7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité, studenti budou v dalším růběhu hodin často nahlížet. Stejně tak ovažuji za vhodné, kdž si studenti několikrát do obrázku nakreslí vzdálenost, zvětšuje se tak ravděodobnost, že si ři řešení říkladů budou amatovat její význam. Zatím známe rovnice arabol, jejichž vrchol leží v očátku soustav souřadnic. Elisa: střed S [ 0;0] v očátku rovnice + = 1, a b střed v bodě [ ; ] S m n rovnice ( m ) ( n ) a + =. b 1 1
Jak se změní rovnice arabol z bodu [ 0;0 ] do bodu [ ; ] m n? =, kterou osuneme tak, ab se její vrchol řemístil Zřejmě na rovnici ( m) ( n) zjistit souřadnice vrcholu). =. Rovnice se nazývá vrcholová (rotože z ní můžeme Parabol s vrcholem v bodě [ m; n ] a osou rovnoběžnou s osou a vzdáleností mají vrcholové rovnice ( m) = ± ( n). Parabol s vrcholem v bodě [ m; n ] a osou rovnoběžnou s osou a vzdáleností mají vrcholové rovnice ( n) = ± ( m). = = Poznámka: Stejně jako u elis nebudeme racovat s arabolami, jejichž os nejsou rovnoběžné s jednou ze souřadných os. Jejich rovnice jsou složitější. Př. : Urči souřadnice vrcholu, ohniska a rovnici řídící římk arabol, která je dána rovnicí ( 1) 6( ) = +. Uravíme rovnici: ( 1) = ( + ) vrchol: [ ;1] - - - -, arametr =. Ohnisko: 1 + ;1 = ;1, řídící římka: 7 = =. Pedagogická oznámka: Objevuje se hned několik chb z neozornosti: souřadnice vrcholu 1; (kvůli automatickému řiřazování druhé mocnin -vé souřadnici), [ ] šatně nakreslený obrázek (arabola se svislou osou) a šatné oužití arametru (oužití rovnosti = 6 ).
Př. : Naiš vrcholovou rovnici arabol s vrcholem v bodě 1; a ohniskem [ 1; 1]. Nakreslíme si oba bod: - - - - Bod leží nad sebou osa arabol bude rovnoběžná s osou, arabola bude orientována směrem dolů rovnice tu ( m) ( n) Platí: 5 = = = 5. =. Dosadíme do rovnice souřadnice vrcholu a velikost : ( ) + 1 = 5. Pedagogická oznámka: U obou ředchozích říkladů i u říkladů následujících je důležité načrtnutí obrázku arabol. Podle obrázku je ak doočítání ožadovaných údajů snadné. Nejčastějším roblémem je, že si studenti neamatují rovnost oužívají šatnou =. = a místo ní Stejně jako u kružnice a elis i u vrcholové rovnice arabol můžeme umocnit a roznásobit závork, osčítat, co ůjde, a tak získat obecnou rovnici arabol. Parabolu, jejíž osa je rovnoběžná s osou, můžeme vjádřit také obecnou rovnicí arabol + r + s + t = 0. Parabolu, jejíž osa je rovnoběžná s osou, můžeme vjádřit také obecnou rovnicí arabol + r + s + t = 0. Stejně jako u kružnice a elis budeme muset řevést obecnou rovnici na vrcholovou, abchom zjistili, o jakou arabolu jde.
Př. : Urči vrchol, ohnisko a řídící římku arabol dané rovnicí Načrtni obrázek arabol. + = 0. Uravujeme nejdřív závorku ro souřadnici : + 1+ 1 1 = + ( + 1) = + ( + 1) = ( + 1) ( + 1) = ( + 1) vrchol: [ 1; 1] - - - -, arametr + = 0 =. Ohnisko: 1 1; 1+ = 1;, řídící římka: 7 = 1 =. Př. 5: Urči vrchol, ohnisko a řídící římku arabol dané rovnicí: a) + 6 + = 0 b) 6 10 = 0 c) + + + = 0. a) + 6 + = 0 Uravujeme nejdřív závorku ro souřadnici : ( ) = 6 ( ) = vrchol: [ ;0] - - - -, arametr =. + = 6 Osa arabol je rovnoběžná s osou, arabola je orientována směrem dolů ohnisko: ;0 = ;, řídící římka: =.
b) 6 10 = 0 Uravujeme nejdřív závorku ro souřadnici : = 6 + 10. 10 = 6 + 6 5 = + vrchol: 5 ;0, arametr =. - - - - Osa arabol je rovnoběžná s osou, arabola je orientována směrem dorava 5 1 ohnisko: + ;0 = ;0 6, 5 19 řídící římka: = =. 6 c) + + + = 0 Uravujeme nejdřív závorku ro souřadnici : 1 1 + = + 1 11 + = 1 1 1 + + =. 1 11 + = + 16 vrchol: 11 1 ; 16, arametr =. - - - - Osa arabol je rovnoběžná s osou, arabola je orientována směrem doleva 11 1 7 1 ohnisko: 1; = ; 16 16, 11 5 řídící římka: = + 1 =. 16 16 5
Pedagogická oznámka: Největší roblém jsou u bodu b), kde mnoho studentů vtýká do = + 5, ab se vhnuli zlomkům v závorce. Oět je dobré zdůraznit, tvaru ( ) že jde nematematickou mšlenku, rotože nic nezakazuje zlomk v souřadnicích bodů, zatímco ožadavek na to, ab se v závorce vsktovalo ouze nenásobené žádným číslem, vlývá z rovnice ( n) ( m) = zcela jednoznačně. Pedagogická oznámka: Parabol na obrázcích v učebnici jsou kreslen v reálném tvaru. Na obrázk v sešitech není dobré klást takové nárok, stačí, kdž budou rocházet srávným vrcholem a budou mít srávnou orientaci. Př. 6: (BONUS) Šikmý vrh je ři vhodné volbě souřadnic osán omocí souřadnic takto: 1 = vt cosα a = vt sinα gt. a) Dokaž, že bod z ředisu leží na arabole. b) Najdi vrchol této arabol. Rovnice arabol neobsahuje jiné roměnné než souřadnice musíme ze zadané soustav rovnic vloučit t vjádříme ho z rvní a dosadíme do druhé rovnice. 1 = vt cosα t = = v sinα g v cosα v cosα v cosα. sin g = α cosα v cos α - obecná rovnice arabol, řevedeme na středový tvar. g sinα = v cos α cosα g v sinα cosα = v cos α g sin cos sin cos sin cos cos v α α v α α v α α v α + = g g g g v sin cos v cos v sin cos α α α α α = + g g g v sin cos v cos v sin cos α α = α + α α (vtkneme tak, ab řed neblo nic) g g g v sin cos v cos v sin α α α α = g g g v Souřadnice vrcholu sinα cosα v sin α ; g g. 6
Dodatek: Souřadnice vrcholu odovídají vzorcům ro dostřel šikmého vrhu v sinα cosα d = (dvojnásobek -ové souřadnice vrcholu) a maimální výšku g výstuu h ma v sin α = ( -ová souřadnice vrcholu). g Př. 7: Petáková: strana 18/cvičení 77 c) e) f) strana 19/cvičení 79 d) Shrnutí: rcholovou rovnici arabol získáme velmi odobně jako středovou rovnici elis. 7