IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde f(x) > 0, resp. f(x) < 0; monotonie a extrémy funkce f využití derivace f ; konvexnost a konkávnost funkce f, inflexní body (tvar grafu) využití derivace f ; asymptoty grafu funkce f chování funkce v nekonečně vzdálených bodech; konstrukce grafu funkce f náčrtek.
IX.1. Monotonie a extrémy Věta (Lagrangeova o střední hodnotě): Nechť funkce f je spojitá na intervalu a, b a diferencovatelná v a, b. Pak existuje bod c (a, b) takový, že platí f c = f b f(a) b a Ekvivalentní zápis: f b f a = f (c) (b a). Geometrický význam: Směrnice tečny grafu funkce f v bodě c je rovna směrnici sečny spojující krajní body tohoto grafu. Poznámka: diferencovatelnost funkce f v celém intervalu (a, b) je podstatná..
Lagrangeova věta geometrický význam Funkce f x = x 3 2x + 2 a = 2, b = 2 t 1 s t 2
Vztah derivace a monotonie funkce Věta: Nechť funkce f je spojitá na intervalu I. Jestliže pro všechny vnitřní body x I platí (a) f (x) > 0, (b) f (x) 0, (c) f (x) 0, (d) f (x) < 0, pak funkce f je v intervalu I (a) rostoucí, (b) neklesající, (c) nerostoucí, (d) klesající. Poznámka: Přímý důsledek Lagrangeovy věty. Příklad: f x = x 3 3x 2 9x + 4, D f = R f x = 3x 2 6x 9, funkce f je rostoucí v (, 1 a v 3, + ), klesající v intervalu 1, 3 (ověřte).
Lokální extrémy Def: Řekneme, že funkce f má v bodě x 0 D(f) lokální maximum (minimum), jestliže existuje takové okolí U(x 0 ), že platí x U x 0 D f f(x) f(x 0 ) f(x) f(x 0 ). Platí-li f(x) < f(x 0 ), resp. f(x) > f(x 0 ) pro každé x U x 0 D f, x x 0, má funkce f v bodě x 0 ostré lokální maximum, resp. minimum. Poznámka: Maximum a minimum funkce na množině zavedené dříve (max f, min f) jsou tzv. globální (nebo M absolutní) extrémy. M
Určování extrémů Věta: Má-li funkce f v bodě x 0 extrém a existuje-li f (x 0 ) (oboustranná), pak f x 0 = 0. Poznámka: Nutná podmínka existence extrému není postačující. Uvažte funkce f x = x 2, g x = x 3, x 0 = 0. Je-li funkce f definována na intervalu I s krajními body a < b, pak může v I nabývat extrémů: v bodech a, b (pokud patří do I), v bodech x I, kde f nemá derivaci, v bodech x I, kde f x = 0. Poznámka: Není-li f v intervalu I spojitá, pak v tomto intervalu extrémů nemusí nabývat.
Určování extrémů - pokračování Věta: Nechť f je spojitá v intervalu I = a, b. Pak f nabývá v I svého (absolutního) maxima i minima, přičemž tyto extrémy mohou nastat: v bodech a, b, v bodech x I, kde f x = 0, v bodech x I, kde f (x) neexistuje. Je-li funkce f definována na intervalu I, vyšetřujeme na tomto intervalu postupně: spojitost f, existenci a spojitost f ; maximální intervaly monotonie, extrémy; chování v krajních bodech I případně pomocí limity.
IX.2. Konvexnost a konkávnost funkce, inflexní body Def: Nechť funkce f je definována v intervalu I. Řekneme, že f je v I ryze konvexní, jestliže pro každé tři body x 1, x 2, x 3 I, x 1 < x 2 < x 3 platí: bod Q 2 = x 2, f(x 2 ) leží pod přímkou Q 1 Q 3, kde Q 1 = x 1, f(x 1 ), Q 3 = x 3, f(x 3 ). Poznámka matematická formulace: Rovnice uvedené přímky je y = f x 1 + k x x 1 = L(x), k = f x 3 f(x 1 ) x 3 x 1, uvedenou vlastnost lze vyjádřit nerovností f x 2 < f x 1 + k x 2 x 1 = L(x 2 ). Příklad: f x = x 2, I = 2, 2.
Další možnosti Analogicky se zavádějí obdobné pojmy pro funkci f: ryze konkávní nad přímkou f(x 2 ) > L(x 2 ), konvexní pod přímkou nebo na ní f(x 2 ) L(x 2 ), konkávní nad přímkou nebo na ní f(x 2 ) L(x 2 ). Věta: Nechť f je spojitá na intervalu I. Jestliže pro všechny vnitřní body x I platí f (x) > 0, je funkce f ryze konvexní v I. Poznámka: Změnou znaménka nerovnosti dostaneme: f (x) 0 pro všechny vnitřní body f je konvexní v I, f (x) 0 pro všechny vnitřní body f je konkávní v I, f (x) < 0 pro všechny vnitřní body f je ryze konkávní v I.
Inflexní body Def: Nechť f má (vlastní) derivaci v bodě x 0, tečna ke grafu funkce f v bodě M = x 0, f(x 0 ) má rovnici y = f x 0 + f x 0 x x 0 = T(x). Jestliže existuje δ > 0 takové, že platí x (x 0 δ, x 0 ) f(x) < T(x), x x 0, x 0 + δ f x > T x (nebo naopak), řekneme, že bod x 0 je inflexním bodem funkce f (f má v bodě x 0 inflexi). Geometrický význam: Graf funkce f přechází v bodě M z polohy pod tečnou do polohy nad tečnou nebo naopak. Příklady: a) f x = x 3, x 0 = 0 tečnou je osa x; b) g x = sin x, x 0 = 0 tečna má rovnici y = x.
Funkce f x = x 3, g x = sin x, x 0 = 0 g f
Určování inflexních bodů Věta: Je-li bod x 0 inflexním bodem funkce f a existuje-li f (x 0 ), pak f x 0 = 0. Poznámka: f x 0 = 0 je nutná podmínka existence inflexního bodu není postačující! Příklady: a) f x = x 3, f 0 = 0, bod 0 je inflexním bodem. b) g x = x 4, g 0 = 0, funkce g je ryze konvexní v R. Postačující podmínky: Nechť f existuje na intervalu x 0 δ, x 0 + δ, δ > 0. Jestliže platí x x 0 δ, x 0 f (x) < 0, x x 0, x 0 + δ f (x) > 0 (nebo naopak), je x 0 inflexním bodem funkce f.
Jiná možnost zjištění extrému a inflexního bodu Věta: Nechť f x 0 = 0. Pak platí: Je-li f (x 0 ) > 0, má f v bodě x 0 ostré lokální minimum. Je-li f (x 0 ) < 0, má f v bodě x 0 ostré lokální maximum. Příklad: f x = x 3 12x + 5. f x = 3x 2 12, f x = 0 x = ±2. f x = 6x minimum pro x = 2, maximum pro x = 2. Poznámka: Neplatí tvrzení : Je-li f x 0 = 0, f (x 0 ) 0, má f v bodě x 0 lokální minimum uvažte funkci f x = x 3, x 0 = 0. Věta: Jestliže platí f x 0 = 0, f (x 0 ) 0, pak bod x 0 je inflexním bodem funkce f.
IX.3. Asymptoty grafu funkce Asymptota grafu funkce f přímka, k níž se graf blíží v nekonečně vzdáleném bodě. Def: a) Přímku o rovnici y = c nazveme vodorovnou asymptotou grafu funkce f pro x +, jestliže platí f(x) = c. lim x + (Analogicky pro x.) b) Přímku o rovnici x = d nazveme svislou asymptotou grafu funkce f, jestliže f má v bodě x = d alespoň jednu jednostrannou nevlastní limitu. Příklad: Funkce f x = 1 má svislou asymptotu x = 0, x vodorovnou asymptotu y = 0 pro x +, x.
Šikmá asymptota (v nevlastním bodě) Def: Nechť funkce f je definována v jistém intervalu (, c), resp. (c, + ). Přímku o rovnici y = kx + q nazveme šikmou asymptotou grafu funkce f pro x, resp. pro x +, jestliže platí lim x f x kx q = 0, resp. lim x + f x kx q = 0. Význam: Pro x, resp. x + je funkce f téměř lineární, její graf je skoro přímka. Příklad: Funkce f x = x 2 1 má pro x + asymptotu y = x, pro x asymptotu y = x (k = ±1, q = 0). (Asymptoty rovnoosé hyperboly o rovnici x 2 y 2 = 1.)
Určení šikmé asymptoty Jestliže přímka o rovnici y = kx + q je asymptotou grafu funkce f pro x +, pak platí k = lim x + q = f(x), resp. k = lim f (x), x + lim f x kx, x x + přičemž obě limity jsou konečné. Při určování asymptoty počítáme hodnoty k a q jako uvedené limity. Jsou-li obě konečné, je asymptota popsána rovnicí y = kx + q. (Obdobně postupujeme pro x.) Poznámka: Je-li některá z limit nevlastní nebo neexistuje, pak graf funkce f nemá šikmou asymptotu.