Matematika III - 1. přednáška Funkce více proměnných: křivky, směrové derivace
|
|
- Břetislav Prokop
- před 6 lety
- Počet zobrazení:
Transkript
1 Matematika III - 1. přednáška Funkce více proměnných: křivky, směrové derivace Michal Bulant Masarykova univerzita Fakulta informatiky
2 Q Literatura Q Zobrazení a funkce více proměnných 9 Funkce více proměnných Topologie euklidovských prostorů 9 Křivky v euklidovských prostorech Limita a spojitost funkce Q Parciální a směrové derivace Parciální derivace Směrové derivace
3 Martin Panák, Jan Slovák, Drsná matematika, e-text. Zuzana Došlá, Ondřej Došlý, Diferenciální počet funkcí více proměnných, MU Brno, 2006, 150 s. Zuzana Došlá, Roman Plch, Petr Sojka, Diferenciální počet funkcí více proměnných s programem Maple, MU Brno, 1999, 273 s. (příp. a Předmětové záložky v IS MU
4 V diferenciálním a integrálním počtu funkcí jedné proměnné jsme se (jak už název napovídá) zabývali zobrazeními f : R -» R. Přirozeně se nabízí otázka, jak příslušné pojmy zobecnit pro případ zobrazení f : R m -» R". Začneme dvěma speciálními případy: n=l - funkce více proměnných m=l - křivka v prostoru R"
5 Definice Zobrazení f : R" > R nazýváme reálna funkce více proměnných (ty obvykle značíme x\,..., x ). Pro n = 2 nebo n = 3 často místo číslovaných proměnných používáme písmena x,y,z. To znamená, že funkce f definované v prostoru" E n = R" budou značeny f :R" 3 (xi,...,x ) ^ f(xi,...,x ) G R a např. funkce f definované v rovině" E2 = R 2 budou značeny f : R 2 3 (x, y) ^ f (x, y) G R ^^^» Definiční obor A c R" - množina, kde je funkce definována. (Častým úkolem - nejen - v písemkách bývá nalézt k dané formuli pro funkci co největší definiční obor, na kterém má tato formule smysl.)
6 Definiční obor funkce Zobrazeni a funkce vice promennýcl o«ooooooooooooooooo Příklad Nalezněte a v rovině zobrazte definiční obor funkce ^ f(x, y) = arccos(x 2 + y 2-1) + y x + \y\ --V2. Funkce arccos připouští argument pouze z intervalu [ 1,1], odmocnina připouští pouze nezáporný argument. Definičním oborem je tedy množina bodů (x, y) vyznačená na obrázku.
7 Definice Grafem funkce více proměnných je podmnožina GfCR"xR = R n+1 splňující Gf = {(*i,,x n, f(xi,,x )); (xi,...,x n ) e A}, kde A je definiční obor funkce f. Příklad ^ Grafem funkce definované v E 2 c Í \ x + y 2- je plocha na obrázku, maximálním definičním oborem je E 2 \{(0,0)} ^~x o^^p ^2^ľ ^-3 3
8 Vrstevnice funkce dvou proměnných U funkcí dvou proměnných uvažujeme pro lepší názornou představu rovněž tzv. vrstevnice funkce (obdoba vrstevnic v geografickém smyslu). Definice Nechť f : R 2 --^Rje funkce d vou proměnných c G R. M nožinu fc = (*, y) er 2 :f(x,y) = c nazýváme vrstevnice funkce f na úrovni c. Zřejmě jde v případě vrstevnice na úrovni c o přímou analogii řezu grafu funkce f rovinou z = c. Pro představu o grafu funkce dvou proměnných jsou samozřejmě užitečné rovněž řezy rovinami x = 0 (bokorys), y = 0 (nárys), z = 0 (půdorys).
9 Zobrazeni a funkce vice promennýcl OOOO0OOOOOOOOOOOOOO Příklad Pomocí vrstevnic a řezů určete graf funkce f{x,y) = yx 2 + y Řešení Viz ilustrace v programu Maple.
10 Topologie euklidovských prostorů Euklidovský prostor E n je množina bodů (bez volby souřadnic) spolu se zaměřením R", což je vektorový prostor možných přírůstků, které umíme k bodům prostoru E n přičítat. Navíc je na R" definován standardní skalární součin u v = Y!i=i x iyi' kde u = (xi,...,x n ) a v = (yi,., y n ) jsou libovolné vektory. Proto je na E n dána metrika, tj. funkce vzdálenosti Q-P dv bodů P, Q předpisem l<?-p kde u je vektor, jehož přičtením k P obdržíme Q. Např. v E2 je vzdálenost bodů P\ = (x\,yi) a P2 = (*2,y2) dána P2-Pi 2 = (xi-x 2 ) 2 + ( yi -y 2 ) 2. Trojúhelníková nerovnost pro každé tři body P, Q, R I/?-PII (Q-P) + (P-Q) < (Q-P) + (P-Q). n ;=i
11 Rozšíření pojmů topologie R pro body P, libovolného Euklidovského E n \ Definice Cauchyovská posloupnost - \\P; Pj\\ < e, pro každé pevně zvolené e > 0 až na konečně mnoho výjimečných hodnot i, j (nebo taky P,- Pj\\ < e pro všechna i, j > N a vhodné A/GN), konvergentní posloupnost - \\P; P\\ < e, pro každé pevně zvolené e > 0 až na konečně mnoho výjimečných hodnot /',_/', bod P pak nazýváme limitou posloupnosti P/, hromadný bod P množiny A cf - existuje posloupnost bodů v A konvergující k P a vesměs různých od P,
12 Definice uzavřená množina - obsahuje všechny své hromadné body, otevřená množina - její doplněk je uzavřený, otevřené o-okolí bodu P - množina O s {P) = {Q e E - \\P-Q\\ <ö}, 9 hraniční bod P množiny A - každé č-okolí bodu P má neprázdný průnik s A i s komplementem E n \ A, vnitřní bod P množiny A - existuje č-okolí bodu P, které celé leží uvnitř A, 9 ohraničená množina - leží celá v nějakém č-okolí některého svého bodu (pro dostatečně velké ö), 9 kompaktní množina - uzavřená a ohraničená množina. Pozn: pozor na kvantifikátory!
13 Pro podmnožiny A C E n v euklidovských prostorech platí: O A je otevřená, právě když je sjednocením nejvýše spočetného systému 5-okolí, O každý bod a G A je buď vnitřní nebo hraniční, O každý hraniční bod je buď izolovaným nebo hromadným bodem A, O A je kompaktní, právě když každá v ní obsažená nekonečná posloupnost má podposloupnost konvergující k bodu v A, Q A je kompaktní, právě když každé její otevřené pokrytí obsahuje konečné podpokrytí,
14 PBfl O Jsou-li ACR m ß C R" otevřené, je otevřená i množina Ax ß C R m +" Q Jsou-li ACR m B C R" uzavřené, je uzavřená i množina Ax B C R m +" O Jsou-li ACR m B C R" kompaktní, je kompaktní i množina Ax B C R m +"
15 Křivky Už na příkladu s vrstevnicemi jsme viděli příklad prostorových' křivek. Definice Křivka je zobrazení c E n. Je třeba rozlišovat křivku a její obraz v E n \ Příklad Obrazem křivky ři > (cos(ř),sin(ř)), ŕ G M v rovině Ei je jednotková kružnice, stejně jako v případě jiné křivky ř i-» (cos(ř 3 ), sin(ř 3 )), ŕ e R.
16 Analogicky k funkcím v jedné proměnné: Definice Limita: lim t^to c(ř) G E Derivace: c'(řo) = lim t^to (c(t)-c(to)) t-t 0 Integrál: f a b c(t)dt <ER n. Limity, derivace i integrály lze spočítat po jednotlivých n souřadných složkách.
17 Analogie souvislosti Riemannova integrálu a primitivní funkce (= antiderivace) pro křivky: Je-li c : R > R" křivka spojitá na intervalu [a, b], pak existuje její Riemannův integrál J a c{ť)dt. Navíc je křivka C(ř) = I c(s)ds G R" dobře definovaná, diferencovatelná a platí C'(ř) = c(ř) pro všechny hodnoty t G [a, b].
18 Poznámka Ne vše funguje tak jako u funkcí jedné proměnné: Věta o střední hodnotě dává pro křivku c(ř) = (ci(ř),..., c (r)) existenci čísel íy takových, že c i (b)-c i (a) = (b-a)c' i (t i ). Tato čísla ale budou obecně různá, nemůžeme proto vyjádřit rozdílový vektor koncových bodů c(b) c{a) jako násobek derivace křivky v jediném bodě. Např. v rovině E2 pro c(ř) = (x(ř),y(ř)) takto dostáváme c{b) - c{a) = (x>(ab- a ),y'(ri)(b-z)) = {b-a)- {AO,Av)) pro dvě (obecně různé) hodnoty, rj G [a, b].
19 Tečna ke křivce Derivace zadává tečný vektor ke křivce c : R > E v bodě c(řo) e - vektor c'(řo) em"v prostoru zaměření R" daný derivací. Přímka zadaná parametricky T : c(řo) +r c'(řo) je tečna ke křivce c v bodě řo, narozdíl od tečného vektoru nezávisí na parametrizaci křivky c. V geometrii a fyzice se v souvislosti s křivkami zavádějí i další pojmy: Příklad Pro křivku c(ř) = (cosř, ř, ŕ 2 ), ŕ G [0, 3] určete rychlost, velikost rychlosti a zrychlení v čase ř = 0. c'(ř) = (- sin ř, 1,2ř), c"(ř) = (- cos t, 0,2), c'(0) = (0,1,0), c'(0) = 1, c"(0) = (-1,0,2). Zrychlení ve směru tečny je pak M^JL,, ((:'(()) c"(0)).
20 Definici limity funkce v bodě lze takřka slovo od slova přepsat podle situace v případě funkcí jedné proměnné (okolí bodu již ale samozřejmě vypadají jinak). Definice Funkce f : R" > R má ve svém hromadném bodě a e R" limitu L, jestliže ke každému okolí O(L) bodu L existuje okolí 0{a) bodu a tak, že pro všechna x G 0{a) \ {a} platí r(x)e 0{L) Píšeme lim f{x) = L. x >a Obdobně jde (při vhodné definici okolí) limitu definovat i v nevlastních" bodech (kterých je pro n > 1 již 2"). Má-li mít funkce v daném bodě limitu, nesmí záležet na cestě", po které k danému bodu konvergujeme (analogie limit zleva a zprava u funkcí jedné proměnné).
21 Vlastnosti limit oooooooooooooooo«oo Analogické jako v případě jedné proměnné: jednoznačnost limity, věta o třech limitách a, linearita, tj. lim (c f{x) + d g{x)) = c lim f{x) + d lim g(x), multiplikativita, divisibilita, je-li lim x^a f{x) = 0 a funkce g{x) je ohraničená v nějakém ryzím okolí bodu x, pak lim f{x)g{x) = 0. 3 někdy také o dvou policajtech
22 [ Příklad Vypočtěte limitu fur ikce f{x,y) Vx 2 +y 2 +l-l v bodě (0,0). Příklad Vypočtěte limitu funkce f(x, y) (x + y) sin i sin ^ v bodě (0, 0). I [ Příklad Vypočtěte limitu fur ikce f(x,y)
23 Spojitost funkce Definice Funkce f :R" > R je spojitá v hromadném bodě a G R", pokud má v a vlastní limitu a platí lim X >3 f{x) = - f {a). Věta (Weierstrassova) Spojitá funkce na kompaktní množině zde nabývá maxima i minima. Věta (Bolzanova) Nechť f : R" > R _/e spojitá na otevřené souvislé množině A. Jsou-li a, b e A takové, že f (a) < 0 < f(b), pak existuje c G A tak, že f (c) = 0.
24 Parciální derivace jsou nejsnazším rozšířením pojmu derivace funkce jedné proměnné, kdy se na funkci f{x\,..., x ) více proměnných díváme jako na funkci jedné proměnné x, a ostatní považujeme za konstatní. Definice Existuje-li limita Jim - { f í x l, -, x i-i, x i + t, x* +1,, x*) - f(x{,..., x*)), říkáme, že funkce f : R" > R má v bodě (x^,...,x*) parciální derivaci podle proměnné x-, a značíme f Xi ( x i> > x n) (příp. df_ -(x*,...,x*) nebo^.(x*,...,x*)). dx: Podobně jako v případě jedné proměnné, pokud má funkce f : R" > R parciální derivace ve všech bodech nějaké otevřené množiny, jsou tyto derivace rovněž funkcemi z R" do R.
25 Pro funkce v E2 dostáváme d 1 -řrf{xo,yo) = II^TÍ^ + ř >yo) - f{*o,yo)) f(x,yo) - f(xo,yo) lim X^XQ 9 1 ^-f(*o,yo) = \\m-(f(xo,y 0 lim x-x 0 + ř) - r(x 0,yo)) f(*o,y) - f(*o,yo) y-yo Poznámka Parciální derivace funkce f : R 2 > R podle x v bodě (xo,yo) udává směrnici tečny v bodě (xo,yo, f(xo,yo)) ke křivce, která je průsečíkem grafu Gf s rovinou y = yo.
26 Parciální derivace vs. spojitost Rozdíl oproti funkcím jedné proměnné! Protože parciální derivace popisují chování funkce v okolí daného bodu jen velmi omezeně (pouze ve směru souřadných os), může se v jiných směrech chovat velmi divoce. Poznámka Z existence všech parciálních derivací v daném bodě neplyne spojitost v tomto bodě. Příklad Funkce f(x,y) 1 pro x=0 nebo y=0 0 jinak má v bodě (0, 0) obě parciální derivace nulové, přitom v tomto bodě neexistuje limita, a tedy není ani spojitá.
27 Směrové derivace Zmíněný nedostatek parciálních derivací se pokusíme napravit zavedením derivace v libovolném směru. Definice Funkce f : R" > R má derivaci ve směru vektoru v G R" v bodě xef, jestliže existuje derivace d v f{x) složeného zobrazení ř i-» f{x + tv) v bodě ř = 0, tj. často značíme rovněž f v (x). d v f(x)= \\m-{f{x + tv)-f{x)), t->o t Speciální volbou jednotkových vektorů ve směru souřadných os dostáváme právě parciální derivace funkce f.
28 Směrové derivace jsou definovány pomocí derivací jedné proměnné, proto tam platí obvyklá pravidla pro derivování. Existují-li pro v G R" směrové derivace d v f(x), d^ *M funkcí f, g: R n -»M v bodě x e E, pak: O d kv f(x) = k d v f(x), pre libovolné k e R, O d v {f±g){x) = d v f(x)±d v g(x), O d v (fg)(x) = dvf(x)g(x) f{x)d v g{x), O pro g{x) ŕ 0 J e dv M = -^{d vf{x)g{x) - f{x)d v g{x)). Poznámka Neplatí ale aditivita vzhledem ke směrům: d u+v f(x) ŕ d u f(x) + d v f(x)
29 Směrové derivace vs. spojitost Že nám ke spojitosti nepomohlo ani zavedení směrových derivací, ukazuje následující příklad. Příklad Funkce definovaná předpisem 4 2 f{x,y) x y x 8 +y 4 mimo počátek a f (0,0) = 0, má v počátku všechny směrové derivace nulové, přitom zde není spojitá. Ke spojitosti potřebujeme silnější pojem, tzv. totální diferenciál, který si zavedeme příště.
Matematika III - 1. přednáška Funkce více proměnných: křivky, směrové derivace
S Matematika III - 1. přednáška Funkce více proměnných: křivky, směrové derivace Michal Bulant Masarykova univerzita Fakulta informatiky 18. 9. 2007 Q Literatura Q Zobrazení a funkce více proměnných 9
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a
Úvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a
1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
Michal Bulant. Masarykova univerzita Fakulta informatiky
Matematika III 3. přednáška Funkce více proměnných: derivace vyšších řádů, lokální a absolutní extrémy Michal Bulant Masarykova univerzita Fakulta informatiky 6. 10. 2010 Obsah přednášky 1 Literatura 2
Přednáška 6, 6. listopadu 2013
Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,
Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),
Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
Základy matematiky pro FEK
Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru
1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
Limita posloupnosti, limita funkce, spojitost. May 26, 2018
Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a
Dodatek 2: Funkce dvou proměnných 1/9
Dodatek 2: Funkce dvou proměnných 1/9 2/9 Funkce dvou proměnných Definice: Reálnou funkcí dvou reálných proměnných, definovanou na množině M R 2, rozumíme předpis f, který každé uspořádané dvojici reálných
I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou
Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici
verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu
Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové
Parciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
OBECNOSTI KONVERGENCE V R N
FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce
Parciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
LIMITA A SPOJITOST FUNKCE
PŘEDNÁŠKA 5 LIMITA A SPOJITOST FUNKCE 5.1 Spojitost funkce 2 Řekneme, že funkce f(x) je spojitá v bodě a D f, jestliže ke každému ε > 0 existuje δ > 0 takové, že pro každé x (a δ, a + δ) D f platí nerovnost:
Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení
Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky 3. 9. 6 Obsah přednášky Literatura Derivace
Matematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57
Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost
1/15. Kapitola 2: Reálné funkce více proměnných
1/15 Kapitola 2: Reálné funkce více proměnných Vlastnosti bodových množin 2/15 Definice: ε-ové okolí... O ε (X) = {Y R n ρ(x, Y ) < ε} prstencové ε-ové okolí... P ε (X) = {Y R n 0 < ρ(x, Y ) < ε} Definice:
Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy
Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Jan Slovák Masarykova univerzita Fakulta informatiky 3. 10. 2011 Obsah přednášky 1 Literatura
2. přednáška 8. října 2007
2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
Matematika pro informatiky
(FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce
Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení
Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky 6. 9. Obsah přednášky Literatura Derivace vyšších
Matematická analýza pro informatiky I. Limita funkce
Matematická analýza pro informatiky I. 5. přednáška Limita funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz
Posloupnosti a jejich konvergence POSLOUPNOSTI
Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,
Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =
0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si
Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.
Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,
Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.
Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými
Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16
Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.
Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
Kristýna Kuncová. Matematika B3
(5) Funkce více proměnných II Kristýna Kuncová Matematika B3 Kristýna Kuncová (5) Funkce více proměnných II 1 / 20 Parciální derivace - příklad Otázka Tabulka vpravo znázorňuje hodnoty funkce f (x, y).
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení
Přednáška 3: Limita a spojitost
3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice
Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
Matematická analýza III.
2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom
Limita a spojitost funkce
Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu
i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie
MATEMATIKA I Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,
5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
1. přednáška 1. října Kapitola 1. Metrické prostory.
1. přednáška 1. října 2007 Kapitola 1. Metrické prostory. Definice MP, izometrie. Metrický prostor je struktura formalizující jev vzdálenosti. Je to dvojice (M, d) složená z množiny M a funkce dvou proměnných
To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení.
STEJNOMĚRNÁ KONVERGENCE Zatím nebylo v těchto textech věnováno příliš pozornosti konvergenci funkcí, at jako limita posloupnosti nebo součet řady. Jinak byla posloupnosti funkcí nebo řady brána jako. To
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
M. Hojdarová, J. Krejčová, M. Zámková
VŠPJ Matematika II pro studenty oboru Finance a řízení M. Hojdarová, J. Krejčová, M. Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN 978-80-88064-07-7
Otázky k ústní zkoušce, přehled témat A. Číselné řady
Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte
Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:
PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se
PŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]
KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu
IX. Vyšetřování průběhu funkce
IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde
analytické geometrie v prostoru s počátkem 18. stol.
4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami
Posloupnosti a jejich konvergence
a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace, integrály.
Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018
Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf
Kapitola 1. Reálné funkce více reálných proměnných. 1.1 Euklidovský n-rozměrný prostor R n Algebraické vlastnosti prostoru R n
Obsah 1 Reálné funkce více reálných proměnných 5 1.1 Euklidovský n-rozměrný prostor R n...................... 5 1.1.1 Algebraické vlastnosti prostoru R n.................. 5 1.1.2 Metrické vlastnosti prostoru
1 Funkce dvou a tří proměnných
1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2
9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1
9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom
Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
Funkce dvou a více proměnných
Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:
Derivace a monotónnost funkce
Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je
Riemannův určitý integrál
Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami
Limita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
Matematická analýza pro informatiky I.
Matematická analýza pro informatiky I. 10. přednáška Diferenciální počet funkcí více proměnných (II) Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci
Uzavřené a otevřené množiny
Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,
KOMPLEXNÍ ČÍSLA A FUNKCE MNOŽINA KOMPLEXNÍCH ČÍSEL C. Alternativní popis komplexních čísel
KOMPLEXNÍ ČÍSLA A FUNKCE V předchozích částech byl důraz kladen na reálná čísla a na reálné funkce. Pokud se komplexní čísla vyskytovala, bylo to z hlediska kartézského součinu dvou reálných přímek, např.
Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
5.3. Implicitní funkce a její derivace
Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)
Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat
6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat
III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).
III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,
Kapitola 2: Spojitost a limita funkce 1/20
Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010
Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy
METRICKÉ A NORMOVANÉ PROSTORY
PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme
Funkce zadané implicitně
Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf
Matematická analýza pro informatiky I. Spojitost funkce
Matematická analýza pro informatiky I. 6. přednáška Spojitost funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz
Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa
2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz
Derivace funkcí více proměnných
Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,
3. přednáška 15. října 2007
3. přednáška 15. října 2007 Kompaktnost a uzavřené a omezené množiny. Kompaktní množiny jsou vždy uzavřené a omezené, a v euklidovských prostorech to platí i naopak. Obecně to ale naopak neplatí. Tvrzení
ŘADY KOMPLEXNÍCH FUNKCÍ
ŘADY KOMPLEXNÍCH FUNKCÍ OBECNÉ VLASTNOSTI Řady komplexních čísel z n byly částečně probírány v kapitole o číselných řadách. Definice říká, že n=0 z n = z, jestliže z je limita částečných součtů řady z
Zobecněný Riemannův integrál
Zobecněný Riemannův integrál Definice (Zobecněný Riemannův integrál). Buď,,. Nechť pro všechna existuje určitý Riemannův integrál. Pokud existuje konečná limita, říkáme, že zobecněný Riemannův integrál
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21
Průběh funkce Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky
Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je
Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)
MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18
MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,
Význam a výpočet derivace funkce a její užití
OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
a = a 0.a 1 a 2 a 3...
Reálná čísla Definice 1 Nekonečným desetinným rozvojem čísla a nazýváme výraz a = a 0.a 1 a 2 a 3... kde a 0 je celé číslo a každé a i, i =1, 2,... je jedna z číslic 0,...,9. Pokud existuje m N takové,
Základy matematiky pro FEK
Základy matematiky pro FEK 12. přednáška Blanka Šedivá KMA zimní semestr 216/21 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 216/21 1 / 15 Integrování jako inverzní operace příklady inverzních
INTEGRÁLY S PARAMETREM
INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity
Pavlína Matysová. 5. listopadu 2018
Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)