JAK VELKÁ JE TŘETINA KOULE? Úvod

Rozměr: px
Začít zobrazení ze stránky:

Download "JAK VELKÁ JE TŘETINA KOULE? Úvod"

Transkript

1 South Bohemia Mathematical Letters Volume 20,(2012), No. 1, JAK VELKÁ JE TŘETINA KOULE? LIBUŠE SAMKOVÁ Abstrakt. Článek se zabývá objemovými poměry v kouli. Nabízí odpověď na otázku,jakvysokomusídosahovatvodavdutékouli,abysejejíobjemrovnal třetině objemu koule. Otázka je zobecněna na případ libovolného zlomku m/n a podrobně vyřešena. Řešení vede ke kubické rovnici klasifikované jako tzv. casus irreducibilis, která vyžaduje využití goniometrického tvaru komplexních čísel. Problém je vhodný jako rozšiřující učivo k tématu komplexních čísel na střední škole. Úvod Víte,jakvysokomusídosahovatvodavdutékouli,abysejejíobjemrovnaltřetině objemu koule? Nebo čtvrtině? Obecněji: Jakvysokomusídosahovatvodavdutékouli,abysejejí objem rovnal m/n objemu koule? Tato jednoduše formulovatelná otázka má překvapivě komplikované řešení. 1. Od vzorečku k výsledku Mějmekoulispoloměrem r.jejíobjemjedánvzorcem V koule = 4 πr Vodavkoulivyplňujekulovouúsečoneznámévýšce h.objemkulovéúsečejedán základním vzorcem V usece = 1 6 πh(ρ2 +h 2 ) kde ρ je poloměr podstavy kulové úseče. Obrázek1. Vodavkouli.Situacepro h < r(vlevo)apro h > r(vpravo). Key words and phrases. Objemový poměr; kubická rovnice; casus irreducibilis; goniometrický tvar komplexního čísla.

2 26 LIBUŠE SAMKOVÁ Tento poloměr se z Pythagorovy věty určí jako pro h < r,případnějako pro h > r,vizobr.1.pro h=rje ρ= r 2 (r h) 2 = 2rh h 2 ρ= r 2 (h r) 2 = 2rh h 2 ρ=r= 2rh h 2 Prolibovolnouvýšku hjetedy ρ= 2rh h 2 aobjemkulovéúsečejedánpředpisem V usece = 1 6 πh( (2rh h 2 )+h 2) = 1 πh2 (r h) Pro zjednodušení a zpřehlednění následujících výpočtů si výšku kulové úseče h vyjádřímerelativně,jako α-násobekvýškykoule,tedy h=α 2r.Potom V usece = 1 π(2αr)2 (r 2αr)= 4 πr α 2 ( 2α) Hledáme výšku kulové úseče, jejíž objem se rovná m/n objemu koule, tedy α takové, aby V usece = m n V koule 4 πr α 2 ( 2α) = m 4 n πr α 2 ( 2α) = m n (1.1) 2α α 2 + m n = 0 Tuto kubickou rovnici vyřešíme postupným zavedením několika substitucí. Substitucí α=x+ 1 2 jipřevedemenatzv.redukovanýtvar (1.2) x 4 x+2m n 4n =0 Dálepoužijemesubstituci x=w+ 1 4w adostanemerovnici (1.) w w +2m n =0 4n kteráposubstituci z= w vedekekvadratickérovnici (1.4) z 2 + 2m n 4n z =0 Tato kvadratická rovnice má diskriminant ( 2m n ) 2 1 D= 4 4n 64 = m2 mn (1.5) 4n 2 Jmenovateldiskriminantujekladnýačitateljeroven m(m n).protože m/nje objemovýpoměr,tak m/n 0,1.Pokudvynechámetriviálnípřípady m/n=0a m/n=1,takznerovnosti0 < m/n <1plyne,že0 < m < n,aodtud m(m n) <0

3 JAK VELKÁ JE TŘETINA KOULE? 27 Toznamená,že D <0akvadratickárovnice(1.4)mádvěkomplexnířešení z 1,2 = 2m n 4n ± m 2 mn 4n 2 = n 2m±2i mn m 2 2 8n Tato dvě komplexní čísla převedeme na goniometrický tvar: ( z 1,2 2 n 2m ) 2+ ( 2 mn m 2) 2= 1 = 8n 8n 64 z1,2 = 1 8 cosϕ= n 2m 8n : 1 8 = n 2m =1 2m n n Tedy řešení rovnice(1.4) mají v goniometrickém tvaru podobu z 1,2 = 1 8 (cosϕ±isinϕ) kde ϕ=arccos ( ) 1 2m n.pro m/n (0,1)je ϕ (0,π). Protože z= w,takrovnice(1.)mářešení w 1,2 = 1 (cos ϕ 2 ±isin ϕ ) Dále x=w+ 1 4w,atak x 1,2 = 1 (cos ϕ 2 ±isin ϕ ) cos ϕ ±isin ϕ = 1 2 cos ϕ ±1 2 isin ϕ +1 2 cos ϕ 1 2 isin ϕ = cos ϕ Dostalijsmetedyjenjednořešenírovnice(1.2),označmejej x 1.Zbyládvěřešení zjistímepovytknutívýrazu x x 1 zlevéstranyrovnice: ( x ) ( 4 x+2m n : x cos ϕ ) = x 2 +xcos ϕ ϕ 4n +cos2 4 Při dělení vyjde zbytek cos 2 ϕ 4 cos ϕ +2m n 4n aletenjerovennule,protožecos ϕ jeřešenímrovnice(1.2).zbývájenvyřešit kvadratickou rovnici (1.6) x 2 +xcos ϕ +cos2 ϕ 4 =0 Její diskriminant je roven D=cos 2 ϕ 4 (cos 2 ϕ ) = ( 1 cos 2 ϕ =sin 2 ϕ 4 ) Protože ϕ (0,π),tak ϕ (0, π )asin ϕ >0.Toznamená,žediskriminantje kladný a rovnice(1.6) má dvě reálná řešení x 2, = cos ϕ ± sin 2 ϕ = cos ϕ ± 2 sin ϕ Tato řešení jsou také řešeními rovnice(1.2).

4 28 LIBUŠE SAMKOVÁ Blížíme se pomalu k závěru, rovnice(1.1) má tři reálná řešení α 1 = 1 2 +cos ϕ α 2 = cos ϕ + 2 sin ϕ α = cos ϕ 2 sin ϕ kde ϕ=arccos ( ) 1 2m n.zbývázjistit,kteréztěchtořešeníležívintervalu(0,1) a je hledaným výškovým poměrem α. Protože ϕ (0, π ),takcos ϕ (1 2,1)aodtud α 1 (1, 2 ). Protože 1 2 =cos π a 2 =sin π,takmůžemepsát α 2 = 1 ( π+ϕ 2 cos α = 1 ( π ϕ ) 2 cos Dále π+ϕ ( π,2π )acos( ) π+ϕ ( 1 2,1 2 ).Odtud α 2 (0,1). Podobně π ϕ (0, π )acos( ) π ϕ ( 1 2,1),atedy α ( 1 2,0). Hledanýmvýškovýmpoměremjeřešení α 2. ) 2. Výsledek Voda odpovídající m/n objemu koule s poloměrem r dosahuje v této kouli výšky ( ( ( ) 1 π+arccos 1 2m ) ) h=2r 2 cos n (2.1) Tentopředpisjemožnépoužítiprokrajnípřípady m/n=0am/n=1,protože podosazení m/n=0do(2.1)dostaneme h=0apodosazení m/n=1do(2.1) dostaneme h=2r. Třetinaobjemukouleodpovídáhladiněvevýšce2r 0,9(zaokrouhlenona2desetinná místa), tedy přibližně 2/5 výšky koule. Viz Obr. 2. Velice zajímavý je případ, kdy m/n = 1/10. Desetina objemu koule odpovídá hladiněvevýšce2r 0,20(zaokrouhlenona2desetinnámísta),tedypřibližně1/5 výškykoule.vizobr.2. Obrázek 2. Třetina objemu koule(vlevo), desetina objemu koule(vpravo).

5 JAK VELKÁ JE TŘETINA KOULE? 29 Závěrečné poznámky Obecný návod na řešení kubických rovnic ax +bx 2 +cx+d=0 s racionálními koeficienty a, b, c, d naleznete například v[1]. Prvním krokem je vždy převedení rovnice pomocí substituce x x b a na tzv. redukovaný tvar x +px+q=0. O řešitelnosti rovnice rozhoduje znaménko diskriminantu ( q ) 2+ ( p D= 2 ) Pokud D < 0, nastává tzv. casus irreducibilis situace, kdy kubická rovnice má tři reálné kořeny, ale při hledání těchto kořenů je nutné využít komplexní čísla v goniometrickém tvaru(podobně jako v našem příkladě). Problém je vhodný jako rozšiřující učivo k tématu komplexních čísel na střední škole. Příspěvek byl zpracován s podporou projektu The FIBONACCI Project Large scaledisseminationofinquirybasedscienceandmathematicseducation,no Literatura [1] Bartsch, H.-J.(2006). Matematické vzorce. Praha: Mladá fronta, ISBN Katedra matematiky, Pedagogická fakulta, Jihočeská Univerzita v Českých Budějovicích address: lsamkova@pf.jcu.cz

II. 3. Speciální integrační metody

II. 3. Speciální integrační metody 48 II. Integrální počet funkcí jedné proměnné II.. Speciální integrační metody Integrály typu f ( x, r x, r x,..., r k x ), tj. integrály obsahující proměnnou x pod odmocninou, kde k N a r,..., r k jsou

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE

3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE 3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE V této kapitole se dozvíte: jak popsat kružnici a kruh v rovině; jak určit vzájemnou polohu bodu nebo a kružnice, resp. bodu a kruhu; jakými metodami určit vzájemnou

Více

Základy aritmetiky a algebry II

Základy aritmetiky a algebry II Osnova předmětu Základy aritmetiky a algebry II 1. Lineární rovnice, řešení v tělesech Q, R, C, Z p, počet řešení v okruhu Z n, n N \ P. Grafické řešení, lineární nerovnice. 2. Kvadratická rovnice. Didaktický

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27, Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()

Více

V (c) = (30 2c)(50 2c)c = 1500c 160c 2 + 4c 3. V (c) = 24c 320.

V (c) = (30 2c)(50 2c)c = 1500c 160c 2 + 4c 3. V (c) = 24c 320. Domácí úkol č. 3 Řešení Pozn.: úhly, které se zdají být pravé, jsou ve všech obrázcích opravdu pravé. 1. Z kartonu je třeba vyříznout čtverce v rozích, viz obr. 1 a přehnout podle přerušovných čar. Krabice

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

Základy matematiky kombinované studium 714 0365/06

Základy matematiky kombinované studium 714 0365/06 Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.

Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0. Test M-ZS- M-ZS-/ Příklad Najděte tečnu grafu funkce f x x 6 3 x, která je kolmá na přímku p :x y 3 0. Zřejmě D f R. Přímka p má směrnici, tečna na ní kolmá má proto směrnici. Protože směrnice tečny ke

Více

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 2 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Od součtu libovolného čísla x a čísla 256 odečtěte číslo x zmenšené o 256.

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii

Více

ALGEBRA. 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = , b =

ALGEBRA. 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = , b = ALGEBRA 1 Úkol na 13. 11. 2018 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = 353 623, b = 244 571. 2. Připomeňte si, že pro ε = cos 2π 3 + i sin

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář.

GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář. / 9 GONIOMETRIE ) Doplň tabulk hodnot: α ( ) 0 0 5 60 90 0 5 50 80 α (ra sin α cos α tg α cotg α α ( ) 0 5 0 70 00 5 0 60 α (ra sin α cos α tg α cotg α ) Doplň, zda je daná funkce v daném kvadrantu kladná,

Více

Goniometrické a hyperbolické funkce

Goniometrické a hyperbolické funkce Kapitola 5 Goniometrické a hyperbolické funkce V této kapitole budou uvedeny základní poznatky týkající se goniometrických funkcí - sinus, kosinus, tangens, kotangens a hyperbolických funkcí - sinus hyperbolický,

Více

Matematika pro všechny

Matematika pro všechny Projekt OPVK - CZ.1.07/1.1.00/.007 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Goniometrické rovnice Autor: Ondráčková

Více

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Neurčitý integrál Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Základy matematiky pracovní listy

Základy matematiky pracovní listy Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky

Více

4.3.3 Goniometrické nerovnice I

4.3.3 Goniometrické nerovnice I 4 Goniometrické nerovnice I Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27 Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Integrální počet - II. část (další integrační postupy pro některé typy funkcí)

Integrální počet - II. část (další integrační postupy pro některé typy funkcí) Integrální počet - II. část (další integrační postupy pro některé typy funkcí) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz) 1 /

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy Univerzity v Brně. 14. května 2007

Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy Univerzity v Brně. 14. května 2007 Rychlotest-řešení Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy Univerzity v Brně 14. května 2007 Příklad 1 Mějme funkci y = sin x rozhodněte zda směrnice tečny k dané křivce

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

R β α. Obrázek 1: Zadání - profil složený ze třech elementárních obrazců: 1 - rovnoramenný pravoúhlý trojúhelník, 2 - čtverec, 3 - kruhová díra

R β α. Obrázek 1: Zadání - profil složený ze třech elementárních obrazců: 1 - rovnoramenný pravoúhlý trojúhelník, 2 - čtverec, 3 - kruhová díra Zadání: Vypočtěte polohu těžiště, momenty setrvačnosti a deviační moment k centrálním osám a dále určete hlavní centrální momenty setrvačnosti, poloměry setrvačnosti a natočení hlavních centrálních os

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

CVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13

CVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13 CVIČNÝ TEST 9 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 1 I. CVIČNÝ TEST 1 bod 1 Do kruhu je vepsán rovnostranný trojúhelník. Jakou část obsahu kruhu

Více

Kapitola 7: Neurčitý integrál. 1/14

Kapitola 7: Neurčitý integrál. 1/14 Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

y ds, z T = 1 z ds, kde S = S

y ds, z T = 1 z ds, kde S = S Plošné integrály příklad 5 Určete souřadnice těžiště části roviny xy z =, která leží v prvním oktantu x >, y >, z >. Řešení: ouřadnice těžiště x T, y T a z T homogenní plochy lze určit pomocí plošných

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Goniometrické rovnice

Goniometrické rovnice Goniometrické rovnice Funkce Existují čtyři goniometrické funkce sinus, kosinus, tangens a kotangens. Výraz číslo, ze kterého je daná funkce v obecném tvaru je to x se nazývá argument. Argument může u

Více

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b 008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly

Více

Opakovací test. Komlexní čísla A, B

Opakovací test. Komlexní čísla A, B VY_32_INOVACE_MAT_195 Opakovací test Komlexní čísla A, B Mgr. Radka Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Tematická oblast: matematické vzdělávání Předmět: matematika, příprava k maturitě,

Více

CVIČNÝ TEST 29. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 29. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 29 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Smrk má vysokou klíčivost, jen 5 % semen nevyklíčí.

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Rovnice v oboru komplexních čísel

Rovnice v oboru komplexních čísel Rovnice v oboru komplexních čísel Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu Šablona CZ.1.07/1.5.00/34.0218 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_01a

Více

4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306

4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306 ..8 Vzorce pro součet goniometrických funkcí Předpoklady: 06 Vzorce pro součet goniometrických funkcí: sin + sin y = sin cos sin sin y = cos sin cos + cos y = cos cos cos cos y = sin sin Na první pohled

Více

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2.

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2. Křivové integrál prvního druhu Vpočítejte dané řivové integrál prvního druhu v R. Přílad. ds x, de je úseča AB, A[, ], B[4, ]. Řešení: Pro řivový integrál prvního druhu platí: fx, ) ds β α fϕt), ψt)) ϕ

Více

Rychlotest-internet. Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy Univerzity v Brně. 14. května 2007

Rychlotest-internet. Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy Univerzity v Brně. 14. května 2007 Rychlotest-internet Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy Univerzity v Brně 14. května 2007 Na vyřešení testu by Vám mělo stačit 25 minut. K jeho řešení nebudete potřebovat

Více

4.3.3 Goniometrické nerovnice

4.3.3 Goniometrické nerovnice 4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné

Více

9.2. Zkrácená lineární rovnice s konstantními koeficienty

9.2. Zkrácená lineární rovnice s konstantními koeficienty 9.2. Zkrácená lineární rovnice s konstantními koeficienty Cíle Řešíme-li konkrétní aplikace, které jsou popsány diferenciálními rovnicemi, velmi často zjistíme, že fyzikální nebo další parametry (hmotnost,

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

7.3. Diferenciální rovnice II. řádu

7.3. Diferenciální rovnice II. řádu Diferenciální rovnice 7 Diferenciální rovnice II řádu Ve stručném přehledu se budeme zabývat výhradně řešením lineárních diferenciálních rovnic II řádu s konstantními koeficienty Obecný tvar: ay + ay +

Více

4.3.1 Goniometrické rovnice I

4.3.1 Goniometrické rovnice I 4.. Goniometrické rovnice I Předpoklady: 4, 4, 46, 47 Pedagogická poznámka: Úspěšnost této hodiny zcela závisí na tom, jak rychle jsou studenti schopni hledat ke známým hodnotám goniometrických funkcí

Více

South Bohemia Mathematical Letters Volume 23, (2015), No. 1, DĚLENÍ KRUHU NA OBLASTI ÚVOD

South Bohemia Mathematical Letters Volume 23, (2015), No. 1, DĚLENÍ KRUHU NA OBLASTI ÚVOD South Bohemia Mathematical Letters Volume 23, (2015), No. 1, 113-122. DĚLENÍ KRUHU NA OBLASTI MAREK VEJSADA ABSTRAKT. V textu se zabývám řešením následujícího problému: Zvolíme na kružnici určitý počet

Více

4.3.4 Základní goniometrické vzorce I

4.3.4 Základní goniometrické vzorce I .. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě

Více

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ VÝPOČET PECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Pro různé situace se hodí různé metody (výpočtu!). Jak již bylo několikrát zdůrazněno,

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy... Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................

Více

4.3.2 Goniometrické nerovnice

4.3.2 Goniometrické nerovnice 4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie Komplexní čísla. Komplexní čísla jsou objekty tvaru α+iβ, kde α, β R. Množina všech komplexních čísel se značí C. Rovnost komplexních

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ..07/..00/6.007 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Goniometrické funkce Autor: Ondráčková

Více

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx. Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,

Více

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná

Více

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Průřezová témata, projekty

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

16. Goniometrické rovnice

16. Goniometrické rovnice @198 16. Goniometrické rovnice Definice: Goniometrická rovnice je taková rovnice, ve které proměnná (neznámá) vystupuje pouze v goniometrických funkcích. Řešit goniometrické rovnice znamená nalézt všechny

Více

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2 4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch

Více

17 Kuželosečky a přímky

17 Kuželosečky a přímky 17 Kuželosečky a přímky 17.1 Poznámka: Polára bodu M ke kuželosečce Nechť X = [x 0,y 0 ] je bod. Zavedeme následující úpravy: x x 0 x y y 0 y xy (x 0 y + xy 0 )/ x (x 0 + x)/ y (y 0 + y)/ (x m) (x 0 m)(x

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných

Více

Metodické pokyny k pracovnímu listu č Povrchy a objemy těles II

Metodické pokyny k pracovnímu listu č Povrchy a objemy těles II Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 9.10 Povrchy a objemy těles II Pracovní list je zaměřen především na výpočty povrchů a

Více

Mateřská škola a Základní škola při dětské léčebně, Křetín 12

Mateřská škola a Základní škola při dětské léčebně, Křetín 12 Mateřská škola a Základní škola při dětské léčebně, Křetín 12 Autor: Mgr. Miroslav Páteček Vytvořeno: červen 2012 Klíčová slova: Matematika a její aplikace Podobnost, funkce, goniometrické funkce, lomený

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Reálné funkce 1 / 21 Matematika 1 pro PEF PaE 1. Reálné funkce Přemysl Jedlička Katedra matematiky, TF ČZU funkce Reálné funkce Základní pojmy 2 / 21 Zobrazení z množiny A do množiny B je množina f uspořádaných

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely

Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely Kvarta 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní

Více

kuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost

kuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost . cvičení http://www.karlin.mff.cuni.cz/ kuncova/, kytaristka@gmail.com Příklady Najděte primitivní funkce k následujícím funkcím na maimální možné podmnožině reálných čísel a tuto množinu určete.. f()

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Cvičení z matematiky - volitelný předmět

Cvičení z matematiky - volitelný předmět Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu

Více

Přijímací zkoušky z matematiky pro akademický rok 2018/19 NMgr. studium Učitelství matematiky ZŠ, SŠ

Přijímací zkoušky z matematiky pro akademický rok 2018/19 NMgr. studium Učitelství matematiky ZŠ, SŠ Přijímací zkoušky z matematiky pro akademický rok 8/9 NMgr studium Učitelství matematiky ZŠ, SŠ Datum zkoušky: Varianta Registrační číslo uchazeče: Příklad 3 4 5 Celkem Body Ke každému příkladu uved te

Více

CVIČNÝ TEST 7. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 7. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 7 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Určete přirozené číslo n tak, aby platilo: 3 + 12 + 27 = n. 1 bod 2 Doplňte

Více