Autokorelace náhodných složek

Rozměr: px
Začít zobrazení ze stránky:

Download "Autokorelace náhodných složek"

Transkript

1 Auokorlac náhodných složk Druhou nsnází, krá provází odhad zobcněného linárního rgrsního modlu, případná auokorlac náhodných složk rgrsní rovnic no dos časý úkaz s vsku dalko časěi u dnorovnicového modlu, hož pozorování voří časové řad (u průřzových údaů pozorován vzácně) Jho důsldkm, ž odhad paramrů modlu pořízné občnou modou nmnších čvrců OLS sic zůsávaí nsranné, al zrácí vdanos Při znalosi kovarianční maic náhodných složk pro získání vdaného odhadu nuno uplani zobcněnou modu nmnších čvrců GLS Odhad s rozplu náhodných složk σ modou OLS však vchýlný Indikac příomnosi auokorlovanosi náhodných složk O příomnosi auokorlac náhodných složk (ichž orické hodno nznám) s lz přsvědči n npřímo, všřním rziduálních hodno Vlmi názorný obrázk o míř auokorlovanosi náhodných složk podává () A) Durbin-Wasonův koficin auokorlac rziduí určný výrazm DW ( ) krý dfinován ako podíl souču čvrců difrncí dvou po sobě doucích rziduálních hodno a souču čvrců všch rziduí Rozsah přípusných hodno DWkoficinu s pohbu v rozmzí <, 4 >, přičmž obě kraní hodno signalizuí maimální možnou korlovanos dvou náslduících rziduálních hodno Pro případ DW d o kladnou auokorlaci řádu, v případě DW 4 o zápornou auokorlaci, zaímco prosřdní hodnoa DW znamná npříomnos auokorlac řádu Poznámka Po umocnění výrazu v čiali vzorc pro DW vidím, ž a) při npříomnosi auokorlac rziduí bud skalární součin vkorů a blízký nul, akž zbk čial bud přibližně rovný dvonásobku mnoval b) při silné kladné auokorlaci bud no skalární součin blízký výraz bud přibližně rovn souču - ( + ) a c) končně při silné záporné auokorlaci bud zmíněný skalární součin blízký a výraz a ( + ) budou přibližně sné co do absoluní vlikosi i co do znaménk Příčinou zménao, ž v průřzových vzorcích sou hodno dnolivých případů/pozorování řazn zpravidla nahodil, akž nní sbmnší důvod usuzova, ž můž isova souvislos (krá závisí na pořadí) mzi nimi (s akoukoliv náhodnou záměnou pořadí pozorování b s ao souvislos musla nuně změni) odno pozorování v časových řadách sou naproi omu řazn chronologick

2 Vš plaí za přdpokladu, ž rozdíl v poču člnu sumací (v mnovali o čln víc) nbud při dosačně počném daovém vzorku podsaný Poznámka Zřlná kladná auokorlac (řádu) charakrisická dlšími řězci shodných znaménk rziduálních hodno lžícími sřídavě nad a pod vrovnávaící rgrsní nadrovinou Silná záporná auokorlac (řádu) naopak pická éměř pravidlným sřídáním znaménk rziduálních hodno ( zřlnou oscilací dvou po sobě doucích rziduálních hodno kolm vrovnávaící rgrsní nadrovin) Nvýhodou Durbin-Wasonova koficinu však skučnos, ž mpirick získanou hodnou DW nlz v úplnosi saisick sova (rozdělní sové saisik závisí na prvcích maic X, kré sou rozdílné pro každý saisický výběr) V důsldku oho obsahu inrval přípusných hodno pro DW-koficin <, 4 > dvě hluché oblasi, v nichž nlz rozhodnou, zda hpoéza o npříomnosi auokorlac řádu bud zamínua v prospěch někré z alrnaiv (kladná či záporná auokorlovanos) ak v inrvalu <,dd > s zamíá hpoéza nauokorlovanosi v prospěch alrnaiv: isnc kladné auokorlac řádu v inrvalu < d, > nlz s rigorózně vhodnoi v inrvalu < d d D, 4 d > s nzamíá (přiímá) hpoéza nauokorlovanosi v inrvalu < 4 d, 4 d > nlz s rigorózně vhodnoi D v inrvalu < 4 d D, 4 > s zamíá hpoéza nauokorlovanosi v prospěch alrnaiv: isnc záporné auokorlac řádu Mzní hranic d d D, lz spočía pro libovolný poč supňů volnosi (-k) a pro obvklé hladin významnosi (α, nbo,5) Příslušné hodno sou ablován Poznámka DW s nní přímo použilný v případě sování sériové korlac všších řádů nbo při nlinární formě auokorlac náhodných složk Někré modifikac k zmírnění problému v ěcho siuacích navrhli Nrlov, Wallis, hil, Nagar a Gar

3 Posup vdoucí k liminaci auokorlovanosi náhodných složk B) COCRANE-ORCUova procdura krou lz popsa ímo iraivním opakováním náslduících ří fází () B) Přdsupněm iračního procsu výpoč paramrů b modlu v původní spcifikaci občnou modou nmnších čvrců OLS a násldné sanovní vrovnaných hodno ŷ závisl proměnné a hodno rziduí B) Formulum auorgrsní schéma řádu pro rzidua v varu () + v kd ν příslušný bílý šum auorgrsního procsu řádu (ho ralizac sou cnrované, nkorlované, homoskdasické a sně rozdělné náhodné vličin) K zachování sacionari procsu, ak známo, nuné splnění podmínk < B) Odhad ˆ koficinu auokorlac řádu získám pomocí výrazu () při dodfinování ˆ B) ako získaný odhad ˆ s použi v modifikovaném rgrsním modlu Modifikac přdsavována úpravou dnolivých modlových proměnných pomocí mod zobcněných difrncí V případě např vsvěluících proměnných, kd první vsvěluící proměnnou přdsavu vkor dničk, má no vzah podobu (pro,,, ) (4) β( ˆ ) + β ( ˆ ) + β( ˆ ) + + ε ˆ ε ˆ,, Nasazním občné OLS na ako modifikovaný modl získám upravný ( ) odhad ˆ β vkoru paramrů β no odhad s dosadí do původního modlu () a násldně s spočou (přs vrovnané hodno) upravná rzidua S ěmi s vsoupí do druhého kroku irační procdur přdsavované opakováním fáz B) Násldu opě skvnc oprací B), B) ad ( r ) ( r ) ( r ) ( r ) Poé, co v průběžném r-ém kroku získám odhad ˆ β, ˆ, ˆ β β, ˆ, β, β,, ( r ) ( r ) ( r ) ( r ) porovnám s hodnoami vličin ˆ β, ˆ, ˆ β β, ˆ získanými v přdchozím r ém kroku Jsliž rozdíl v dvou po sobě doucích krocích npřkročí přdpsanou odchlku (sanovnou např v formě maima z odchlk u dnolivých paramrů a nbo ako (v absoluní hodnoě vzaý) rozdíl odhadů auorgrsního koficinu ˆ ( r ) ˆ ( r ), můžm výsldk dosažné v daném iračním kroku považova za uspokoivé a příslušné odhad přvzí ako končné Určiou podobnos s přdchozím posupm vkazu

4 C) DURBINova dvousupňová moda použilná i v případě příomnosi auokorlac všších řádů u náhodných složk C) Modl s nprv obdobně ako v kroku B) přdchozí mod přvd na var zobcněných difrncí (5) β( ) + β(, ) + β(, ) + + ε ε rsp po subsiucích β ( ) γ, β γ, β γ ad a w ε ε získá var (6) + γ + β + γ, + + βk k + γ k k + w, Odud s pomocí mod OLS získá konzisnní odhad auorgrsního koficinu řádu příslušícího zpožděné hodnoě proměnné C) no odhad ˆ s dosadí do výchozího varu modlu (5) a opěovným použiím OLS s získaí zpřsněné odhad βˆ, βˆ, βˆ ad s uspokoivými asmpoickými ( pro vlký rozsah výběru ) vlasnosmi Poznámka Odhad paramru získávaný v prvním kroku procdur Durbinov dvousupňové mod s zd d nprování podl () ako v případě Cochran-Orcuov mod, al rgrsí (6) s maicí vsvěluících proměnných Z varu: k γ k β Z + γ, k γk w w w w Z éo rgrs s použi pouz odhad paramru, zaímco osaní s nuplaní; s poom získávaí až násldně krokm C) z (5) s iž dosazným ˆ Poznámka 4 Nvýhodou ohoo posupu však zřlně zvýšný poč odhadovaných paramrů, krý dosáhn poču k- - k každému původnímu β (,, k) (d až na β ) přísluší nní dvoic paramrů β, γ z nichž dn původní a druhý γ vznikn násobním β hodnoou V případě rlaivně malého poču pozorování v srovnání s počm vsvěluících proměnných rgrsní rovnic k nní d no posup příliš vhodný Nvýhodu sponou s oblasmi nrozhodnulnosi sování závisícími na d, d D u Durbin-Wasonova koficinu odsraňu podobně konsruovaná míra známá ako Koficin auorgrs s v omo případě br iž ako známý 4

5 D) von Numannův koficin (podíl) auokorlac rziduí ao míra dfinována vzahm (7) vn ( ) Lz ukáza, ž sou-li náhodné složk ε, a d i rzidua normálně rozdělna, pak pro dos vlký poč pozorování má saisika vn aké přibližně normální rozdělní Jí sřdní hodnoa a rozpl sou dán výraz (7A) E vn) 4 ( ) ( + )( ) ( D ( vn) Kriické hodno vn -podílu sou pro různá a obvkl používané hladin významnosi ablován V siuacích, kd s mzi vsvěluícími proměnnými obvuí éž zpožděné ndognní proměnné, nní použií Durbin-Wasonova koficinu vhodné Rzidua získaná modou OLS nsou v omo případě nzávisl rozdělna, dokonc ani hd n, sou-li nzávisl rozděln náhodné složk ε o snižu přínos éo saisik při aplikaci v konomrických modlch Příčinou oho, ž DW-koficin ndává při příomnosi vsvěluících zpožděných ndognních proměnných obkivní závěr, skučnos, ž DW-koficin s v omo případě blíží k v důsldku výsku právě ěcho proměnných, nn v důsldku příomných (případně však i nauokorlovaných) náhodných složk Poznámka 5 Z výrazu (7) zřmé, ž mzi oběma charakrisikami plaí Účinněším indikáorm v někrých siuacích VN DW E) Durbinova h-saisika auokorlac rziduí dfinována násldovně (8) h ( DW ) var( b ) / kd var( b ) odhad výběrového rozplu odhadnuého rgrsního koficinu u zpožděné ndognní proměnné Při nulové hpoéz o sériové nzávislosi náhodných složk h-saisika asmpoick normálně rozdělna (s nulovou sřdní hodnoou a dničkovým rozplm) Lz i sova ako normální směrodanou odchlku (alrnaivní hpoézou příomnos auokorlac řádu) Omznos ího použií vplývá z podmínk kladného mnoval var( b ) Zd nuno uplani alrnaivní sovací posup von Numan, John: Disribuion of h raio of h Man Squar Succssiv Diffrnc o h Varianc Annals of Mahmaical Saisics 94 s

6 Poznámka 5 V případě, ž h-saisika nní dfinována, doporuču s (násldně po provdní OLS-rgrs) např dfinova rgrsní rovnici v varu (9) α + α + + η sování hpoéz s přvd na sování saisické významnosi koficinu α v éo rgrsi F) Brnblu-Wbbův s 4 založn na saisic () BW u kd u sou rzidua z rgrs prvních difrncí proměnných (bz konsan) z rgrs na první difrnc vsvěluících () β(,) + β(,) + + βk( k,k) + ς Jmnoval () obvklý SSE, do krého vsupuí původní rzidua z OLS-rgrs () β + β + β + + βkk + ε Poznámka 6 Jn pro upřsnění znační: εˆ a u ςˆ Jsliž původní rovnic obsahu konsanu, můžm uží abulk pro D-W sovou saisiku pro posouzní hodno B-W-saisik BW-saisika navíc uplanilná, i kdž s vskn siuac, kd 5 4 Brnblu, I,I, Wbb, G,I: A Nw s for Auocorrlad Errors in h Linar Rgrssion Modl Journal of h Roal Saisical Soci Vol5/97 s -5 5 Sacionariu procsu, k ímuž zaišění ao podmínka nuná, zaišťu zd uplanění difrncovaných pravosranných proměnných 6

7 7 Jsliž modl homoskdasický a sou-li náhodné složk rgrsní rovnic gnrován auorgrsním schémam řádu, lz zapsa kovarianční maici náhodných složk v náslduící podobě: Σ σ ε ε E ) ', ( V éo maic, ak parno, sou na hlavní diagonál samé dničk a na rovnoběžkách s ouo hlavní diagonálou vžd příslušné mocnin s, kd s rovno rozdílu indů příslušného prvku od souču indů diagonálního prvku (lžícího na sném řádku, rsp sloupci) Při akovémo schémau lz uplani zobcněnou modu nmnších čvrců GLS ak, ž s ransformac původních pozorování provd ak, ž s k éo ransformaci použi maic R v varu R ao maic má nnulové prvk n v dvou řadách dnou hlavní diagonála, krá má všchn prvk rovn až na první prvk, hož hodnoa a druhou nnulovou řadou řada lžící bzprosřdně pod hlavní diagonálou, krá obsazna prvk s hodnoami rovnými Příslušná ransformac s pak proví ím způsobm, ž pozorování sou upravna do éo podob * X, * zn ž -ý sloupc maic X obsazn (vžd až na první prvk) zobcněnými difrncmi 6 6 Někd s no posup nazývá Prais-Winsnovou ransformací

= 1, což však má oprávnění jen v určitých situacích. V takovémto případě lze chování produkce vystihnout závislostí K L

= 1, což však má oprávnění jen v určitých situacích. V takovémto případě lze chování produkce vystihnout závislostí K L 3 lasické funkční vary v orii produkc 3. COBB- DOUGASova produkční funkc Tno funkční var popisuj vzah mzi produkcí a výrobními fakory prác a kapiál mocninným vyjádřním j. (3.) kd s pro paramry zpravidla

Více

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t)

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t) čbní xy pro Elkrochnik Ing. Kindrá Alxandr Přchodové jvy Účlm éo knihy j nači sdny řši přchodové jvy v obvodch. řád yp a sznámi j s oricko problmaiko přchodových jvů v obvodch. řádů yp. Přchodové jvy v

Více

Časové řady typu I(0) a I(1)

Časové řady typu I(0) a I(1) Aca oconomca pragnsa 6: (2), sr. 7-, VŠE Praha, 998. ISSN 572-343 (Rukops) Časové řady ypu I() a I() Josf Arl Úvod Př analýz konomckých časových řad má smysl rozlšova saconární a nsaconární časové řady.

Více

MECHANICKÉ KMITÁNÍ TLUMENÉ

MECHANICKÉ KMITÁNÍ TLUMENÉ MECHNICKÉ KMITÁNÍ TLUMENÉ V skučnosi s čás nrgi u všch mchanických pohybů přměňuj vlivm řní a odporu prosřdí na plo, a nní dy využia V om případě s vlikosi po sobě jdoucích ampliud zmnšují a kmiající sousava

Více

SP2 01 Charakteristické funkce

SP2 01 Charakteristické funkce SP 0 Chararisicé func Chararisicé func pro NP Chararisicé func pro NV Náhld Náhodnou proměnnou, nbo vor, L, n lz popsa funčními chararisiami: F, p, f číslnými chararisiami: E, D, A, A 4 Co s dá z čho spočía:

Více

Úhrada za ústřední vytápění bytů II

Úhrada za ústřední vytápění bytů II Úhrada za úsřdní vyápění byů II Anoac Článk j druhým z séri příspěvků, krými jsou prsnovány dlouholé výsldky prác na Tchnické univrziě v Librci v oblasi rozpočíávání nákladů na vyápění pomocí poměrových

Více

část 8. (rough draft version)

část 8. (rough draft version) Gntika v šlchtění zvířat TGU 006 9 Odhad PH BLUP M část 8. (rough draft vrsion V animal modlu (M s hodnotí každé zvíř samostatně a současně v závislosti na užitkovosti příbuzných jdinců hodnocné populac.

Více

Modely veličin spojitých v čase funkce spojité v čase Binární matematické operace konvoluce a korelace

Modely veličin spojitých v čase funkce spojité v čase Binární matematické operace konvoluce a korelace Modly vličin spojiých v čas funkc spojié v čas Binární mamaické oprac konvoluc a korlac Základní informac Na konvoluci lz nahlíž jako na nudnou mamaickou opraci mzi dvěma funkcmi s jjími vlasnosmi a zákoniosmi.

Více

5. Modifikovaný exponenciální trend

5. Modifikovaný exponenciální trend 5. Modifikovaný exponenciální rend Tvar rendu Paraer: α, β, Tr = + α β, =,..., n ( β > 0) Hodí se k odelování rendu s konsanní podíle sousedních diferencí Aspoick oezen (viz obr., α < 0,0 < β 0) α

Více

Phillipsova křivka a její vypovídací schopnost v podmínkách české ekonomiky v letech

Phillipsova křivka a její vypovídací schopnost v podmínkách české ekonomiky v letech Phillipsova křivka a jjí vypovídací schopnos v podmínkách čské konomiky v lch 1993-005. Karl Škr Absrak Tao prác má za cíl analyzova vzah mzi nzaměsnanosí a inflací v Čské rpublic za období 1993 005. První

Více

I. MECHANIKA 8. Pružnost

I. MECHANIKA 8. Pružnost . MECHANKA 8. Pružnost Obsah Zobcněný Hookův zákon. ntrprtac invariantů. Rozklad tnzorů na izotropní část a dviátor. Křivka dformac. Základní úloha tori pružnosti. Elmntární Hookův zákon pro jdnoosý tah.

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonomerie Heeroskedasicia Cvičení 7 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady. E(u) = 0 náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované. finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární

Více

Digitální učební materiál

Digitální učební materiál Číslo projku Názv projku Číslo a názv šablony klíčové akvy Dgální učbní marál CZ..07/.5.00/4.080 Zkvalnění výuky prosřdncvím CT / novac a zkvalnění výuky prosřdncvím CT Příjmc podpory Gymnázum, Jvíčko,

Více

Derivace funkce více proměnných

Derivace funkce více proměnných Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme

Více

V EKONOMETRICKÉM MODELU

V EKONOMETRICKÉM MODELU J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům

Více

0.1 reseny priklad 4. z

0.1 reseny priklad 4. z Uvadim dva rsn priklad, abch pokud mozno napravil zmak na cvicni. Js o okomnuju pris.. rsn priklad 4. z 9.. Najd sandardni fundamnalni maici pro Cauchho ulohu = 7 + + 5 = Prislusna maic j 7 5 a jji vlasni

Více

7. Soustavy lineárních diferenciálních rovnic.

7. Soustavy lineárních diferenciálních rovnic. 7 837 4:3 Josf Hkrdla sousavy liárích difrciálích rovic 7 Sousavy liárích difrciálích rovic Příklad 7 3 + 5 + ( ) ξ 3 + ( ) ξ Maicový zápis 3 5 + 3 ( ) ξ ( ) ξ Dfiic 7 (sousava liárích difrciálích rovic

Více

Volba vhodného modelu trendu

Volba vhodného modelu trendu 8. Splinové funkce Trend mění v čase svůj charaker Nelze jej v sledovaném období popsa jedinou maemaickou křivkou aplikace echniky zv. splinových funkcí: o Řadu rozdělíme na několik úseků o V každém úseku

Více

PJS Přednáška číslo 2

PJS Přednáška číslo 2 PJS Přdnáška číslo Jdnoduché lkromagncké přchodné děj Přdpoklady: onsanní rychlos všch očvých srojů (časové konsany dlší nž u l.-mg. dějů) a v důsldku oho frkvnc lkrckých vlčn. Pops sysému bud provdn pomocí

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

ε, budeme nazývat okolím bodu (čísla) x

ε, budeme nazývat okolím bodu (čísla) x Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž

Více

Heteroskedasticita. , což by odpovídalo homoskedasticitě 2 T

Heteroskedasticita. , což by odpovídalo homoskedasticitě 2 T Hrosdasca Problém hrosdasc s vzahuj nsjné vlos dagonálních prvů ovaranční mac Σ voru náhodných slož ε jdnorovncového onomrcého modlu. Mac Σ j v omo případě dagonální avša jjí dagonální prv rozpl náhodných

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

10 Lineární elasticita

10 Lineární elasticita 1 Lineární elasicia Polymerní láky se deformují lineárně elasicky pouze v oblasi malých deformací a velmi pomalých deformací. Hranice mezi lineárním a nelineárním průběhem deformace (mez lineariy) závisí

Více

Schéma modelu důchodového systému

Schéma modelu důchodového systému Schéma modelu důchodového sysému Cílem následujícího exu je názorně popsa srukuru modelu, kerý slouží pro kvanifikaci příjmové i výdajové srany důchodového sysému v ČR, a o jak ve varianách paramerických,

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je. Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

2 VYBRANÉ PRAVDPODOBNOSTNÍ MODELY. as ke studiu: 60 minut. Cíl: Po prostudování této kapitoly budete umt popsat a použít pro popis technických proces:

2 VYBRANÉ PRAVDPODOBNOSTNÍ MODELY. as ke studiu: 60 minut. Cíl: Po prostudování této kapitoly budete umt popsat a použít pro popis technických proces: as sudiu: 6 minu Cíl: o rosudování éo aiol bud um osa a ouží ro ois chnicých rocs: Erlangovo rozdlní Wibullovo rozdlní Logarimico normální rozdlní Vícrozmrné normální rozdlní VÝKLAD. Erlangovo rozdlní

Více

02 Systémy a jejich popis v časové a frekvenční oblasti

02 Systémy a jejich popis v časové a frekvenční oblasti Modul: Analýza a modlování dynamických biologických dat Přdmět: Linární a adaptivní zpracování dat Autor: Danil Schwarz Číslo a názv výukové dnotky: Systémy a ich popis v časové a frkvnční oblasti Výstupy

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Martina Čechvalová. Speciální problémy regrese v ekonomii a financích

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Martina Čechvalová. Speciální problémy regrese v ekonomii a financích Univerzia Karlova v Praze Maemaicko-fyzikální fakula BAKALÁŘSKÁ PRÁCE Marina Čechvalová Speciální problémy regrese v ekonomii a financích Kaedra pravděpodobnosi a maemaické saisiky Vedoucí bakalářské práce:

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

4. Střední radiační teplota; poměr osálání,

4. Střední radiační teplota; poměr osálání, Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází

Více

Aplikace VAR ocenění tržních rizik

Aplikace VAR ocenění tržních rizik Aplkac VAR ocnění tržních rzk Obsah: Zdroj rzka :... 2 Řízní tržního rzka... 2 Měřní tržního rzka... 3 Modly... 4 Postup výpočtu... 7 Nastavní modlu a gnrování Mont-Carlo scénářů... 7 Vlčny vyjadřující

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK11 Základy ekonometrie Autokorelace Cvičení 5 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

Vlny v plazmatu. Lineární vlny - malá porucha určitého v čase i prostoru pomalu proměnného stavu

Vlny v plazmatu. Lineární vlny - malá porucha určitého v čase i prostoru pomalu proměnného stavu Vlny v plazmatu linární nlinární Linární vlny - malá porucha určitého v čas i prostoru pomalu proměnného stavu Linární rozvoj vličin a = a + a ( r, t) b= b + b ( r, t) a, b mohou obcně být funkcmi r, t

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základ ekonometrie Odhad klasického lineárního regresního modelu I Cvičení 2 Zuzana Dlouhá Metodologický postup tvor EM 1. Specifikace modelu určení proměnných určení vzájemných vaze mezi proměnnými

Více

NA POMOC FO. Pád vodivého rámečku v magnetickém poli

NA POMOC FO. Pád vodivého rámečku v magnetickém poli NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním

Více

Model spotřeby soukromého sektoru (domácností)

Model spotřeby soukromého sektoru (domácností) Makokonomická analýza přdnáška Modl spořby soukomého skou (domácnosí) Přdpoklady Exisují pouz domácnosi j. uvažujm pouz spořbu nxisují žádné invsic. Exisuj pouz jdn yp spořbního saku. Exisují pouz dvě

Více

Parciální funkce a parciální derivace

Parciální funkce a parciální derivace Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci

Více

Metody ešení. Metody ešení

Metody ešení. Metody ešení Mtod šní z hldiska kvalit dosažného výsldku ) p ř sné mtod p ř ímé ř šní difrnciálních rovnic, většinou pro jdnoduché konstrukc nap ř. ř šní ohbu prutu p ř ímou intgrací ) p ř ibližné mtod náhrada hldané

Více

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt

Více

Cvičení k návrhu SSZ. Ing. Michal Dorda, Ph.D.

Cvičení k návrhu SSZ. Ing. Michal Dorda, Ph.D. Cvičení k návrhu SSZ Ing. Michal Dorda, Ph.D. Výpoče mezičasů Ing. Michal Dorda, Ph.D. 2 Výpoče mezičasů Př. 1: Sanove mezičas pro následující siuaci. Vyklizovací dráha vozidla je přímá o délce 20 m, najížděcí

Více

Diferenciální počet funkcí více reálných proměnných SLOŽENÉ FUNKCE. PŘÍKLAD 1 t, kde = =

Diferenciální počet funkcí více reálných proměnných SLOŽENÉ FUNKCE. PŘÍKLAD 1 t, kde = = Diferenciální poče funkcí více reálných proměnných -- SLOŽENÉ FUNKCE PŘÍKLAD Určee derivaci funkce h ( = f( g( g( kde g ( = + g ( = f ( / = e Podle pravidla o derivování složených funkcí více proměnných

Více

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8 Biologické modely Rober Mařík 9. lisopadu 2008 Obsah 1 Diferenciální rovnice 3 2 Auonomní diferenciální rovnice 8 3 onkréní maemaické modely 11 Dynamická rovnováha poču druhů...................... 12 Logisická

Více

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav 5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických

Více

Práce a výkon při rekuperaci

Práce a výkon při rekuperaci Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava

Více

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Meodika zpracování finanční analýzy a Finanční udržielnos projeků PŘÍLOHA

Více

Vlny v plazmatu. Lineární vlny - malá porucha určitého stacionárního konstantního nebo v čase a/nebo v prostoru pomalu proměnného stavu

Vlny v plazmatu. Lineární vlny - malá porucha určitého stacionárního konstantního nebo v čase a/nebo v prostoru pomalu proměnného stavu Vlny v plazmatu linární nlinární Linární vlny - malá porucha určitého stacionárního konstantního nbo v čas a/nbo v prostoru pomalu proměnného stavu Linární rozvoj vličin a a+ a(,) rt b b+ b(,) rt a, b

Více

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D

Více

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Autokorelace - teorie Zopakujte si G-M

Více

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Indexy základní, řeězové a empo přírůsku Aleš Drobník srana 1 7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU V kapiole Indexy při časovém srovnání jsme si řekli: Časové srovnání vzniká, srovnáme-li jednu

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha. Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

Základy maticového počtu Matice, determinant, definitnost

Základy maticového počtu Matice, determinant, definitnost Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvaniaivní meod I Přednáška 3 Zuzana Dlouhá Předmě a srukura kurzu. Úvod: srukura empirických výzkumů. vorba ekonomických modelů: eorie 3. Daa: zdroje a p da, význam popisných charakerisik

Více

Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).

Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ). Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

Maxwellovy a vlnová rovnice v obecném prostředí

Maxwellovy a vlnová rovnice v obecném prostředí Maxwellovy a vlnová rovnie v obeném prosředí Ing. B. Mihal Malík, Ing. B. Jiří rimas TCHNICKÁ UNIVRZITA V LIBRCI Fakula meharoniky, informaiky a mezioborovýh sudií Teno maeriál vznikl v rámi proeku SF

Více

Stavový model a Kalmanův filtr

Stavový model a Kalmanův filtr Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO

Více

1.3.4 Rovnoměrně zrychlený pohyb po kružnici

1.3.4 Rovnoměrně zrychlený pohyb po kružnici 34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb

Více

Diferenciální rovnice 1. řádu

Diferenciální rovnice 1. řádu Kapiola Diferenciální rovnice. řádu. Lineární diferenciální rovnice. řádu Klíčová slova: Obyčejná lineární diferenciální rovnice prvního řádu, pravá srana rovnice, homogenní rovnice, rovnice s nulovou

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat

Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat Vojěch Janoušek: III. Sascké zpracování a nerpreace analyckých da Úvod III. Zpracování a nerpreace analyckých da Sascké vyhodnocení analyckých da Zdroje chyb, přesnos a správnos analýzy Sysemacké chyby,

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

Analýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA

Analýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA 4 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 11-12 září 2008 Analýza rizikových fakorů při hodnocení invesičních projeků dle kriéria

Více

18AEK Aplikovaná ekonometrie a teorie časových řad. Řešení domácích úkolů č. 1 a 2 příklad 1

18AEK Aplikovaná ekonometrie a teorie časových řad. Řešení domácích úkolů č. 1 a 2 příklad 1 18AEK Aplikovaná ekonometrie a teorie časových řad Řešení domácích úkolů č. 1 a 2 příklad 1 Obecné pravidlo pro všechny testy Je stanovena nulová hypotéza: H 0 Je stanovena alternativní hypotéza: H A Je

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP NVEZTA PADBCE FAKLTA CHEMCKO-TECHNOLOGCKÁ Kadra fyzky ZÁKLADY FYZKY Pro obory DMML, TŘD a AD prznčního suda DFJP NDr. Jan Z a j í c, CSc., 005 3. ELEKTCKÝ POD 3. ZÁKLADNÍ POJMY Pod pojmm lkrcký proud chápm

Více

= μ. (NB.3.1) L kde bezrozměrný kritický moment μ cr je: Okrajové podmínky při kroucení Krouticí zatížení α β. (volná deplanace) obecné 3,7 1,08

= μ. (NB.3.1) L kde bezrozměrný kritický moment μ cr je: Okrajové podmínky při kroucení Krouticí zatížení α β. (volná deplanace) obecné 3,7 1,08 Kroucení NB. Vniřní síl od kroucení Výsledk jednodušené analý pruů oevřeného průřeu se anedbáním účinku prosého kroucení ve smslu 6..7.(7) le upřesni na ákladě následující modifikované analogie ohbu a

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě

Více

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál) INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc

Více

POPIS OBVODŮ U2402B, U2405B

POPIS OBVODŮ U2402B, U2405B Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody

Více

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Základní ransformace časových řad Veškeré násroje základní korelační analýzy, kam paří i lineární regresní (ekonomerické) modely

Více

Skupinová obnova. Postup při skupinové obnově

Skupinová obnova. Postup při skupinové obnově Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi

Více

10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 1

10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 1 10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA slid 1 Přdmětm přdnášky jsou tři modly agrgátní nabídky, v ktrých v krátkém období výstup pozitivně závisí na cnové hladině. Krátkodobý invrzní vztah mzi inflací

Více

Vybrané metody statistické regulace procesu pro autokorelovaná data

Vybrané metody statistické regulace procesu pro autokorelovaná data XXVIII. ASR '2003 Seminar, Insrumens and Conrol, Osrava, May 6, 2003 239 Vybrané meody saisické regulace procesu pro auokorelovaná daa NOSKIEVIČOVÁ, Darja Doc., Ing., CSc. Kaedra konroly a řízení jakosi,

Více

EI GI. bezrozměrný parametr působiště zatížení vzhledem ke středu smyku ζ g =

EI GI. bezrozměrný parametr působiště zatížení vzhledem ke středu smyku ζ g = NB.3 NB.3.1 Rosah planosi Pružný kriický momen π I µ cr 1 + κ w + ζ k 诲诲쩎睃睅 睅 a s 5 s ( + ) I A 1 ψ f )I (hf / ) (1) Posup uvedený v éo příloe je vhodný pro výpoče kriického momenu nosníků konsanního dvojose

Více

2. Frekvenční a přechodové charakteristiky

2. Frekvenční a přechodové charakteristiky rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy

Více

Věstník ČNB částka 16/2004 ze dne 25. srpna 2004

Věstník ČNB částka 16/2004 ze dne 25. srpna 2004 Třídící znak 1 0 6 0 4 6 1 0 ŘEDITEL SEKCE BANKOVNÍCH OBCHODŮ VYHLAŠUJE Ú P L N É Z N Ě N Í OPATŘENÍ ČESKÉ NÁRODNÍ BANKY Č. 2/2003 VĚST. ČNB, KTERÝM SE STANOVÍ MINIMÁLNÍ VÝŠE LIKVIDNÍCH PROSTŘEDKŮ A PODMÍNKY

Více

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Sední rmslová škola elekroechnická a Všší odborná škola, Pardubice, Karla IV. 3 LABORATORNÍ CVIENÍ Sední rmslová škola elekroechnická Píjmení: Hladna íslo úloh: 2 Jméno: Jan Daum mení: 3. ÍJNA 2006 Školní

Více

ANALÝZA KATEGORIÁLNÍCH DAT PROBLÉM VÍCENÁSOBNÉ VOLBY V ODPOVĚDI. Julie Rendlová. Robust, Jeseníky,

ANALÝZA KATEGORIÁLNÍCH DAT PROBLÉM VÍCENÁSOBNÉ VOLBY V ODPOVĚDI. Julie Rendlová. Robust, Jeseníky, ANALÝZA KATEGORIÁLNÍCH DAT PROBLÉM VÍCENÁSOBNÉ VOLB V ODPOVĚDI Juli Rndlová Katdra matmatické analýzy a aplikací matmatiky, Přírodovědcká fakulta, Univrzita Palackého v Olomouci Robust, Jsníky, 5. 9. 26

Více

OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE

OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE OBECNÁ LOÁLNĚ PODEPŘENÁ ŽELEZOBETONOÁ STROPNÍ ONSTRUCE Je dán železobeonový monoliický skele (viz schéma konsrukce). Sousední desková pole jsou zaížena rozdílným užiným zaížením. Meodou součových momenů

Více

β 1 β Y L a tím i ekonomicky názorně interpretovatelný vztah o závislosti veličiny L K (vybavenost práce kapitálem).přitažlivost

β 1 β Y L a tím i ekonomicky názorně interpretovatelný vztah o závislosti veličiny L K (vybavenost práce kapitálem).přitažlivost 3 Klasické funkční vary v eorii produkce 3. COBB- DOUGLASova produkční funkce Teno funkční var popisuje vzah mezi produkcí a výrobními fakory práce a kapiál mocninným vyjádřením j. (3.) K kde se pro paramery

Více