Dynamické systémy 1. Úvod. Ing. Jaroslav Jíra, CSc.

Rozměr: px
Začít zobrazení ze stránky:

Download "Dynamické systémy 1. Úvod. Ing. Jaroslav Jíra, CSc."

Transkript

1 Dynmické systémy Úvod Ing. Jroslv Jír, CSc.

2 Deinice Dynmický systém je systém, který se mění v čse podle soor pevně dných prvidel, která rčjí, jkým způsoem dojde ke změně jednoho stv v drhý. Dynmický systém je tvořen stvovým prostorem soorem nkcí, které popisjí změn tohoto systém v čse. Dvě části dynmického systém Stvový prostor rčje, jkých hodnot může nývt stvový vektor dynmického systém. Stvový vektor je tvořen množino proměnných, které moho nývt hodnot z rčitého intervl, přičemž intervl všech těchto hodnot potom rčje celý stvový prostor. Fnkce nám při známém výchozím stv systém říkjí, jký stv de následovt v příštím čsovém okmžik.

3 Stvový vektor může ýt popsán npř. ( t [ ( t, ( t,..., n( t] Fnkce může ýt popsán jedino nkcí neo jejich soorem (,,..., n, (,,..., n,..., n(,,..., n Celý systém může ýt potom popsán sostvo dierenciálních rovnic pohyovými rovnicemi d dt d dt.. d dt n n ( n ( (,,,,..., n,...,,..., n n

4 Klsiikce dynmických systémů Dynmický systém může ýt ď neo Lineární Nelineární tonomní Konzervtivní Diskrétní Jendorozměrný Netonomní Nekonzervtivní Spojitý Vícerozměrný

5 Lineární systém nkce popisjící chování systém msí splňovt dvě zákldní podmínky ditivit homogenit ( ( ( y y ( ( 5 ( 5 5 (5 (5 ( ( ( ( y y y y y y Příkld: ( = 3; (y = 3y; ditivit (+y = 3(+y = 3 + 3y = ( + (y homogenit 5 * ( = 5* 3 = 5 = (5 Nelineární systém je popsán nelineární nkcí nesplňje předchozí dvě podmínky. Příkld: ( = ; (y = y ;

6 tonomní systém je tkový systém, který nezávisí n nezávisle proměnné. Je-li nezávisle proměnno čs, říkáme tkovém systém čsově invrintní. Podmínk: jestliže pro vstpní veličin (t je výstpem veličin y(t, potom jkýkoli čsový posn vstp (t + δ má z následek stejný čsový posn výstp y(t + δ Příkld: máme dv systémy Systém : Systém B: y( t ( t Systém : Nejprve zpozdíme vstp o δ Zpozdíme-li výstp o δ Je zřejmé, že neoli je netonomní., tdíž zkomný systém není čsově invrintní

7 Systém B: Nejprve zpozdíme vstp o δ Zpozdíme-li výstp o δ Je zřejmé, že tonomní. tdíž systém je čsově invrintní neoli je Konzervtivní systém - celková mechnická energie zůstává konstntní, nejso žádné ztráty. Příkldem je netlmený hrmonický oscilátor. Nekonzervtivní systém celková mechnická energie se v čse mění díky ztrátám způsoeným npř. třením neo odporem prostředí. Příkldem jso tlmené kmity, reálné kyvdlo.

8 Diskrétní systém je popsán dierenční rovnicí neo jejich sostvo. V přípdě jediné rovnice mlvíme tké o jednorozměrné mpě. Čs je těchto rovnic nhrzen proměnno k, která oznčje k-tý krok ve výpočt. Systém je typicky popsán rovnicemi: ( ( k ( k k ( ( k ( Tkovýto systém se řeší iterčním výpočtem. Typickým příkldem je výpočet stv nkovního kont po k letech od vložení. Je-li úvodní vkld Kč úrok činí 3%, potom lze systém popst rovnicemi: ( ( k.3( k ( k.3 k *

9 Spojitý systém je popsán dierenciální rovnicí neo jejich sostvo. ( ( Příkldem je svislý vrh popsný počátečními podmínkmi h(, v( rovnicemi h( t v( t v( t g kde h je výšk v je rychlost těles. Deinice z Mthemtiky: Tm, kde se prcje s reálnými čísly, mlvíme o spojitém systém, kde se prcje s celými čísly, mlvíme o diskrétním systém.

10 Jednorozměrný systém je popsán jedino nkcí, npř. ( k ( t ( k ( t kde, jso konstnty. Vícerozměrný systém je popsán vektorem nkcí, npř. ( k ( k B ( t ( t B kde je n-rozměrný vektor, je mtice o rozměrech n n B je vektor konstnt

11 Opkování z mticové lgery Mtice Mtice B Vektor C B 3 c c c C B c c c c c c c c c C.

12 Jednotková mtice, Požívá se symol E neo I E det( d d d d D det( d d d d D Determinnt

13 Inverzní mtice d c c d c d c d d c det( Inverzní mtice 33

14 Zákldní mticové operce v progrm Mthemtic

15

16 Vlstní čísl Vlstní vektory Vlstní vektory čtvercové mtice jso tkové nenlové vektory, které po vynásoení mticí zůstávjí úměrné původním vektor (mění se jen velikost, nikoli směr. K vlstním vektor příslší vlstní číslo λ, které předstvje tentýž násoný ktor, jko když vektor vynásoíme mticí. Je-li vlstním vektorem mtice, potom po vynásoení vektor toto mticí dostneme stejný výsledek jko po vynásoení vektor číslem λ. Pro výpočet vlstního čísl požíváme vzth det( E

17 ( E Máme-li již λ, vlstní vektor vypočteme ze vzorce: Příkld pro dvorozměrný systém: Pokd jsme nlezli vlstní vektory vlstní čísl, můžeme říci, že jsme nlezli digonální mtici, která je podoná původní mtici. Digonální mtice má z hledisk řešení stility dynmických systémů tytéž vlstnosti jko mtice původní. Digonální mtici zpisjeme ve tvr: n...

18 Jké jso výhody digonální mtice?. Máme vícerozměrný diskrétní systém. Typická dierenční rovnice: ( k ( k Výpočet k-tého prvk: k ( k ( Umocňování mtic, zejmén vyšších řádů, je výpočetně velmi náročné. V přípdě digonální mtice je všk výpočet velmi jednodchý: k k k... k n

19 . Vícerozměrný spojitý systém. (t dt d ep( ( t t Typická dierenciální rovnice: Řešení rovnice: t t t n e e e t... ep( Počítání s mticemi v eponenciální nkci je ještě náročnější než jejich mocňování. V přípdě digonální mtice je to všk opět velmi jednodché:

20 Příkld výpočt vlstního čísl vlstního vektor Původní mtice 5 4 Jkýkoli vektor splňjící podmínk = je vlstním vektorem pro λ=6 Jkýkoli vektor splňjící podmínk =- je vlstním vektorem pro λ=3 Chrkteristická rovnice Vlstní čísl Vlstní vektory 5 4 det det( E 3 6; 8 9 (5 (4

21 Výpočet vlstních čísel vektorů v Mthemtice

22 Stop mtice předstvje sočet prvků n její hlvní digonále nn Tr... (,...,, (..,...,, (,...,, ( n n n n n n dt d dt d dt d n n n n n n J Jcoiho mtice je mtice všech prvních prciálních derivcí vektorové či sklární nkce podle jednotlivých proměnných. Tto mtice se ovykle znčí J, D neo Tr

23 Fázové portréty Fázový prostor je prostor všech možných stvů systém, přičemž kždý možný stv je reprezentován jedinečným odem ve ázovém prostor. Dvorozměrný ázový prostor se nzývá ázová rovin. Typicky se požívá v klsické mechnice při jednorozměrném pohy hmotného od, kde n jednotlivých osách máme poloh rychlost. Křivk, po které se reprezenttivní od ve ázovém prostor pohyje, se nzývá ázová křivk. Fázový portrét je geometricko reprezentcí ázových křivek ve ázové rovině. Kždá komince počátečních podmínek je reprezentován jino křivko či odem.

24 Fázový portrét netlmeného hrmonického oscilátor Dierencální rovnice sin( cos( t v t ( sin ( cos t v t sin( cos( t v t Nyní osmosttníme sinovo kosinovo nkci, mocníme oě rovnice n drho nkonec je sečteme. kde je výchylk, je mplitd ω je úhlová rekvence. Dále zvedeme rychlost v (d/dt ( sin ( cos t t v v Výsledná rovnice popisje elips Řešením rovnice je:

25 Následjící orázek zorzje ázový portrét netlmeného hrmonického oscilátor pro ω= s - s počátečními podmínkmi (= m; v(= m/s v v

26 Kriticky tlmený oscilátor ω= s - ; δ= s - (=m; v(= m/s Přetlmený oscilátor ω= s - ; δ= s - (=m; v(= m/s

27 Podtlmený oscilátor ω= s - ; δ= s - (=m; v(= m/s Netlmený oscilátor pro počáteční mplitdy,,, m

28 Vytvoření ázového portrét v progrm Mthemtic

29

30 Stilit pevné ody Pevný od je speciickým odem dynmického systém, který se v čse nemění. Říká se m tké rovnovážný či singlární od systém. Je-li systém deinován rovnicí d/dt = (, potom můžeme jeho pevný od ~ nlézt pomocí podmínky ( ~ =. Není přitom ni ntné znát nlytické řešení (t. Pro diskrétní systémy podmínk nývá tvr ~ = ( ~ Stilní pevný od: systém konvergje k pevném od ~ pro t pro všechny počáteční hodnoty lízké ~. Netrálně stilní pevný od: pro všechny počáteční hodnoty lízké ~ systém zůstává v lízkosti pevného od ~, le nekonvergje k něm. Nestilní pevný od: pro všechny počáteční hodnoty lízké ~ systém divergje k hodnotám vzdáleným od ~ trktor je stv, do kterého systém směřje. Je to množin, ve které je stvový vektor v nekonečném čse. trktorem moho ýt pevné ody, periodické ody, křivky neo i velmi komplikovné strktry. Pertrce je mlá změn dynmického systém s chrkterem porchy, která vychýlí systém z rovnovážného stv.

31 Fázové portréty tří zákldních typů pevných odů STBILNÍ NEUTRÁLNĚ STBILNÍ NESTBILNÍ

32 Příkld ktérie ve sklenici Sklenice je nplněn živným roztokem kteriemi. Reltivní rychlost reprodkce kterií oznčíme jko reltivní rychlost, s jko ktérie hyno, oznčíme p. Potom de jejich poplce růst rychlostí r = p. Je-li ve sklenici ktérií, potom rychlost, s jko se mění jejich počet, de odpovídt ( p, z čehož plyne, d/dt = r. Řešením této rovnice pro (= je ( t e Tento model všk není relistický, protože poplce ktérií y pro kldné r rostl do nekonečn. Ve sktečnosti společně s růstem počt ktérií roste tké množství toických zplodin jimi prodkovných, nvzájem si překážejí td. Nmísto konstntní reltivní rychlosti úhyn p deme předpokládt tto rychlost závislo n počt ktérií p. Nyní počet ktérií roste podle klesá podle p. Nová dierenciální rovnice de d dt rt p

33 Dierenciální rovnice, Počáteční počet ktérií (= d dt p nlytické řešení progrm Mthemtic Pro nlezení pevných odů msíme položit prvo strn rovnice rovno nle. ~ ~ p ~ ( p ~ Vycházejí dvě možná řešení, tzn. máme dv pevné ody: ~ ~ p

34 První pevný od ~ = ; Nejso žádné ktérie, tdíž žádné nové nemoho vznikt žádné nemoho hynot. Stčí všk neptrná kontmince sklenice ktériemi (pertrce, všk menší než /p, vidíme, že počet ktérií roste podle d/dt = -p > nikdy se nevrátí do výchozího nlového stv. Závěr: tento pevný od je nestilní. Drhý pevný od ~ = /p; N této úrovni poplce ktérie vznikjí rychlostí ~ =(/p = /p hyno rychlostí p ~ = p(/p = /p, tkže oě tyto rychlosti jso v rovnováze. Pokd počet ktérií mírně vzroste, potom d/dt = -p < vše se vrátí do rovnovážného stv. Pokd počet ktérií mírně klesne, potom d/dt = -p > vše se opět vrátí do rovnovážného stv. Mlé pertrce z od ~ = /p do korigovány zpět do /p. Závěr: tento pevný od je stilní je zároveň trktorem tohoto systém.

35 Grické řešení v progrm Mthemtic Vstpní prmetry: =., p=.5 Počáteční podmínky: =.9 pro modré čáry =. pro červené čáry Počet ktérií v čse Fázový portrét. d dt /p t.5.

36 Příkld predátor kořist Mějme iologický systém se dvěm živočišnými drhy predátory (vlky kořistí (králíky. Poplce králíků v čse nechť je r(t poplce vlků v čse w(t. Králíci se ez přítomnosti vlků do množit rychlostí dr/dt= r, kde > Vlci ez králíků-potrvy do hynot rychlostí dw/dt= -w, kde > Dáme-li o drhy dohromdy, do vlci lovit jíst králíky. Úytek poplce králíků de potom dán ktálním počtem vlků w, počtem králíků r konstnto g, která předstvje gresivit predátorů. Přírůstek poplce vlků de dán tké počtem králíků vlků r w, kromě toho konstnto h, která předstvje eektivit přeměny králičího ms n ioms predátorů vlků. Systém je popsán dvěm dierenciálními rovnicemi. dr r grw dt dw w hrw dt

37 Zde je čsová závislost počt oo drhů ázový portrét =.; =.; g=.; h=., počáteční počet králíků r =, vlků w =5 Počty drhů v závislosti n čse Fázový portrét trktorem tohoto systém je ve ázovém portrét viditelný limitní cykls.

38 Pro vyšší králičí porodnost, rychlejší vlčí úmrtnost vyšší gresivit dostáváme rychlejší změny =.75; =.; g=.3; h=. Počty drhů v závislosti n čse Fázový portrét

39 Bde-li velmi nízká králičí porodnost vlčí úmrtnost, zároveň de vysoká gresivit vlků, oě poplce znikno =.; =.5; g=.5; h=.5 Počty drhů v závislosti n čse Fázový portrét

40 Výpočet systém predátor/kořist v progrm Mthemtic

41 Zorzení ázového portrét predátor/kořist v progrm Mthemtic

ANALYTICKÁ GEOMETRIE

ANALYTICKÁ GEOMETRIE Technická niverzit v Liberci Fklt přírodovědně-hmnitní pedgogická Ktedr mtemtiky didktiky mtemtiky NLYTICKÁ GEOMETRIE Pomocný čební text Petr Pirklová Liberec, listopd 2015 NLYTICKÁ GEOMETRIE LINEÁRNÍCH

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

9 - Zpětná vazba. Michael Šebek Automatické řízení 2015 16-3-15

9 - Zpětná vazba. Michael Šebek Automatické řízení 2015 16-3-15 9 - Zpětná vz Michel Šeek Atomtické řízení 2015 16-3-15 Atomtické řízení - Kernetik rootik Proč řídit? Řídicí sstém msí zjistit stilit chování Klsické poždvk n chování přípstná stálená reglční odchlk při

Více

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x. VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální

Více

1. Pokyny pro vypracování

1. Pokyny pro vypracování 1. Pokyny pro vyprcování Zvolený příkld z druhé kpitoly vyprcujte písemně (nejlépe vysázejte pomocí LATEXu) dodejte osobně po předchozí domluvě milem n krbek@physics.muni.cz. Dále si vyberte tři z jednodušších

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost plsticit II. ročník klářského studi doc. In. Mrtin Krejs, Ph.D. Ktedr stvení mechnik Řešení nosných stěn pomocí Airho funkce npětí inverzní metod Stěnová rovnice ΔΔ(, ) Stěnová rovnice, nzývná

Více

Diferenciální počet. Spojitost funkce

Diferenciální počet. Spojitost funkce Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Matematika II: Testy

Matematika II: Testy Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

Matematické metody v kartografii

Matematické metody v kartografii Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími

Více

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

V = gap E zdz. ( 4.1A.1 ) f (z, ξ)dξ = g(z),

V = gap E zdz. ( 4.1A.1 ) f (z, ξ)dξ = g(z), 4.1 Drátový dipól Zákldní teorie V této kpitole se seznámíme s výpočtem prmetrů drátového dipólu pomocí momentové metody. Veškeré informce se snžíme co nejsrozumitelněji vysvětlit ve vrstvě A. Vrstvu B

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

Křivkový integrál prvního druhu verze 1.0

Křivkový integrál prvního druhu verze 1.0 Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Vybrná spojitá rozdělení Zákldní soubor u spojité náhodné proměnné je nespočetná množin. Z je tedy podmnožin množiny reálných čísel (R). Distribuční funkce

Více

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5. 10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány

Více

Lineární nerovnice a jejich soustavy

Lineární nerovnice a jejich soustavy teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice

Více

DERIVACE A INTEGRÁLY VE FYZICE

DERIVACE A INTEGRÁLY VE FYZICE DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

14 Kuželosečky v základní poloze

14 Kuželosečky v základní poloze 4 Kuželosečk v zákldní poloze Následující tet 4 7 se týkjí geometrie v rovině. Až dosud jsme studovli útvr lineární (v nltickém vjádření l vžd proměnné,, z v první mocnině). Nní se udeme zývt některými

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

Obsah na dnes Derivácia funkcie

Obsah na dnes Derivácia funkcie Johnnes Kepler Dec 2, 57- Nov 5, 63 Mtemtik I Prednášjúci: prof. RNDr. Igor Podlný, DrSc. http://www.tke.sk/podln/ # Osh n dnes Deriváci fnkcie 74 KAPITOLA 3. FUNKCE JEDNÉ PROMĚNNÉ Určitý integrál 8. Vlstnosti

Více

Obsah rovinného obrazce

Obsah rovinného obrazce Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce

Více

4. Determinanty. Výpočet: a11. a22. a21. a12. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31. a 11 a 23 a 32 a 12 a 21 a 33

4. Determinanty. Výpočet: a11. a22. a21. a12. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31. a 11 a 23 a 32 a 12 a 21 a 33 . Determinnty Determinnt, znčíme deta, je číslo přiřzené čtvercové mtici A. Je zveden tk, by pro invertibilní mtici byl nenulový pro neinvertibilní mtici byl roven nule. Výpočet: = + = + + - - - + + +

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu. Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze

Více

8. Elementární funkce

8. Elementární funkce Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne

Více

6. Setrvačný kmitový člen 2. řádu

6. Setrvačný kmitový člen 2. řádu 6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické

Více

M - Příprava na 3. zápočtový test pro třídu 2D

M - Příprava na 3. zápočtový test pro třídu 2D M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

A DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1).

A DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1). A DIRACOVA DISTRIBUCE A Dircov distribuce A Definice Dircovy distribuce Dircovu distribuci δx) lze zvést třemi ekvivlentními způsoby ) Dirc [] ji zvedl vzthy δx) dx, δx) pro x ) Grficky znázorňujeme Dircovu

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ

2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ . INTEGRÁLNÍ POČET FUNKE JEDNÉ PROMĚNNÉ Při řešení technických prolémů, ve fyzice pod. je velmi čsto tře řešit orácenou úlohu k derivování. K zdné funkci f udeme hledt funkci F tkovou, y pltilo F f. Budeme

Více

m n. Matice typu m n má

m n. Matice typu m n má MATE ZS KONZ B Mtice, hodnost mtice, Gussův tvr Mtice uspořádné schém reálných čísel: m m n n mn Toto schém se nzývá mtice typu m řádků n sloupců. m n. Mtice typu m n má Oznčujeme ji A, B,někdy používáme

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11 Mticový počet zákldní pojmy Mtice je obdélníkové schém tvru 2...... n 2 22. 2n A =, kde ij R ( i =,,m, j =,,n ) m m2. mn ij R se nzývjí prvky mtice o mtici o m řádcích n sloupcích říkáme, že je typu m/n

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné 1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2

Více

26. listopadu a 10.prosince 2016

26. listopadu a 10.prosince 2016 Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Mtemtik 1A. PetrSlčJiříHozmn Fkult přírodovědně-humnitní pedgogická Technická univerzit v Liberci petr.slc@tul.cz jiri.hozmn@tul.cz 21.11.2016 Fkult přírodovědně-humnitní pedgogická TUL ZS 2016-2017 1/

Více

GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU

GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU Integální počet funkcí jedné eálné poměnné - 4. - GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU PŘÍKLAD Učete plochu pod gfem funkce f ( x) = sinx n intevlu,. Ploch pod gfem nezáponé funkce f(x) se n intevlu,

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

8. cvičení z Matematiky 2

8. cvičení z Matematiky 2 8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t

KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t KŘIVKOVÉ INTEGRÁLY Má-li se spočítt npř. spotřeb betonu n rovný plot s měnící se výškou, stčí spočítt integrál z této výšky podle zákldny plotu. o když je le zákldnou plotu nikoli rovná úsečk, le křivá

Více

Integrály definované za těchto předpokladů nazýváme vlastní integrály.

Integrály definované za těchto předpokladů nazýváme vlastní integrály. Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Lineární funkce f: y = kx + q, D f = R, H f = R, grf je přímk množin odů [x, y], x D f, y = f(x) q úsek n ose y, tj. od [0, q], k směrnice, k = tn φ = 2 2 1 1, A[ 1, 2 ], B[ 1, 2

Více

3 NÁHODNÁ VELIČINA. Čas ke studiu kapitoly: 80 minut. Cíl: Po prostudování tohoto odstavce budete umět

3 NÁHODNÁ VELIČINA. Čas ke studiu kapitoly: 80 minut. Cíl: Po prostudování tohoto odstavce budete umět NÁHODNÁ VELIČINA Čs ke studiu kpitol: 8 minut Cíl: o studování tohoto odstvce udete umět oecně popst náhodnou veličinu pomocí distriuční funkce chrkterizovt diskrétní i spojitou náhodnou veličinu porozumět

Více

Integrální počet - III. část (určitý vlastní integrál)

Integrální počet - III. část (určitý vlastní integrál) Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I ..11 Konstrukce n zákldě výpočtu I Předpokldy: Pedgogická poznámk: Původně yl látk rozepsnou do dvou hodin, v první ylo kromě dělení úseček zřzen i čtvrtá geometrická úměrná. Právě její prorání se nestíhlo,

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

Správné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010

Správné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010 právné řešení písemné koušky mtemtiky- vrint A Přijímcí říení do NMgr. studi učitelských oborů Příkld. Vyšetřete průběh funkce v jejím mimálním definičním oboru nčrtněte její grf y Určete pritu (sudá/lichá),

Více

Relativiatická fyzika a astrofyzika I. Geometrie

Relativiatická fyzika a astrofyzika I. Geometrie Reltivitická fyzik strofyzik I Geometrie Definice: Nechť g je metrický tenzor jeho komponenty vůči souřdnicové zi jsou g.dále nechť je g -1 inverzní mtice k g její komponenty k příslušné zi jsou g. zvedání

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x. KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou

Více

= 2888,9 cm -1. Relativní atomové hmotnosti. leží stejný přechod pro molekulu H 37 Cl? Výsledek vyjádřete jako

= 2888,9 cm -1. Relativní atomové hmotnosti. leží stejný přechod pro molekulu H 37 Cl? Výsledek vyjádřete jako Přijímcí zkoušk n nvzující mgisterské studium - 018 Studijní progrm Fyzik - všechny obory kromě Učitelství fyziky-mtemtiky pro střední školy, Vrint A Příkld 1 Určete periodu periodického pohybu těles,

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu

Více

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem 2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice

Více

17 Křivky v rovině a prostoru

17 Křivky v rovině a prostoru 17 Křivky v rovině prostoru Definice 17.1 (rovinné křivky souvisejících pojmů). 1. Nechť F (t) [ϕ(t), ψ(t)] je 2-funkce spojitá n, b. Rovinnou křivkou nzveme množinu : {F (t) : t, b } R 2. 2-funkce F [ϕ,

Více

Dá se ukázat, že vzdálenost dvou bodů má tyto vlastnosti: 2.2 Vektor, souřadnice vektoru a algebraické operace s vektory

Dá se ukázat, že vzdálenost dvou bodů má tyto vlastnosti: 2.2 Vektor, souřadnice vektoru a algebraické operace s vektory Vektorový počet.1 Eklidovský prostor E 3 Eklidovský prostor E 3 je prostor spořádaných trojic (tj. bodů), v němž je definována vzdálenost dvo jeho bodů A, B (značíme ji AB ). Vzdálenost bodů A = [a 1,

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n, ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých

Více

Reprezentovatelnost částek ve dvoumincových systémech

Reprezentovatelnost částek ve dvoumincových systémech Reprezentovtelnost částek ve dvoumincových systémech Jn Hmáček, Prh Astrkt Máme-li neomezené množství mincí o předepsných hodnotách, může se stát, že pomocí nich nelze složit některé částky Pro jednoduchost

Více

7. Integrální počet Primitivní funkce, Neurčitý integrál

7. Integrální počet Primitivní funkce, Neurčitý integrál 7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

P íklady k procvi ení znalostí na písemnou ást bakalá ské státní zkoušky. Elektrické obvody:

P íklady k procvi ení znalostí na písemnou ást bakalá ské státní zkoušky. Elektrické obvody: P íkldy k procvi ení znlostí n písemno ást klá ské státní zkošky Elektrické ovody: 1. Stnovte st ední efektivní hodnot prod, jehož sový pr h je n orázk: 2. Stnovte st ední efektivní hodnot np tí o mplitd

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název modulu: Zákldy mtemtiky Zkrtk: ZM Počet kreditů: Semestr: Z/L Mentor: Petr Dolnský Tutor: Petr Dolnský I OBSAH BALÍČKU STUDIJNÍCH OPOR: ) Skriptum:

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Přednáška 9: Limita a spojitost

Přednáška 9: Limita a spojitost 4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty

Více

Logaritmická funkce teorie

Logaritmická funkce teorie Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá

Více

Integrál a jeho aplikace Tomáš Matoušek

Integrál a jeho aplikace Tomáš Matoušek Integrál jeho plikce Tomáš Mtoušek Křivk Definice.(Vektorováfunkce) Funkci ϕ:r R n,kteráreálnémučíslupřiřzuje n-tici reálných čísel(vektor), nzýváme funkcí vektorovou. Lze ji tké popst po složkáchjko ϕ(t)=(ϕ

Více

NMAF061, ZS Písemná část zkoušky 16. leden 2018

NMAF061, ZS Písemná část zkoušky 16. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 1 3 4 5 6 Celkem bodů Bodů 7 6

Více

VYUŽITÍ CITLIVOSTNÍ ANALÝZY V ELEKTROTECHNICE A ŘÍDÍCÍ TECHNICE - II

VYUŽITÍ CITLIVOSTNÍ ANALÝZY V ELEKTROTECHNICE A ŘÍDÍCÍ TECHNICE - II 8 Informčné utomtizčné technológie v ridení kvlity produkcie Vernár,.-4. 9. 5 VYUŽIÍ CILIVONÍ ANALÝZY V ELEKROECHNICE A ŘÍDÍCÍ ECHNICE - II KÜNZEL Gunnr Abstrkt Příspěvek nvzuje n předchozí utorův článek

Více

2.1 - ( ) ( ) (020201) [ ] [ ]

2.1 - ( ) ( ) (020201) [ ] [ ] - FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

Převody Regulárních Výrazů. Minimalizace Konečných. Regulární jazyky 2 p.1/35

Převody Regulárních Výrazů. Minimalizace Konečných. Regulární jazyky 2 p.1/35 Převody Regulárních Výrzů Minimlizce Konečných Automtů Regulární jzyky 2 p.1/35 Kleeneho lger Definice 2.1 Kleeneho lger sestává z neprázdné množiny se dvěm význčnými konstntmi 0 1, dvěm inárními opercemi

Více

NMAF061, ZS Písemná část zkoušky 25. leden 2018

NMAF061, ZS Písemná část zkoušky 25. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 3 4 5 6 Celkem bodů Bodů 6 6 4

Více

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami:

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami: Truhlář Michl 3 005 Lbortorní práce č 6 Úloh č 5 p 99,8kP Měření odporu, indukčnosti vzájemné indukčnosti můstkovými metodmi: Úkol: Whetstoneovým mostem změřte hodnoty odporů dvou rezistorů, jejich sériového

Více

4 Základní úlohy kvantové mechaniky

4 Základní úlohy kvantové mechaniky 4 Zákldní úlohy kvntové mechniky V této kpitole se podíváme n řešení Schrödingerovy rovnice pro některé jednoduché situce vedoucí k nlyticky řešitelným úlohám. Tkových situcí, které by byly zároveň fyzikálně

Více