Pohyblivé zatížení. Pohyblivé zatížení. Příčinkové čáry na prostém nosníku, konzole a spojitém nosníku s vloženými klouby
|
|
- Pavlína Štěpánková
- před 5 lety
- Počet zobrazení:
Transkript
1 Stvní sttik,.ročník kářského stui Pohyivé ztížní zniká pojížěním vozi (vky, utomoiy, jřáy po stvní konstruki (mosty, jřáové ráhy, nájzové rmpy, pohy gráží. Pohyivé ztížní n prostém nosníku, konzo spojitém nosníku s vožnými kouy Iání vky (vozi. Tk ko oové síy. Ktr stvní mhniky Fkut stvní, ŠB Thniká univrzit Ostrv Dynmiké účinky ztížní (rázy, otřsy, rozkmitání konstruk výpočt z zjnoušit využitím tzv. ynmikého součinit, ktrým násoím pohyivé ztížní tím z zkoumt pouz jho sttiké účinky. n prostém nosníku z přvisýh konů Příčinková čár suj proměnivost sttiké vičiny S (rk, vnitřní síy, ktrá s váž k jinému místu (průřzu. Řšní s využitím příčinkovýh čr, ktré s sstrojí pro jnouhé vozio v pooě jiné zrozměrné jnotkové svisé oové síy. Znční ékovýh rozměrů: z z 0, 0, konst. konst. Pro ovozní příčinkovýh čr různýh sovnýh vičin sttiká kinmtiká mto. z F. Njjnoušší ztěžoví stvy prostýh nosníků F. F z z z k F. z ( F. z ( Posouvjíí sí 0, ( z, ( F z Ohyový momnt 0,, P ( z ( ( z ( z ( F ( z P ( z (
2 Prostý nosník, ztížní jnotkovou siou kn rkí n prostém nosníku z. z. z. z k z ( z ( Posouvjíí sí 0, ( z, ( z P ( z 0,, Ohyový momnt ( ( z ( z P ( z ( z z 5 k z z Jnotkové řmno P P mění poohu (půsoiště různé Příčinková čár suj proměnivost sttiké vičiny S, (ty z no z při změně poohy jnotkového ztížní P. Příčinková čár s váž k jinému místu (průřzu (ty no. z ( z Sttiká vičin S: rk ( z no z ísto (průřz, k ktrému s příčinková čár váž, j místo popory ( no rkí n prostém nosníku k z z Proměnivé ztížní P Příčinková čár rk z : (příčinková čár vztžná k místu, pro ktré ptí 0. Honot z o síy, ktrá mění své půsoiště (místo ( є 0,. Ty n or.: Honot pořni z opovíá vikosti rk z při půsoní jnotkové síy P v místě (průřzu. Příčinková čár rk z : (příčinková čár vztžná k místu, pro ktré ptí. Honot z o síy, ktrá mění své půsoiště (místo (є 0,. Ty n or.: Honot pořni z opovíá vikosti rk z při půsoní jnotkové síy P v místě (průřzu. 0 z z z z Pořni příčinkovéčáry rkí jsou zrozměrná čís z z Dfini příčinkové čáry 0 z z z z konst. Příčinková čár suj proměnivost sttiké vičiny S (rk, vnitřní síy v závisosti n proměnné pooz zrozměrné jnotkové síy. Příčinková čár s váž k jinému místu (průřzu. Pomůk: Při výpočtu možno využít poonosti trojúhníku 8
3 rkí n prostém nosníku z z. Jnotkové ztížní v pooz 0,5 sovné místo (průřz 0, sttiká vičin S z z, pooh ztížní 0,5 z z z rkí n prostém nosníku z z P z Ztížní P v pooz 0,5 nní jnotkové. jsou shoné jko u jnotkového ztížní. z pro P S z sovné místo (průřz, sttiká vičin S z z, pooh ztížní 0,5 z z z 9 z z pro P z P. 0 rkí n prostém nosníku přík P0kN yužití příčinkovýh čr pro výpočt účinků nhyného ztížní Půsoíi n nosníku n si P i (i,,..., n z 5 z S z n P. i i i Součt příspěvků (příčinků jnotivýh si Půsoíi n nosníku spojité ztížní qq( ( 0 z z z z 5 0,85 5 0, P. 0. 5,kN z z 5 P. 0.,85kN z z z q(. ( Půsoíi n nosníku spojité ztížní qkonst ( z. ( q. A, q přípě konstntního spojitého ztížní j vikost rk přímo úměrná poš po příčinkovou čárou v místě půsoní q. A, ýpočt účinků nhyného ztížní pomoí příčinkové čáry
4 rkí n prostém nosníku, vyhononí rkí n prostém nosníku, přík z z P z P z pro P z P P. P. Oně n z P i. i i Anogiky potom výpočt z z z z P 5kN m 0,5 0,86 m 5 P 0kN m m 0,85 0, k z z? z z P. P. 5.0,5 0.0,85,8kN z P. P. 5.0,86 0.0,,56kN rkí n prostém nosníkuspojité ztížní n prostém nosníku z přvisýh konů q5kn/m k z z? Tnto snímk j rkpituí snímků 0 ( 0 z z 6m z z z q(. ( 0 pro q(konst. q q. z q.. 0 z z 5kN q. ( q A z. 0 z z q. A q.. no intgrí 0 5 ( Prostý nosník (n or. hyí iny z ( Příčinková čár rk z n prostém nosníku ( Příčinková čár rk z n prostém nosníku ( Příčinková čár ohyového momntu n prostém nosníku ( Příčinková čár posouvjíí síy n prostém nosníku ( ( ( ( n prostém nosníku z přvisýh konů 6
5 n prostém nosníku Posouvjíí sí konst. 0, ( 0 z z 0 sovné místo (průřz /, sttiká vičin S, pooh ztížní / 0,5 z 0,5 z 0,5 0,5. sovné místo (průřz /, sttiká vičin S, pooh ztížní / 0,5 z z 0,5 Příčinková čár suj proměnivost sttiké vičiny S, (ty posouvjíí síu ktrá s váž k jinému místu (průřzu (ty při změně poohy P. ( 0 z 0 z n prostém nosníku z 0,5 0,5 δ, ji P v pooz z (možnost využití poonosti trojúhníků 0,5 z vá větv konst. 0, Bui P vvo o průřzu, potom z Ty / ikost posouvjíí síy v závisosti n pooz síy P : z Pořni příčinkovéčáry posouvjíí síy jsou zrozměrná čís 8 n prostém nosníku z (/ ( min 0,5 0,5 z 0,5 z, ji P v pooz (možnost využití poonosti trojúhníků δ Prvá větv konst. Bui P vprvo o průřzu, pk z Ty /, ikost posouvjíí síy v závisosti n pooz síy P : Pořni příčinkovéčáry posouvjíí síy jsou zrozměrná čís 9 n prostém nosníku z 0, 0, ( min 0,66 0, 6 ( m z δ konst. Bui P v průřzu, potom z, z ikost posouvjíí síy v závisosti n pooz síy P : vá větv z Prvá větv z průřzu j jnotkový skok δ 0 5
6 n prostém nosníku Ohyový momnt konst. 0, P ( z... 6 ( z.. 9 ( z.. 6 z z z... z z z Příčinková čár suj proměnivost sttiké vičiny S, (ty ohyový momnt ktrá s váž k jinému místu (průřzu (ty. z /. n prostém nosníku / ( ϕ ( / 6 ϕ /. z vá větv konst. 0, Bui P vvo o průřzu, potom z.( ikost ohyového momntu v závisosti n pooz síy P : z ( ozměrm pořni příčinkovéčáry ohyového momntu j ék [m]. v průřzu j jnotkové zomní z /. n prostém nosníku / ( ϕ ( / 6 ϕ /. z Prvá větv konst. Bui P vprvo o průřzu, potom z. ikost ohyového momntu v závisosti n pooz síy P : ( v průřzu j jnotkové zomní z, ozměrm pořni příčinkovéčáry ohyového momntu j ék [m]. z /. n prostém nosníku ( ( ϕ /,m / ϕ ( /. 9 z konst. Bui P v průřzu, potom: z z ozměrm pořni příčinkovéčáry ohyového momntu j ék [m]. 6
7 rkí n konzo vnitřníh si n konzo k z nitřní síy z z!! z z Proměnivé ztížní P z ( ( 0!! z Proměnivé ztížní P vá větv. 0 ui P vvo o průřzu : Prvá větv ( ui P vprvo o průřzu : n konzo vprvo vtknuté n konzo vvo vtknuté ( Konzo (n or. hyí iny z ( ( Konzo (n or. hyí iny z (Poku s ut učit z skript ty jiný směr ( ( Příčinková čár rk z n konzo ( ( Příčinková čár rk z n konzo ( ( Příčinková čár rk z n konzo ( ( Příčinková čár rk z n konzo ( ( Příčinková čár ohyového momntu n konzo ( ( Příčinková čár ohyového momntu n konzo ( ( Příčinková čár posouvjíí síy n konzo ( n konzo vprvo vtknuté ( Příčinková čár posouvjíí síy n konzo ( n konzo vvo vtknuté 8
8 Prostý nosník s přvisými koni rk k z z z 0 z z z P j n vém přvisém koni P j n vém přvisém koni P j v poi mzi popormi (viz prostý nosník, P j v poi mzi popormi (viz prostý nosník P j n prvém přvisém koni P j n prvém přvisém koni 9 Prostý nosník s přvisými koni Posouvjíí sí průřz j v poi mzi popormi konst P j n vém přvisém koni z P j v průřzu (viz prostý nosník Ji průřz mzi popormi příčinková čár posouvjíí síy mzi popormi shoná jko n prostém nosníku, přvisé kon jjí inární pokrčování 0 z P j v poi mzi popormi vprvo o (viz prostý nosník P j n prvém přvisém koni Prostý nosník s přvisými koni Posouvjíí sí ( ( průřz j n úsku přvisého kon (vém no prvém z ( ( Ji průřz n úsku přvisého kon příčinková čár shoná jko n konzo z Prostý nosník s přvisými koni Ohyový momnt průřz j v poi mzi popormi P j n vém přvisém koni P j v průřzu (viz prostý nosník z ( Ji průřz mzi popormi příčinková čár stjné prvio jko u P j v poi mzi popormi (viz prostý nosník z P j n prvém přvisém koni 8
9 Prostý nosník s přvisými koni n prostém nosníku s přvisými koni Ohyový momnt ( ( průřz j n úsku přvisého kon (vém no prvém ( ( ( ( ( ( Ji průřz n úsku přvisého kon příčinková čár shoná jko n konzo ( Nosník s přvisými koni (n or. hyí iny z ( Příčinková čár rk z ( Příčinková čár rk z ( Příčinková čár ohyového momntu v poi ( Příčinková čár posouvjíí síy v poi (f Příčinková čár ohyového momntu n poporou ( ( ( ( ( (f n prostém nosníku s přvisými koni n spojitém nosníku s vožnými kouy n spojitém nosníku s vožnými kouy Část nsná sovný průřz j n nsné části (ty o ( Část nsouí sovný průřz j n nsouí části (ty o g v poi no o f n přvisém koni ( Ji sovný průřz n nsném prutu příčinkové čáry shoné jko n prostém nosníku. Bui ztížní n nsouí části, viv s nprojví v části nsné příčinková čár z koum nnvzuj n průěh v nsné části j nuová ( Příčinková čár rk z ( Příčinková čár intrk z ( Příčinková čár ohyového momntu (f Příčinková čár posouvjíí síy ( ( ( ( (f n spojitém nosníku s vožným koum 5 Ji sovný průřz n nsouím prutu příčinkové čáry n nsouí části shoné jko n prostém nosníku. kouu s příčinková čár ám inárně v o nuy n koni nosníku, přípně o nuové honoty v vjším kouu. Z tímto koum j potom čár nuová. (g Příčinková čár rk z (h Příčinková čár rk z (i Příčinková čár ohyového momntu g v poi (j Příčinková čár posouvjíí síy g v poi (k Příčinková čár ohyového momntu f n přvisém koni ( Příčinková čár posouvjíí síy f n přvisém koni ( (g (h (i (j (k ( n spojitém nosníku s vožným koum 6 9
Pohyblivé zatížení. Pohyblivé zatížení. Píinkové áry na prostém nosníku, konzole a spojitém nosníku s vloženými klouby
Stvní sttik,.roník káského stui Pohyivé ztížní Pohyivé ztížní Píinkové áry n prostém nosníku, konzo spojitém nosníku s vožnými kouy Ktr stvní mhniky Fkut stvní, VŠB Thniká univrzit Ostrv Vzniká pojížním
VíceVýpočet vnitřních sil lomeného nosníku
Stvní sttik, 1.ročník klářského stui ýpočt vnitřníh sil lomného nosníku omný nosník v rovinné úloz Kontrol rovnováhy uvolněného styčníku nitřní síly n uvolněném prutu rostorově lomný nosník Ktr stvní mhniky
VíceRovinné nosníkové soustavy. Pohyblivé zatížení. Trojkloubový nosník s táhlem Rovinně zakřivený nosník (oblouk) Příčinkové čáry
Stvení sttik,.ročník kářského studi Rovinné nosníkové soustvy Pohyivé ztížení Trojkouový nosník s táhem Rovinně zkřivený nosník (oouk) Příčinkové čáry Ktedr stvení mehniky Fkut stvení, VŠB - Tehniká univerzit
Více18ST - Statika. 15. dubna Dan et al. (18ST) Vnitřní síly na lomených nosnících 15. dubna / 16
Vnitřní síy n omný nosníí Dn Kytýř, Tomáš Doktor, Ptr Kouk 8ST - Sttik 5. un 03 Dn t. (8ST) Vnitřní síy n omný nosníí 5. un 03 / 6 Zání Zání Vyjářt vykrst funk průěů vnitřní si N(x), T(x), M(x) n ném nosníku.
VíceRovinné nosníkové soustavy II h=3
Stvní sttik,.ročník klářského stui Mimostyčníkové ztížní prutu V prutu č. vznikn v ůslku mimostyčníkového ztížní rovněž V M. q konst. Rovinné nosníkové soustvy II h Rovinný klouový příhrový nosník Mimostyčníkové
VíceZjednodušená styčníková metoda
Stvní sttik, 1.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Zjnoušná styčníková mto Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového
VíceSMR 2. Pavel Padevět
SR Pve Pevět PRICIP VIRTUÁLÍCH PRACÍ jenošená eformční meto, esiové vivy, Sčítání účinků ztížení ezi nesiové vivy vžjeme v D: viv posntí popor, viv tepoty. ESILOVÉ VLIVY Popštění popory vyvoává v sttiky
VícePŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ
Zdání PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ Příkd č. Uvžujte příhrdovou konstruki z Or., vypočítejte svisý posun v odě (znčený ). odře vyznčené pruty (pruty 3, 4, 5, 6 7) jsou ztíženy rovnoměrným otepením
VíceStavební mechanika 1 (K132SM01)
Stní mnik 1 (K132SM01) Přnáší: o. ng. Mtěj Lpš, P.D. Ktr mniky K132 místnost D2034 konzult Čt 9:30-11:00 -mil: mtj.lps@fs.ut.z ttp://m.fs.ut.z/~lps/ting/inx.tml Řáný trmín zápočtoé písmky j ÚTERÝ 25. un
VíceVýpočet vnitřních sil přímého nosníku II
Stveí sttik, 1.ročík komiového studi Shwederovy vzthy Difereiáí podmík rovováhy eemetu v osové úoze ýpočet vitříh si přímého osíku II 1 d z d ýpočet vitříh si osíků ztížeýh spojitým ztížeím ýpočet osíku
VíceTéma 5 Spojitý nosník
Stvení mechnik.očník kářského studi AST Tém 5 Spojitý nosník Zákdní vstnosti spojitého nosníku Řešení spojitého nosníku siovou metodou yužití symetie spojitého nosníku Kted stvení mechniky Fkut stvení
VíceTéma 8 Pohyblivé zatížení
Stvení stt, roční ářsého stud Tém 8 Pohyvé ztížení Příčnové čáry n prostém nosníu, onzoe spojtém nosníu s voženým ouy Pohyvé vozdo n prostém nosníu Nepřímé pohyvé ztížení Ktedr stvení mehny Fut stvení,
VícePosouvající síla V. R a. R b. osa nosníku. Kladné směry kolmé složky vnitřních sil. Výpočet nosníku v příčné úloze (ve svislé hlavní rovině xz)
Posouvjící sí Posouvjící síu v zdném průřezu c ze vypočítt jko gerický součet všech svisých si po jedné strně průřezu. Postupujei se z evé strny, do součtu se zhrnou kdně síy půsoící zdo nhoru, záporně
VíceSMR 2. Pavel Padevět
SR 2 Pvel Pevět PRINCIP VIRTUÁLNÍCH PRACÍ Silová meto Rámová konstruke, symetriké konstruke Prinipy pro symetriké konstruke ztížené oeným ztížením. Symetriká konstruke ntimetriké ztížení. Os symetrie
VíceStanovení přetvoření ohýbaných nosníků. Clebschova a Mohrova metoda
Stnovení přetvoření ohýnýh nosníků Ceshov Mohrov metod (pokrčování) (Mohrov nogie) Příkd Určete rovnii ohyové čáry pootočení nosníku stáého průřezu Ceshovou metodou. Stnovte veikost průhyu w pootočení
VíceTéma 6 Staticky neurčitý rovinný oblouk
ttik stveních konstrukcí I.,.ročník kářského studi Tém 6 tticky neurčitý rovinný oouk Zákdní vstnosti stticky neurčitého rovinného oouku Dvojkouový oouk Dvojkouový oouk s táhem Vetknuté oouky Přiižný výpočet
VícePodepření - 3 vazby, odebrány 3 volnosti, staticky určitá úloha
nitřní síly Prut v rovině 3 volnosti Podepření - 3 vzy, oderány 3 volnosti, sttiky určitá úloh nější ztížení reke musí ýt v rovnováze, 3 podmínky rovnováhy, z nih 3 neznámé reke nější ztížení reke se nzývjí
VíceRovinné nosníkové soustavy Gerberův nosník
Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Sttiky neurčité
VíceTéma 6 Spojitý nosník
Stvení mechnik.očník kářského studi AST Tém Sojitý nosník Zákdní vstnosti sojitého nosníku Řešení sojitého nosníku siovou metodou yužití symetie sojitého nosníku Kted stvení mechniky Fkut stvení ŠB - Technická
Více5 kn/m. E = 10GPa. 50 kn/m. a b c 0,1 0,1. 30 kn. b c. Statika stavebních konstrukcí I. Příklad č. 1 Posun na nosníku
Sttik stveníh konstrukí I Příkl č. 1 Posun n nosníku Metoou jenotkovýh ztížení určete voorovný posun ou nosníku pole orázku. Nosník je vyroen z měkkého řev o moulu pružnosti 10 GP. 50 kn/m E = 10GP 0,1
VíceRovinné nosníkové soustavy
Stvení sttik,.ročník kominovného studi Rovinné nosníkové soustvy Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový rám Trojklouový rám s táhlem Ktedr stvení mehniky
Více- Ohybový moment zleva:
příkl 1 q = 10k/m =0 1) Ohněte směry rekí z pomínek rovnováhy určete jejih velikost, proveďte kontrolu ) ykreslete průěhy vnitřníh sil jejih honoty určete ve všeh vyznčenýh oeh,,. R z R Reke z pomínek
VíceRovinné nosníkové soustavy Gerberův nosník
Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Opkování
VíceRovinné nosníkové soustavy III Příhradový nosník. Zjednodušená styčníková metoda. Rovinný kloubový příhradový nosník
Stní sttik, 1.ročník klářského stui Roinné nosníkoé sousty III Příhroý nosník Zjnoušná styčníkoá mto Roinný klouoý příhroý nosník Skl roinného příhroého nosníku Pomínk sttiké určitosti příhroého nosníku
VíceTéma 8 Přetvoření nosníků namáhaných ohybem I.
Pružnost psticit, ročník kářského studi Tém 8 Přetvoření nosníků nmáhných ohem Zákdní vzth předpokd řešení Přetvoření nosníků od nerovnoměrného otepení etod přímé integrce diferenciání rovnice ohové čár
VícePříhradové konstrukce - průsečná metoda v Ritterově úpravě
Příhrové konstruk - průsčná mto v Rittrově úprvě vyřšt síly v pruth u soustvy n orázku. goniomtri os = /( + ) / = 0,6 γ β () sin = /( + ) / = 0,8 (h) β osβ = /[ + ] / sinβ = /[ + ] / = 0, 987 = 0, 6 γ
VíceTéma 5 Spojitý nosník
Sttik stveních konstukcí..očník kářského studi Tém 5 Sojitý nosník Zákdní vstnosti sojitého nosníku Řešení sojitého nosníku siovou metodou yužití symetie sojitého nosníku Příčinkové čáy nhodié ztížení
VíceVýpočet vnitřních sil přímého nosníku
Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil přímého nosníku nitřní síly přímého vodorovného nosníku prostý nosník konzol nosník s převislým koncem Ktedr stvení mechniky Fkult stvení, ŠB
VíceSMR 2. Pavel Padevět
SR Pve Pevět PRINCIP VIRTUÁLNÍCH PRACÍ Deformční meto jenošená eformční meto, Přetvárně nerčité konstrke POROVNÁNÍ OBECNÉ A JEDNODUŠENÉ DEF. ETODY V zjenošené eformční metoě (D) se zneává viv normáovýh
VíceTéma 9 Přetvoření nosníků namáhaných ohybem II.
Pružnost psticit,.ročník kářského studi Tém 9 Přetvoření nosníků nmáhných ohem. ohrov metod Přetvoření nosníků proměnného průřeu Sttick neurčité přípd ohu Viv smku n přetvoření ohýného nosníku Ktedr stvení
VíceTéma 7 Staticky neurčitý rovinný kloubový příhradový nosník
Sttik stvebníh konstrukí I..ročník bklářského stui Tém 7 Sttiky neurčitý rovinný kloubový příhrový nosník Vlstnosti rozbor sttiké neurčitosti Sttiky neurčitý tvrově určitý příhrový nosník Sttiky neurčitý
VíceVýpočet vnitřních sil přímého nosníku III: šikmý nosník
Stvení sttik,.ročník klářského studi Výpočet vnitřníh sil přímého nosníku III: šikmý nosník Výpočet vnitřníh sil šikmého nosníku - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku
VíceVýpočet vnitřních sil přímého nosníku I
Stvení sttik, 1.ročník kominovného studi ýpočet vnitřních sil přímého nosníku I ýpočet vnitřních sil přímého vodorovného nosníku Ktedr stvení mechniky Fkult stvení, ŠB - Technická univerzit Ostrv nitřní
VíceKonstrukce na základě výpočtu III
3.3.3 Konstruk n záklě výpočtu III Přpokly: 0303 Př. : J án oélník o strnáh,. Sstroj čtvr o stjném oshu. Řšní přhozíh příklů vyházlo z vzorů popíšm si zání vzorm. Osh oélníku: S =, osh čtvr S = hlám élku
VíceZATĚŽOVACÍ ZKOUŠKY. Obr. 1. Statická zatěžovací zkouška; zatížení (N) zatlačení (cm)
ZATĚŽOVACÍ ZKOUŠKY ZATĚŽOVACÍ ZKOUŠKY Sttiká ztěžoví zkoušk položí poklníh vrstev Zřízení - ztěžoví (nákl. uto, ztěžoví most) - kruh. ztěžoví esk (mlá, velká) - kulový kloub - ynmometr - průhyboměr - tuhý
VíceSMR 2. Pavel Padevět
SR Pve Pevět Přenášk č. Přenášk č. PRINCIP VIRTUÁLNÍCH PRCÍ Výpočet přetvoření n sttk určtý konstrukí Přenášk č. Dopňková vrtuání práe momentů Vv n výpočet eformí: oment Posouvjíí sí Normáové sí (přírové
VícePříklad 1 Osově namáhaný prut průběhy veličin
Příkld 1 Osově nmáhný prut průběhy veličin Zdání Oelový sloup složený ze dvou částí je neposuvně ukotven n obou koníh v tuhém rámu. Dolní část je vysoká, m je z průřezu 1 - HEB 16 (průřezová ploh A b =
VíceRovinné nosníkové soustavy II
Prázý Prázý Prázý Ství sttik,.roík kláského stui Rovié osíkové soustvy II Trojklouový rám (osík) Trojklouový olouk (osík) Trojklouový rám s táhlm Trojklouový olouk s táhlm Ktr ství mhiky Fkult ství, VŠB
VíceVÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH PŘÍMÝCH NOSNÍCÍCH
Mioš Hüttner SMR přetvoření přímýh nosníků vičení VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH PŘÍMÝCH NOSNÍCÍCH Zaání Příka č. 1 Vpočítejte maimání průh nosníku o rozpětí zatíženého uprostře siou, viz Or.
VíceStanovení přetvoření ohýbaných nosníků. Mohrova metoda (Mohrova analogie)
Stnovení přetvoření ohýnýh nosníků ohrov metod (ohrov nlogie) Přetvoření ohýnýh nosníků Posouzení z hledisk meze použitelnosti Ztížení, deforme w, φ Okrové podmínky (deforme) Šmiřák, S.: Pružnost plstiit
VíceTrojkloubový nosník. Rovinné nosníkové soustavy
Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Kter stvení mehniky Fkult
VíceVýpočet vnitřních sil přímého nosníku II
Stveí sttik, 1.ročík kářského studi ýpočet vitřích si přímého osíku II ýpočet vitřích si osíků ztížeých spojitým ztížeím: příčé kosttí trojúheíkové spojité ztížeí, spojité ztížeí v osové úoze, mometové
VíceVýpočet vnitřních sil přímého nosníku III: šikmý nosník
Stvení sttik,.ročník klářského studi Výpočet vnitřníh sil přímého nosníku III: šikmý nosník Výpočet vnitřníh sil šikmého nosníku - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku
VíceVýpočet vnitřních sil I
Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil I přímý nosník, ztížení odové nitřní síly - zákldní pojmy ýpočet vnitřních sil přímého vodorovného nosníku Ktedr stvení mechniky Fkult stvení,
VíceStabilita a vzpěrná pevnost tlačených prutů
Pružnost psticit,.ročník kářského studi Stiit vzpěrná pevnost tčených prutů Euerovo řešení stiity přímého pružného prutu Ztrát stiity prutů v pružno-pstickém ooru Posouzení oceových konstrukcí n vzpěr
VíceSTATICKY NEURČITÉ RÁMOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ METODA
Zaání STATICKY NEURČITÉ RÁOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ ETODA Příkla č. Vykreslete průěhy vnitřníh sil na konstruki zorazené na Or.. Voorovná část konstruke (příčle) je složena z průřezu a
Více-R x,a. Příklad 2. na nejbližší vyšší celý mm) 4) Výpočet skutečné plochy A skut 5) Výpočet maximálního napětíσ max 6) Porovnání napětí. Výsl.
Zákdy dimenzování prutu nmáhného prostým tkem them Th prostý tk-zákdy dimenzování Už známe:, 3 -, i i 3 3 ormáové npětí [P] konst. po výšce průřezu Deformce [m] ii E ově zákdní vzthy: Průřezová chrkteristik
VíceTéma Přetvoření nosníků namáhaných ohybem
Pružnost psticit,.ročník bkářského studi Tém Přetvoření nosníků nmáhných ohbem Přetvoření nosníků - tížení nerovnoměrnou tepotou Přetvoření nosníků tížení siové Zákdní vth předpokd řešení Vth mei sttickými
Více3.4.12 Konstrukce na základě výpočtu II
3.4. Konstruk n záklě výpočtu II Přpokly: 34 Př. : J án úsčk o jnotkové él úsčky o élkáh,, >. Nrýsuj: ) úsčku o él = +, ) úsčku o él Při rýsování si élky úsčk, vhoně zvol. =. Prolém: O výrzy ni náhoou
VíceLIMES Opěrná stěna V: Soubor: TIHOVASKONZOLAMI Název projektu: Projektname. Systém A
0.30 0.30 RIB stvní sotwr s.r.o. Zlný pruh 1560/99 tl.: +420 241 442 078 CZ-140 00, Prh 4 mil: ino@ri.z http://www.ri.z LIMES Opěrná stěn V:17.0 13042017 Souor: TIHOVASKONZOLAMI Názv projktu: Projktnm
VíceNormálová nap tí v prutech namáhaných na ohyb
Pužnost psticit,.o ník ká skéo stui Nomáová np tí v putc nmánýc n o P ové cktistik Zákní vt p pok šní Výpo t nomáovéo np tí Dimnování nosník nmánýc n o Sožné p íp nmáání Kt stvní mcnik Fkut stvní, VŠB
VíceRovinné nosníkové soustavy
Stvení sttik, 1.ročník kominovného stui Rovinné nosníkové soustvy Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Gererův nosník Trojklouový rám Trojklouový rám s táhlem Kter
VíceTrojkloubový nosník. Rovinné nosníkové soustavy
Stvení sttik, 1.ročník klářského studi Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Trojklouový nosník Ktedr
VíceTéma 3 Úvod ke staticky neurčitým prutovým konstrukcím
Sttik stvebních konstrukcí I.,.ročník bkářského studi Tém 3 Úvod ke stticky neurčitým prutovým konstrukcím Ktedr stvební mechniky Fkut stvební, VŠB - Technická univerzit Ostrv Osnov přednášky Stticky neurčité
VíceNosné stavební konstrukce, výpočet reakcí
Stvení sttik.ročník kářského studi Nosná stvení konstrukce Nosné stvení konstrukce výpočet rekcí Nosná stvení konstrukce souží k přenosu ztížení ojektu do horninového msívu n němž je ojekt zožen. Musí
VícePříklad 33 : Energie elektrického pole deskového kondenzátoru. Ověření vztahu mezi energií, kapacitou a veličinami pole.
Přík 33 : Energie eektrického poe eskového konenzátoru. Ověření vzthu mezi energií, kpcitou veičinmi poe. Přepokáné znosti: Eektrické poe kpcit eskového konenzátoru Přík V eskovém konenzátoru je eektrické
VíceVýpočet vnitřních sil přímého nosníku II
Stveí sttik, 1.ročík kářského studi ýpočet vitřích si přímého osíku II ýpočet vitřích si osíků ztížeých spojitým ztížeím: příčé kosttí trojúheíkové spojité ztížeí, spojité ztížeí v osové úoze, mometové
VíceVÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH RÁMOVÝCH KONSTRUKCÍCH
Miloš Hüttnr SMR2 nilové účink viční 04 VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH RÁMOVÝCH KONSTRUKCÍCH Zdání Příkld č. 1 Vpočítjt prů v odě, noníku zorznéo ztížnéo dl Or. 1. Způo řšní Or. 1: Sé zdání příkldu
VíceElastické deformace těles
Eastické eformace těes 15 Na oceový rát ék L 15 m a průměru 1 mm zavěsíme závaží o hmotnosti m 110 kg přičemž Youngův mou pružnosti ocei v tahu E 16 GPa a mez pružnosti ocei σ P 0 Pa Určete reativní prooužení
VíceRovinné nosníkové soustavy III Příhradový nosník
Stvení sttik,.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového nosníku Zjenoušená
VíceRovinné nosníkové soustavy
Ství sttik, 1.roík kláského stui Záklí typy osíkovýh soustv v rovi xz Rovié osíkové soustvy ) Spojitý osík s vložými klouy (tzv. Grrv osík) Hirih Grr (1832-1912) výzmý mký kostruktér olovýh most omtová
VíceŠikmý nosník rovnoměrné spojité zatížení. L průmětu. zatížení kolmé ke střednici prutu (vítr)
Šikmý nosník Šikmý nosník rovnoměrné spojité ztížení ztížení kolmé ke střednii prutu (vítr) q h - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku prutu (vlstní tíh) - ztížení svislé
VíceMezní napětí v soudržnosti
Mení napětí v soudržnosti Pro žebírkovou výtuž e stanovit návrhovou hodnotu meního napětí v soudržnosti vtahu: = η η ctd kde je η součinite ávisý na kvaitě podmínek v soudržnosti a pooe prutu během betonáže
VíceTéma 2 Úvod ke staticky neurčitým prutovým konstrukcím
Stvební mechnik,.ročník bkářského studi AST Tém Úvod ke stticky neurčitým prutovým konstrukcím Ktedr stvební mechniky Fkut stvební, VŠB - Technická univerzit Ostrv Osnov přednášky Stticky neurčité konstrukce,
VíceF=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 )
Stvbní mchnik A1 K132 SMA1 Přdnášk č. 3 Příhrdové konstrukc Co nás čká v čtvrté přdnášc? Příhrdové konstrukc Zákldní přdpokldy Sttická určitost/nurčitost Mtody výpočtu Obcná mtod styčných bodů Nulové pruty
VíceZadání příkladu. Omezení trhlin. Dáno. Moment od kvazistálé kombinace. Průřezové charakteristiky průřezu bez trhlin
Příkla P9 Výpočt šířky trlin - tropní trám T Zaání příklau Pouďt zaaný tropní trám T z příloy C na mzní tav šířky trlin l EN 99-- Zatížní vnitřní íly krytí poouzní na oy uvažujt z příklaů P P a P6 Použijt
Vícep + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá.
TRIN_STT_P11.doc STTIK - SOUOR PŘNÁŠK 11. Prutové soustavy, základní pojmy, metody řešení. Teoreticky je PRUTOVÁ SOUSTV definována jako soustava složená z tuhých prutů, které jsou navzájem spojeny ideálními
VíceDurové stupnice s křížky
Durové stupni s křížky poří + přznmnání: & # # # # # # # # # # # # # ## # # # ## # # # # ## # # G ur D ur A ur E ur H ur Fis ur Cis ur G ur & # ġ is D ur & # # is is A ur & # # # is is is E ur & # # #
Více29. PL Čtyřúhelníky, mnohoúhelníky Čtyřúhelník = rovinný útvar, je tvořen čtyřmi úsečkami, které se protínají ve čtyřech bodech (vrcholech).
.ročník 9. PL Čtyřúhlníky, mnohoúhlníky Čtyřúhlník = rovinný útvr, j tvořn čtyřmi úsčkmi, ktré s protínjí v čtyřh oh (vrholh). Pozn.: Njčstěji s používá znční,,, pro vrholy,,,, pro strny α, β, γ, δ pro
VíceŘešte daný nosník: a = 2m, b = 2m, c = 1m, F 1 = 10kN, F 2 = 20kN
Řešte dný nosník: m, m, m, F kn, F kn yhom nl kompletně slové účnky půsoíí n nosník, nejprve vyšetříme reke v uloženíh. ek určíme npříkld momentové podmínky rovnováhy k odu. F F F ( ) ( ) F( ) 8 ( ) 5
VíceSMR 2. Pavel Padevět
SR Pve Pdevět PRICIP VIRTUÁLÍCH PRACÍ Deformční metod tice thosti prt, princip virtáních posnů PRICIP VIRTUÁLÍCH POSUUTÍ (oecný princip rovnováhy) Stečný stv E; A [] Virtání práce vnějších posntí W e
VíceCíle. Teoretický úvod. BDIO - Digitální obvody Ústav mikroelektroniky. Úloha č. 3. Student
Přmět Ústv Úloh č. 3 BDIO - Diitální ovoy Ústv mikrolktroniky Návrh koéru BCD kóu n 7-smntový isplj, kominční loik Stunt Cíl Prá s 7-smntovým ispljm. Návrh kominční loiky koéru pro 7-smntový isplj. Minimliz
Víceověření Písemné ověření a ústní zdůvodnění
PROFESNÍ KVALIFIKACE Montér lktrikýh rozvěčů (kó: 26-019-H), 42 hoin (z PK1 60 hoin) + zkoušk (8hoin) Zčátk profsního vzělávání 26. 4. 2014; Dtum ukonční 15. 6. 2014 Rozpis výuky Miroslv Chumhl, soot 3.
VíceReakce. K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průbehu semestru
Poznámky ke cičení z předmětu Pružnost penost n K8 D ČVUT Prze (prconí erze). Tento mteriá má pouze prconí chrkter bude průbehu semestru postupně dopňoán. utor: Jn Vyčich E mi: ycich@fd.cut.cz Příkd reize:.
VíceTéma 6 Staticky neurčitý rovinný oblouk. kloubový příhradový nosník
Stvení mechnik,.ročník klářského studi AST Tém 6 Stticky neurčitý rovinný olouk Stticky neurčitý rovinný klouový příhrdový nosník Zákldní vlstnosti stticky neurčitého rovinného olouku Dvoklouový olouk,
VíceRedukční věta princip
SA Přednáška 4 Redukční věta Staticky neurčité příhradové konstrukce Spojité nosníky Uzavřené rámy Oecné vlastnosti staticky neurčitých konstrukcí Copyright (c) Vít Šmilauer Czech Technical University
VíceÁ Á Á Í ň Í Č é ČÍ ÚČ Ž Ř é é é é é é é é é Ů Č Č é é Č é é Ů é é é é é Ů é Ž é é Ť Á é Ř é é Ů Í Í Ř Ů ČÍŠ é é é Í Í ÚČ é Ů é é é ň é Č é ŠÍ Ů é Ů Ů é Ď ů é Ů Ů é Ů é é é é é é é Ů é é é é Ů é Ů é é é
VíceObecná a zjednodušená deformační metoda
SMA Přednášk 06 Oená zjednodušená deformční metod Pruty typu VV, KV, VK Sttiká kondenze Konové síly n prutu od ztížení Konové síly n prutu od teploty Příkldy Copyright ) 01 Vít Šmiluer Czeh Tehnil University
Více6 Řešení soustav lineárních rovnic rozšiřující opakování
6 Řšní soustv linárníh rovni rozšiřujíí opkování Tto kpitol j rozšiřujíí ěžné učivo. Poku uvné mtoy zvlánt, zkrátí vám to čs potřný k výpočtům. Nní to všk učivo nzytné, řšit soustvy linárníh rovni lz i
VíceÁ Ý Á Í Š š ů Š ž ú ř ž ú ř ř š ů ř ř ů Ů ř ů ň ů ř š é ů ž ř š ž é ř é ř š š ž ř ž ř ů ž ř ů ž ů é ř ž é ž ž ř ř ň ž ř ř ů š é ř ž ů ŠÍ é ř ň ů ř š é ř é ř š é ů ž š é ů é ú š é ž š š é é ř é é š ř ň
Víceú Í Š Š Ť Í Š Š ň Ó Š Í Í Š Í ž Í Í Í ú Š Ů Č Š Š Á Í Š ú Í Ť Ů Í ž ž Ť Š Í ž ú ž Č ž Ú ž ť Í Í ú Ú ž ú ú Í ž Í Í Í ú ú Ú Í Ó ú Í Ů ú ú Ú Ó Í Í Í ú ú ž ú Í ú ž Č Ú Í ň É Í ú Í ú Í Č ň ň Č Ú ň ň ž Í Í ž
Více5.2. Určitý integrál Definice a vlastnosti
Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)
VíceSpojitý nosník. Příklady
Spojitý nosník Příklady Příklad, zadání A = konst. =, m I = konst. =,6 m 4 E = konst. = GPa q =kn / m F kn 3 = M = 5kNm F = 5kN 8 F3 = 8kN 4,5 . způsob řešení n p = (nepočítáme pootočení ve styčníku č.3)
VíceDurové stupnice s křížky
Durové stupni s křížky poří + přznmnání: & # # # # # # # # # # # # # ## # # # ## # # # # ## # # G ur D ur A ur E ur H ur Fis ur Cis ur G ur & # ġ h is D ur & # # is h is A ur & # # # h is is is E ur &
VíceStavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám
Stvební mechnik,.ročník bklářského studi AST Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit
VíceŠÍ Ů ČÍ č Ť č č č ň Í Í č č ň ň č Ť ň ť č Í č Ť č č Ť Í Í č ť Ť č č Ťč č Ě Ťč Ť ň č Ť ť Ť Ť Ť č Ť Ť č Ť Ť Ť č č Ť č č Ú č Ť Ď Ť ť č ň Ť Ť Í č č Ť Ď č č č č č ň Ť ň č Ť č Ť č Ý Ť ť ň č č č č č č ť Ť Ý č
VícePružnost a plasticita Program č.1
Ktedr stvební mecniky Fkut stvební VŠB-TU Ostrv Jméno : Studijní skupin : úterý 14.15 Průřez spodnío pásu Fotogrfie reáné konstrukce Nvrněte posuďte u výše zobrzené rovinné koubové přírdové konstrukce
VíceEvropská unie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropská unie Evropský soiální fon Prh & EU: Investujeme o vší uounosti ávrh čítče jko utomtu Osh ÁVRH ČÍAČE JAKO AUOMAU.... SYCHROÍ A ASYCHROÍ AUOMA..... Výstupy utomtu mohou ýt přímo ity pměti stvu.....
VíceStaticky určité případy prostého tahu a tlaku
Spoehvost nosné onstruce Ztížení: -stáé G součnte ztížení G -proěnné Q.součnte ztížení Q Ztížení: -chrterstcé -návrhové G,V, + Pevnost - chrterstcá y z prcovního r. -návrhová (souč.spoehvost t. Posouzení
VíceŘešení úloh celostátního kola 49. ročníku fyzikální olympiády. Autořiúloh:P.Šedivý(1),L.Richterek(2),I.Volf(3)aB.Vybíral(4)
Řešení úoh ceostátního ko 49. ročníku fyzikání oympiády. Autořiúoh:.Šedivý(1),L.Richterek(),I.Vof(3)B.Vybír(4) 1.) Oznčme t 1, t, t 3čsyzábesků, v 1, v, v 3přísušnérychostistředukoue, veikost zrychení
VíceENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM
P Ř Í K L A D Č. 6 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM Projekt : FRVŠ 011 - Analýza meto výpočtu železobetonovýh lokálně poepřenýh esek Řešitelský kolektiv : Ing. Martin Tipka
VícePřednáška 12 Obecná deformační metoda, nelineární úlohy u prutových soustav
Statika stavebních konstrukcí II., 3.ročník bakaářského studia Přednáška Obecná deformační metoda, neineární úohy u prutových soustav Fyzikáně neineární úoha Geometricky neineární úoha Konstrukčně neineární
VíceTéma 1 Obecná deformační metoda, podstata DM
Sttik stveních konstrukcí II., 3.ročník klářského studi Tém 1 Oecná deformční metod, podstt D Zákldní informce o výuce hodnocení předmětu SSK II etody řešení stticky neurčitých konstrukcí Vznik vývoj deformční
VíceH - Řízení technologického procesu logickými obvody
H - Řízní tchnologického procsu logickými ovody (Logické řízní) Tortický úvod Součástí řízní tchnologických procsů j i zjištění správné posloupnosti úkonů tchnologických oprcí rozhodování o dlším postupu
VíceTéma Přetvoření nosníků namáhaných ohybem
Pružnost plsticit,.ročník bklářského studi Tém Přetvoření nosníků nmáhných ohbem Zákldní vth předpokld řešení Přetvoření nosníků od nerovnoměrného oteplení etod přímé integrce diferenciální rovnice ohbové
VíceBetonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
Víceč é ž Ý č é ž é é ž é é č Ú ž č é ž é Ž é é ť č ť ž ť ž é č é é ž é é é č é ž ť č ž é ž ž ž é č č č č ž é é č é é ž č é ž é ž é ž é č é č č č é é é ž ž é č č č č ž ž é ž é é é é é č č é ž Ž č Ž ž č ž ž
VíceTéma 4 Výpočet přímého nosníku
Stavební statika, 1.ročník bakaářského studia Téma 4 Výpočet přímého nosníku Výpočet nosníku v osové úoze Výpočet nosníku v příčné úoze ve svisé a vodorovné havní rovině Výpočet nosníku v krutové úoze
VíceLinearní teplotní gradient
Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiá má pouze pracovní charakter a ude v průěhu semestru postupně dopňován. utor: Jan Vyčich E mai: vycich@fd.cvut.cz
Více