZITY

Více

L8 Asimilace dat II. Oddělení numerické předpovědi počasí ČHMÚ 2007

L8 Asimilace dat II. Oddělení numerické předpovědi počasí ČHMÚ 2007 L8 Asmlace dat II Oddělení numercké předpověd počasí ČHMÚ 007 Plán přednášky Úvod do analýzy Optmální odhad v meteorolog D případ: demonstrace metod; mult-dmensonální případ; Zavedení předběžného pole;

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM 7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM Průvodce studem Předchozí kaptoly byly věnovány pravděpodobnost a tomu, co s tímto pojmem souvsí. Nyní znalost z počtu pravděpodobnost aplkujeme ve statstce. Předpokládané

Více

Vícekriteriální rozhodování. Typy kritérií

Vícekriteriální rozhodování. Typy kritérií Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

Aplikace simulačních metod ve spolehlivosti

Aplikace simulačních metod ve spolehlivosti XXVI. ASR '2001 Semnar, Instruments and Control, Ostrava, Aprl 26-27, 2001 Paper 40 Aplkace smulačních metod ve spolehlvost MARTINEK, Vlastml Ing., Ústav automatzace a nformatky, FSI VUT v Brně, Techncká

Více

Teoretické modely diskrétních náhodných veličin

Teoretické modely diskrétních náhodných veličin Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

Měření výkonu v obvodech s pulzně řízenými zdroji napětí

Měření výkonu v obvodech s pulzně řízenými zdroji napětí Měření výkonu v obvodech s pulzně řízeným zdroj napětí doc. ng. Jaroslav Novák, CSc., ng. Martn Novák, Ph.D. ČV Praha, Fakulta strojní, Ústav přístrojové a řídcí technky V článku je věnována pozornost

Více

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl

Více

Metamodeling. Moderní metody optimalizace 1

Metamodeling. Moderní metody optimalizace 1 Metamodelng Nejmodernějšíoblast optmalzace Určena zejména pro praktckéaplkace s velkým výpočetním nároky Vycházíz myšlenky, že reálnéoptmalzační problémy nejsou sce konvení, ale jsou do značnémíry hladké

Více

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY . přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a

Více

Frekvenční charakteristiky

Frekvenční charakteristiky Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci

Více

Odhad stavu matematického modelu křižovatek

Odhad stavu matematického modelu křižovatek Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita

Více

REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB

REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB 62 REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB BEZOUŠKA VLADISLAV Abstrakt: Text se zabývá jednoduchým řešením metody nejmenších čtverců v prostředí Matlab pro obecné víceparametrové aproximační funkce. Celý postup

Více

XXX. ASR '2005 Seminar, Instruments and Control, Ostrava, April 29,

XXX. ASR '2005 Seminar, Instruments and Control, Ostrava, April 29, XXX. ASR '2005 Semnar, Instruments and Control, Ostrava, Aprl 29, 2005 449 Usng flockng Algorthm and Vorono Dagram for Moton Plannng of a Swarm of Robots Plánování pohybu skupny robotů pomocí flockng algortmu

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. 1 Komplexní úloha FAKULTA STAVEBNÍ - OBOR STAVEBNÍ INŽENÝRSTVÍ KATEDRA SPECIÁLNÍ GEODÉZIE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. 1 Komplexní úloha FAKULTA STAVEBNÍ - OBOR STAVEBNÍ INŽENÝRSTVÍ KATEDRA SPECIÁLNÍ GEODÉZIE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ - OBOR STAVEBNÍ INŽENÝRSTVÍ KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu STAVEBNÍ GEODÉZIE číslo úlohy název úlohy 1 Komplexní úloha školní rok den výuky

Více

Robustnost regulátorů PI a PID

Robustnost regulátorů PI a PID Proceedings of International Scientific Conference of FME Session 4: Automation Control and Applied Informatics Paper 45 Robustnost regulátorů PI a PID VÍTEČKOVÁ, Miluše Doc. Ing., CSc., katedra ATŘ, FS

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

Sylabus 18. Stabilita svahu

Sylabus 18. Stabilita svahu Sylabus 18 Stablta svahu Stablta svahu Smykové plochy rovnná v hrubozrnných zemnách ev. u vrstevnatého ukloněného podloží válcová v jemnozrnných homogenních zemnách obecná nehomogenní podloží vč. stavebních

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

Návrh frekvenčního filtru

Návrh frekvenčního filtru Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude

Více

(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy

(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve všech oblastech elektroniky. Jde o diferenciální zesilovač napětí s velkým ziskem. Jinak řečeno, operační zesilovač

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA Katedra Matematky Řetězové zlomky Dplomová práce Brno 04 Autor práce: Bc. Petra Dvořáčková Vedoucí práce: doc. RNDr. Jaroslav Beránek, CSc. Bblografcký záznam

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

1. Úvod. Cílem teorie her je popsat situaci, která nás zajímá, jako hru. Klasickým případem

1. Úvod. Cílem teorie her je popsat situaci, která nás zajímá, jako hru. Klasickým případem Kvaternon 2/204, 79 98 79 MATICOVÉ HRY V INŽENÝRSTVÍ JAROSLAV HRDINA a PETR VAŠÍK Abstrakt. Následuící text pokrývá eden z cyklů přednášek předmětu Aplkovaná algebra pro nženýry (0AA) na FSI VUT. Text

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VĚTRACÍ SYSTÉMY OBYTNÝCH DOMŮ BAKALÁŘSKÁ PRÁCE FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VĚTRACÍ SYSTÉMY OBYTNÝCH DOMŮ BAKALÁŘSKÁ PRÁCE FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE VĚTRACÍ SYSTÉMY OBYTNÝCH DOMŮ VENTILATION

Více

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.

Více

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2 ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB Vladmír Hanta 1 Ivan Gros 2 Vysoká škola chemcko-technologcká Praha 1 Ústav počítačové a řídcí technky 2 Ústav

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

Hodnocení využití parku vozidel

Hodnocení využití parku vozidel Hodnocení využtí parku vozdel Všechna kolejová vozdla přdělená jednotlvým DKV (provozním jednotkám) tvoří bez ohledu na jejch okamžté použtí jejch nventární stav. Evdenční stav se skládá z vozdel vlastního

Více

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU AALÝZA RIZIKA A JEHO CITLIVOSTI V IVESTIČÍM PROCESU Jří Marek ) ABSTRAKT Príspevek nformuje o uplatnene manažmentu rzka v nvestčnom procese. Uvádza príklad kalkulace rzka a analýzu jeho ctlvost. Kľúčové

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

Teorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti

Teorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti Teore her a ekonomcké rozhodování 10. Rozhodování př stotě, rzku a neurčtost 10.1 Jednokrterální dskrétní model Jednokrterální model rozhodování: f a ) max a Aa, a,..., a ( 1 2 f krterální funkce (zsk,

Více

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ DYNAMICKÉ MODUY PRUŽNOSTI NÁVOD DO CVIČNÍ D BI0 Zkušebnctví a technologe Ústav stavebního zkušebnctví, FAST, VUT v Brně 1. STANOVNÍ DYNAMICKÉHO MODUU PRUŽNOSTI UTRAZVUKOVOU IMPUZOVOU MTODOU [ČSN 73 1371]

Více

Highspeed Synchronous Motor Torque Control

Highspeed Synchronous Motor Torque Control . Regulace momentu vysokootáčkového synchronního motoru Jaroslav Novák, Martn Novák, ČVUT v Praze, Fakulta strojní, Zdeněk Čeřovský, ČVUT v Praze, Fakulta elektrotechncká Hghspeed Synchronous Motor Torque

Více

Dynamika psaní na klávesnici v kombinaci s klasickými hesly

Dynamika psaní na klávesnici v kombinaci s klasickými hesly Dynamka psaní na klávesnc v kombnac s klasckým hesly Mloslav Hub Ústav systémového nženýrství a nformatky, FES, Unverzta Pardubce Abstract Authentfcaton as a data securty nstrument n our nformatonal socety

Více

Klasifikace a predikce. Roman LUKÁŠ

Klasifikace a predikce. Roman LUKÁŠ 1/28 Klasfkace a predkce Roman LUKÁŠ 2/28 Základní pomy Klasfkace = zařazení daného obektu do sté skupny na základě eho vlastností Dvě fáze klasfkace: I. Na základě trénovacích vzorů (u nchž víme, do aké

Více

Staré mapy TEMAP - elearning

Staré mapy TEMAP - elearning Staré mapy TEMAP - elearnng Modul 4 Kartometrcké analýzy Ing. Markéta Potůčková, Ph.D., 2013 Přírodovědecká fakulta UK v Praze Katedra aplkované geonformatky a kartografe Kartometre a kartometrcké vlastnost

Více

1. Nejkratší cesta v grafu

1. Nejkratší cesta v grafu 08. Nekratší cesty. Úloha obchodního cestuícího. Heurstky a aproxmační algortmy. Metoda dynamckého programování. Problém batohu. Pseudopolynomální algortmy 1. Nekratší cesta v grafu - sled e lbovolná posloupnost

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

Directional Vehicle Stability Prototyping Using HIL Simulation Ověření systému řízením jízdy automobilu metodou HIL simulací

Directional Vehicle Stability Prototyping Using HIL Simulation Ověření systému řízením jízdy automobilu metodou HIL simulací XXXII. Semnar AS '2007 Instruments and ontrol, arana, Smutný, Kočí & Babuch (eds) 2007, VŠB-TUO, Ostrava, ISBN 978-80-248-1272-4 Drectonal Vehcle Stablty rototypng Usng HIL Smulaton Ověření systému řízením

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI - 13 - í Průchod a rozptyl záření gama ve vrstvách materálu Prof. ng. J. Šeda, DrSc. KDAZ - PJP Na našem pracovšt byl vypracován program umožňující modelovat průchod záření gama metodou Monte Carlo, homogenním

Více

Proces řízení rizik projektu

Proces řízení rizik projektu Proces řízení rzk projektu Rzka jevy a podmínky, které nejsou pod naší přímou kontrolou a ovlvňují cíl projektu odcylky, předvídatelná rzka, nepředvídatelná rzka, caotcké vlvy Proces řízení rzk sled aktvt,

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová 2. část Solventnost II Standardní vzorec pro výpočet solventnostního kaptálového požadavku Iva Justová Osnova Úvod Standardní vzorec Rzko selhání protstrany Závěr Vstupní údaje Vašíčkovo portfolo Alternatvní

Více

Popis zobrazení pomocí fuzzy logiky

Popis zobrazení pomocí fuzzy logiky Popis zobrazení pomocí fuzzy logiky diplomová práce Ján Fröhlich KM, FJFI, ČVUT 23. dubna 2009 Ján Fröhlich ( KM, FJFI, ČVUT ) Popis zobrazení pomocí fuzzy logiky 23. dubna 2009 1 / 25 Obsah 1 Úvod Základy

Více

Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012

Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Problém hledání kořenů rovnice f(x) = 0 jeden ze základních problémů numerické matematiky zároveň i jeden

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

FORANA. 1. Úvod. 2 Vznik akustického signálu řeči v mluvidlech. Pavel GRILL 1, Jana TUČKOVÁ 2

FORANA. 1. Úvod. 2 Vznik akustického signálu řeči v mluvidlech. Pavel GRILL 1, Jana TUČKOVÁ 2 FORANA Pavel GRILL 1, Jana TUČKOVÁ 2 České vysoké učení techncké v Praze, Fakulta elektrotechncká, Katedra teore obvodů Abstrakt Jedním z příznaků vývojové dysfáze je částečná porucha tvorby a porozumění

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce

Více

Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy

Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy Posuzování dynamky pohybu drážních vozdel ze záznamu jejch jízdy Ing. Jaromír Šroký, Ph.D. ŠB-Techncká unverzta Ostrava, Fakulta strojní, Insttut dopravy, tel: +40 597 34 375, jaromr.sroky@vsb.cz Úvod

Více

Vlastnosti a modelování aditivního

Vlastnosti a modelování aditivního Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),

Více

Snímání biologických signálů. A6M31LET Lékařská technika Zdeněk Horčík Katedra teorie obvodů

Snímání biologických signálů. A6M31LET Lékařská technika Zdeněk Horčík Katedra teorie obvodů Snímání biologických signálů A6M31LET Lékařská technika Zdeněk Horčík Katedra teorie obvodů horcik@fel.cvut.cz Snímání biologických signálů problém: převést co nejvěrněji spojitý signál do číslicové podoby

Více

radiační ochrana Státní úřad pro jadernou bezpečnost

radiační ochrana Státní úřad pro jadernou bezpečnost Státní úřad pro jadernou bezpečnost radační ochrana DOPORUČENÍ Měření a hodnocení obsahu přírodních radonukldů ve vodě dodávané k veřejnému zásobování ptnou vodou Rev. 1 SÚJB únor 2012 Předmluva Zákon

Více

Teorie elektrických ochran

Teorie elektrických ochran Teore elektrckých ochran Elektrcká ochrana zařízení kontrolující chod část energetckého systému (G, T, V) = chráněného objektu, zajstt normální provoz Chráněný objekt fyzkální zařízení pro přenos el. energe,

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita

Více

ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ

ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ THE TIME COORDINATION OF PUBLIC MASS TRANSPORT ON SECTIONS OF THE TRANSPORT NETWORK Petr Kozel 1 Anotace: Předložený příspěvek

Více

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY V PROSTŘEDÍ MATLAB K. Nováková, J. Kukal FJFI, ČVUT v Praze ÚPŘT, VŠCHT Praha Abstrakt Při rozpoznávání D binárních objektů z jejich diskrétní realizace se využívají

Více