11.Numerické řešení parciálních diferenciálních rovnic
|
|
- Antonín Štěpánek
- před 8 lety
- Počet zobrazení:
Transkript
1 1 11Numerické řešení parciálníc diferenciálníc rovnic Metoda sítí(finite difference metod) Připomeňme definici derivace funkce jedné proměnné Je-li bod x vnitřním bodem definičnío oborufunkce f,pakderivacefunkce fvbodě xjelimita f f(x+) f(x) (x)=lim 0 Platí f (x)= f(x+) f(x) +O(), kde O()jevýraz(cyba),kterýkonvergujek0,jakmile konvergujek0 (První) derivaci budeme narazovat přímoudiferencí(aproximací)čilidiferencívpřed f (x) f(x+) f(x), zpětnoudiferencí(aproximací)čilidiferencívzadf (x) f(x) f(x ), střednídiferencí(aproximací)čilicentrálnídiferencí f (x) f(x+) f(x ) 2 Druou derivaci budeme narazovat čili druou centrální diferencí(aproximací) f (x) f(x+) f(x) f(x) f(x ) = f(x+) 2f(x)+f(x ) 2 Metodu sítí vysvětlíme nejprve na jednodušším typu parciální diferenciální rovnice: Rovnice vedení tepla Uvažujme parciální diferenciální rovnici t = 2 f x 2 (T) Uvažujmedefiničníoborfunkce f(x,t)interval 0,1 0,T,tedy x 0,1, t 0,T Rozdělme interval 0,1 namintervalůdélkyδxainterval 0,T nanintervalůdélkyδtzískámesíťobsaující (M+1) (N+1)bodů Označme f i,j = f(iδx,jδt)pro i=0,1,,m, j=0,1,,n Uvažujme počáteční podmínku f(x,0)=u(x), a okrajové podmínky f(0,t)=v 1 (t), f(1,t)=v 2 (t),kde ujefunkcejednéproměnnédefinovanánaintervalu 0,1, v 1,v 2 jsoufunkce jedné proměnné definované na intervalu 0, T 1
2 2 EXPLICITNÍ METODA V rovnici(t) naradíme derivaci f podle t přímou aproximací Rovnici zapíšeme ve tvaru f i,j+1 f i,j δt = f i+1,j 2f i,j +f i 1,j δx 2 Označíme-li r= δt δx 2,lzerovnicinapsatvetvaru f i,j+1 = rf i 1,j +(1 2r)f i,j +rf i+1,j Říkáme, že metoda je konvergentní, pokud cyba(rozdíl mezi numerickým a přesným řešením) konvergujeknule,jakmiledélkykrokůkonvergujíknuleam, N konvergujíknekonečnu(síťse zjemňuje)explicitnímetodajekonvergentní,jakmileplatí r 1 2 Příklad1:Řešmeparciálnídiferenciálnírovnicinaintervalu 0,1 0;0,1 t = 2 f x 2 sokrajovýmipodmínkami f(0,t)=e 1 4 π2t, f(1,t)=0, apočátečnípodmínkou f(x,0)=cos( 1 2 πx), δx=0,2, δt=0,02 Označíme r= δt δx 2=1 2 Dosazenímdorovnicezískámerovnice f i,j+1 = 1 2 (f i 1,j+f i+1,j ) První a poslední sloupec získáme z okrajovýc podmínek, spodní řádek z počáteční podmínky Odspodu počítáme odnoty ve všec uzlec Napříkladvypočteme f 2,1 = 1 2 (f 1,0+f 3,0 )= 1 2 (0, ,58779)=0, ,76943 Výsledky zapíšeme do tabulky: 0, , , 632 0, , j = 5 0, , , , , j = 4 0, , , , , j = 3 0, , , , , j = 2 0, , , , , j = 1 0, , , , , j = 0 1 0, , , , i=0 i=1 i=2 i=3 i=4 i=5 V prvním řádku tabulky jsou odnoty přesnéo řešení v uzlovýc bodec 2
3 3 Příklad2:Řešmeparciálnídiferenciálnírovnicinaintervalu 0,1 0; 5 36 t = 2 f x 2 sokrajovýmipodmínkami f(0,t)=0, f(1,t)=0, apočátečnípodmínkou f(x,0)=1pro x=0,5, f(x,0)=0jinak, δx= 1 6, δt= 1 36 Označíme r= δt δx 2=1Dosazenímdorovnicezískámerovnice f i,j+1 = f i 1,j f i,j +f i+1,j Výsledky zapíšeme do tabulky: j = j= j= j= j= j= i=0 i=1 i=2 i=3 i=4 i=5 i=6 Vidíme, že numerické řešení není stabilní, nekonverguje k řešení rovnice, není splněna podmínka r 1 2 Zpředcozíopříkladujepatrné,žepronezápornépočátečníaokrajovépodmínkymusí vycázet v uzlovýc bodec nezáporné odnoty numerickéo řešení IMPLICITNÍ METODA V rovnici(t) naradíme derivaci f podle t zpětnou aproximací Rovnici zapíšeme ve tvaru f i,j f i,j 1 δt = f i+1,j 2f i,j +f i 1,j δx 2 Označíme-li r= δt δx 2,lzerovnicinapsatvetvaru rf i 1,j +(1+2r)f i,j rf i+1,j = f i,j 1 Prokaždé j= N 1,N 2,,0řešímesoustavu M 1lineárnícrovnic,kteroulzezapsatjako maticovou rovnici 3
4 4 1+2r r r 1+2r r r 1+2r r r 1+2r r r 1+2r Metoda je stabilní pro jakoukoli volbu r f 1,j rf 0,j f 2,j 0 f = 3,j 0 + f M 2,j 0 f M 1,j rf M,j f 1,j+1 f 2,j+1 f 3,j+1 f M 2,j+1 f M 1,j+1 = Příklad3:Řešmeparciálnídiferenciálnírovnicinaintervalu 0, 4 6 0; 4 36 = 0,2 3 0;1 9 t = 2 f x 2 sokrajovýmipodmínkami f(0,t)=0, f( 4 6,t)=0, apočátečnípodmínkou f(x,0)=1pro x= 2 6 = 1 3, f(x,0)=0jinak, δx= 1 6, δt= 1 36 Označíme r= δt δx 2=1Dosazenímdorovnicezískámerovnice f i+1,j +3f i,j f i 1,j = f i,j 1 Máme M, N=4Prokaždé j=0,1,2,3řešímesoustavu3lineárnícrovnic,kteroulzezapsat jako maticovou rovnici f 1,j+1 f 2,j+1 = f 1,j f 2,j + f 0,j f 3,j+1 f 3,j f 4,j Protože v našem příkladě jsou okrajové podmínky nulové, jsou členy poslední matice samé nuly Označíme-li A= , X j = f 1,j f 2,j, f 3,j lze rovnici psát ve tvaru AX j+1 = X j odtud X j+1 = A 1 X j Pronašimatici Aje A 1 = Zpočátečnípodmínkyzískáme X 0 = f 1,0 f( 1 6,0) f 2,0 = f( 2 6,0) = 0 1 f 3,0 f( 3 6,0) 0 Vypočteme 4
5 X 1 = A 1 X 0 = , , 14286, , X 2 = A 1 X 1 = , , , , 41497, , , X 3 = A 1 X 2 = , , , , 37348, , , X 4 = A 1 X 3 = , , , , , , Výsledky zapíšeme do tabulky: j = 4 0 0, , , j = 3 0 0, , , j = 2 0 0, , , j = 1 0 0, , , j= i=0 i=1 i=2 i=3 i=4 Výodou implicitní metody je její bezpodmínečná stabilita Numerické řešení při zjemnění sítě konverguje k přesnému řešení rovnice Naopak nevýodou je značná výpočetní náročnost oproti explicitní metodě 5
6 6 Black-Scolesova rovnice Řešme parciální diferenciální rovnici t +rs S +1 2 σ2 S 2 2 f S2= rf (BS) V oblasti, ve které ledáme řešení, zvolíme konečnou množinu(síť) bodů(uzlů) Derivace naradíme lineárními kombinacemi funkčníc odnot v uzlec Dostaneme soustavu konečně mnoa rovnic pro odnoty v uzlec Mějmesíť 0,S max 0,T,rozdělmeinterval 0,S max nastejnédílydélky δsa 0,T nastejné díly délky δt Hledejme přibližné vyjádření funkce f(s, t), která vystupuje v parciální diferenciální rovnici, neboli ledejmejejíodnotyvuzlovýcbodec[iδs,jδt], i=0,1,2,,m, k=0,1,2,,n Označme f i,j = f(iδs,jδt) APROXIMACE DERIVACÍ Aproximace parciálníc derivací 1řádu: Přímádiference: t = f i,j+1 f i,j δt S = f i+1,j f i,j δs Zpětnádiference: t = f i,j f i,j 1 δt S = f i,j f i 1,j δs Střednídiference: t = f i,j+1 f i,j 1 2δt S = f i+1,j f i 1,j 2δS Aproximace parciální derivace 2řádu: 2 fi+1,j fi,j f S 2= δs δs Okrajové podmínky: pro evropskou call opci: fi,j fi 1,j δs f(s,t)=max{s K,0}, f(0,t)=0, f(s max,t)=s max Ke r(t t), pro evropskou put opci: f(s,t)=max{k S,0}, f(0,t)=ke r(t t), f(s max,t)=0 = f i+1,j 2f i,j +f i 1,j δs 2 6
7 EXPLICITNÍ METODA V rovnici(sb) aproximujeme parciální derivaci prvnío řádu f podle S střední diferencí, podle t zpětnou diferencí: 7 f i,j f i,j 1 δt +riδs f i+1,j f i 1,j 2δS σ2 i 2 δs 2f i+1,j 2f i,j +f i 1,j δs 2 = rf i,j Okrajové podmínky: Například pro americkou put opci: f i,n =max{k iδs,0}, i=0,1,,m, f 0,j = K, j=0,1,,n, f M,j =0, j=0,1,,n pro evropskou call opci: f i,n =max{iδs K,0}, i=0,1,,m, f 0,j =0, j=0,1,,n, f M,j = S max Ke r(n j)δt j=0,1,,n, pro evropskou put opci: f i,n =max{k iδs,0}, i=0,1,,m, f 0,j = Ke r(n j)δt, j=0,1,,n, f M,j =0, j=0,1,,n Rovnici(SB) lze zapsat ve tvaru f i,j 1 = a i f i 1,j +b i f i,j +c i f i+1,j, i=1,2,,m 1, j= N 1,N 2,,1,0, kde a i = 1 2 δt(σ2 i 2 ri), b i =1 δt(σ 2 i 2 +r), c i = 1 2 δt(σ2 i 2 +ri) Explicitnímetodajezajistýcpodmínekstabilní,napřpokud a i 0, b i 0, c i 0, i = 1,2,,M 1,aδt 1 σ 2 M Nenítedypravda,žesezvětšujícímse M,tedysezmenšujícímse δsči 2 sezvětšujícímse S max,jemetodapřesnější IMPLICITNÍ METODA V rovnici(sb) aproximujeme parciální derivaci prvnío řádu f podle S střední diferencí, podle t přímou diferencí: f i,j+1 f i,j δt +riδs f i+1,j f i 1,j 2δS σ2 i 2 δs 2f i+1,j 2f i,j +f i 1,j δs 2 = rf i,j Rovnici(SB) lze zapsat ve tvaru f i,j+1 = a i f i 1,j +b i f i,j +c i f i+1,j, i=1,2,,m 1, j= N 1,N 2,,1,0, kde a i = 1 2 δt(ri σ2 i 2 ), b i =1+δt(σ 2 i 2 +r), c i = 1 2 δt(σ2 i 2 +ri) 7
8 8 Prokaždé j= N 1,N 2,,0řešímesoustavu M 1lineárnícrovnic,kteroulzezapsatjako maticovou rovnici MATLAB b 1 c f 1,j a 2 b 2 c f 2,j 0 a 3 b 3 c f 3,j = a M 2 b M 2 c M 2 f M 2,j a M 1 b M 1 f M 1,j f 1,j+1 a 1 f 0,j f 2,j+1 0 f = 3,j+1 0 f M 2,j+1 0 f M 1,j+1 c M 1 f M,j K numerickému řešení parciálníc diferenciálníc rovnic je k dispozici speciální Toolbox či doplňky MATLABu, např program FEMLAB 8
Numerické řešení diferenciálních rovnic
Numerické řešení diferenciálníc rovnic Mirko Navara ttp://cmp.felk.cvut.cz/ navara/ Centrum strojovéo vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a ttp://mat.feld.cvut.cz/nemecek/nummet.tml
Kapitola 9. Numerické derivování
Kapitola 9 Numerické derivování Definice: Existuje-li pro danou funkci f : R! R vlastní (tj konečná) limita říkáme, že funkce f(x) má v bodě a derivaci Příslušnou limitu značíme f 0 (a) f(a + ) f(a) lim!0
5.3. Implicitní funkce a její derivace
Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)
Numerické řešení diferenciálních rovnic
Numerické řešení diferenciálních rovnic Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu 1/1 Numerické řešení diferenciálních
Co je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
Studijní text pro obor G+K Katedra matematiky Fakulta stavební ROVNICE. Doc. RNDr. Milada Kočandrlová, CSc.
Studijní text pro obor G+K Katedra matematiky Fakulta stavební České vysoké učení technické OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Doc. RNDr. Milada Kočandrlová, CSc. Lektorovali: RNDr. Milan Kočandrle, CSc.,
Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "
ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje
Numerická matematika 1
Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................
Matematika 5 FSV UK, ZS Miroslav Zelený
Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení
Kapitola 12: Soustavy diferenciálních rovnic 1. řádu
Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Základní pojmy Definice: Rovnice tvaru = f(t, x, y) = g(t, x, y), t I nazýváme soustavou dvou diferenciálních rovnic 1. řádu. Řešením soustavy rozumíme
Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že
Kapitola Zadání Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování alespoň jedné úlohy je nutnou podmínkou pro úspěšné složení zkoušky resp. získaní (klasifikovaného) zápočtu (viz.
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální
Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR
DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y
Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
DRN: Soustavy linárních rovnic numericky, norma
DRN: Soustavy linárních rovnic numericky, norma Algoritmus (GEM: Gaussova eliminace s částečným pivotováním pro převod rozšířené regulární matice na horní trojúhelníkový tvar). Zadána matice C = (c i,j
Řešení 1D vedení tepla metodou sítí a metodou
ENumerická analýza transportních procesů - NTP2 Přednáška č. 9 Řešení 1D vedení tepla metodou sítí a metodou konečných objemů Metoda sítí (metoda konečných diferencí - MKD) Metoda sítí Základní myšlenka
7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí
202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají
Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,
4.1 Řešení základních typů diferenciálních rovnic 1.řádu
4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po
1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
Připomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).
III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,
1/10. Kapitola 12: Soustavy lineárních algebraických rovnic
1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11
4. Aplikace matematiky v ekonomii
4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
1. Obyčejné diferenciální rovnice
& 8..8 8: Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných. Obyčejné diferenciální rovnice Rovnice, ve které je neznámá funkcí a v rovnici se vyskytuje spolu se svými derivacemi, se nazývá
17. Posloupnosti a řady funkcí
17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.
Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda
Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových
Derivace funkcí více proměnných
Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1
ODR - okrajová úloha Teorie (velmi stručný výběr z přednášek) Okrajová úloha 2. řádu Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu
stránkách přednášejícího.
Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Diferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu
[M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
Soustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
Kapitola 10: Diferenciální rovnice 1/14
Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou
Obsah. Matematika. Obsah. Ljapunovova metoda. Volba LF
Regulace a řízení II Stabilita nelineárních systémů Regulace a řízení II Stabilita nelineárních systémů - str. 1/27 Obsah Obsah Regulace a řízení II Stabilita nelineárních systémů - str. 2/27 Obsah přednášky
MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
Řešení "stiff soustav obyčejných diferenciálních rovnic
Řešení "stiff soustav obyčejných diferenciálních rovnic Jiří Škvára Katedra fyziky, Přírodovědecká fakulta Univerzity J.E. Purkyně v Ústí n.l.. ročník, počítačové metody ve vědě a technice Abstrakt Seminární
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R
Kapitola 5. SLAR - gradientní metody
23.3.2o7 Kapitola 5. SLAR - gradientní metody Metody na řešení SLAR přímé (GEM, metoda LU-rozkladu) iterační (Jacobiova m., Gauss-Seidelova m., metoda SOR) gradientní X X Motivace Uvažujme kvadratickou
2. Numerické výpočty. 1. Numerická derivace funkce
2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud
y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1
ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což
10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,
Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,
9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1
9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom
Separovatelné diferenciální rovnice
Matematika 2, příklady na procvičení (Josef Tkadlec, 8. 6. 2009) Separovatelné diferenciální rovnice. Řešte diferenciální rovnici s počáteční podmínkou x = e x t, x() = 0. 2. Řešte diferenciální rovnici
Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
5. Interpolace a aproximace funkcí
5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program
Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí
Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty
Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava
Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
ODR metody Runge-Kutta
ODR metody Runge-Kutta Teorie (velmi stručný výběr z přednášek) Úloha s počátečními podmínkami (Cauchyova) 1 řádu Hledáme aprox řešení Y(x) soustavy obyčejných diferenciálních rovnic 1 řádu kde Y(x) =
Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali
NEURČITÝ INTEGRÁL Úvod Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali Umět pracovat s integrálním počtem Je důležité pro
Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w
Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,
1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:
Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
PŘEDMLUVA 11 FORMÁLNÍ UJEDNÁNÍ 13
OBSAH PŘEDMLUVA 11 FORMÁLNÍ UJEDNÁNÍ 13 1 ÚVOD, Z. Raida 15 1.1 Mikrovlnné kmitočtové pásmo 15 1.2 Diferenciální formulace Maxwellových rovnic 16 1.3 Integrální formulace Maxwellových rovnic 18 1.4 Obecný
f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
9 Kolmost vektorových podprostorů
9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.
1 Diference a diferenční rovnice
1 Diference a diferenční rovnice Nechť je dána ekvidistantní síť uzlů x 0, x 1,..., x n tj. h R, h > 0 takové, že x i = x 0 + ih, i = 0, 1,..., n. Číslo h se nazývá krok. Někdy můžeme uvažovat i nekonečnou
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární
Numerické řešení obyčejných diferenciálních rovnic
Numerické řešení obyčejných diferenciálních rovnic Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
Kubický spline. Obrázek 1 Proložení dat nezávislými kubickými polynomy bez požadavku spojitosti. T h T 2
Kubický spline Menu: QCExpert Regrese Kubický spline Modul Kubický spline slouží proložení prakticky libovolnýc regresníc křivek naměřenými daty s jednorozměrnou nezávisle proměnnou x a jednorozměrnou
LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU
LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU je lineární rovnice, ve které se vyskytuje jeden nebo více výrazů v absolutní hodnotě. ABSOLUTNÍ HODNOTA x reálného čísla x je
4. Trojúhelníkový rozklad p. 1/20
4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet
Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)
2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h
Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0.
A 9 vzorové řešení Př. 1. Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice Počítejte v radiánech, ne ve stupních! sin x + x 2 2 = 0. Rovnici lze upravit na sin
18 Fourierovy řady Úvod, základní pojmy
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 21 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 21 Řešíme následující úlohu: differencovatelnou funkci f : R R známe jen v konečném počtu bodů x 0,
Riemannův určitý integrál
Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami
Hledání extrémů funkcí
Hledání extrémů funkcí Budeme se zabývat téměř výhradně hledáním minima. Přes nost nalezeného extrému Obecně není hledání extrému tak přesné jako řešení rovnic. Demonstrovat to můžeme na příkladu hledání
Interpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
Diferenciální rovnice
Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT
Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých
Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojmy: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocniny neznámé x, tj. a n x n + a n 1 x n 1 +... + a x + a 1 x + a 0 = 0, kde n je přirozené
Diferenciální rovnice 3
Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty
Obyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek
Občejné diferenciální rovnice počáteční úloha KMA / NGM F. Ježek (JEZEK@KMA.ZCU.CZ) Základní pojm Tp rovnic a podmínek, řád rovnice Počáteční úloha pro občejné diferenciální rovnice Řád metod a počet kroků
Převedení okrajové úlohy na sled
Převedení okrajové úlohy na sled úloh počátečních 1 Jiří Taufer Abstrakt Tento příspěvek je věnován řešení okrajových problémů pro soustavu okrajových obyčejných diferenciálních lineárních rovnic metodami,
21 Diskrétní modely spojitých systémů
21 Dikrétní modely pojitýc ytémů Micael Šebek Automatické řízení 2015 29-4-15 Metoda emulace Automatické řízení - Kybernetika a robotika pojitý regulátor nazývá e také aproximace, dikrétní ekvivalent,
Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde
Homogenní rovnice Uvažujme rovnici kde y = f(, y), (4) f(λ, λy) = f(, y), λ. Tato rovnice se nazývá homogenní rovnice 1. řádu. Ukážeme, že tuto rovnici lze převést substitucí na rovnici se separovanými
2. Numerické řešení obyčejných diferenciálních rovnic
1 2. Numerické řešení obyčejných diferenciálních rovnic y = f(x,y) spočátečnípodmínkou y(x )=y, (1) Platí: : Nechť f je spojitá v uzavřeném dvojrozměrném intervalu Ω= x a,x + a y b,y + b, a, b >.Anechť
Matematická analýza III.
3. Implicitní funkce Miroslav Hušek, Lucie Loukotová UJEP 2010 V této kapitole se seznámíme s dalším možným zadáním funkce jejím implicitním vyjádřením. Doplní tak nám již známé explicitní a parametrické
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
Uzavřené a otevřené množiny
Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,
3. ANTAGONISTICKÉ HRY
3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,
Písemná zkouška z Matematiky II pro FSV vzor
Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,
6. přednáška 5. listopadu 2007
6. přednáška 5. listopadu 2007 Souvislost diferenciálu a parciálních derivací. Diferenciál implikuje parciální derivace a spojité parciální derivace implikují diferenciál. Tvrzení 2.3. Když je funkce f
AVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných