Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download ""

Transkript

1 POZN AMKA K V YPO CTU BAYESOVSKEHO RIZIKA Ales LINKA TU Liberec, KPDM Abstrakt. V teto praci porovame dva bayesovske odhady fukce spolehlivosti v expoecialm rozdele z pohledu bayesovskeho rizika vypo- cteeho vzhledem k apriormu gamma rozdele ;(a p) v situaci, kdy jsme vprpade jedoho z odhadu eprese urcili hodoty parametru apriorho rozdele. Jako astroj pro porova odhadu pouzijeme asymptotickou de- ciecy staoveou a zaklade asymptotickych rozvoju probayesovske riziko uvazovaych odhadu. Abstract: I this paper we are iterested i two Bayes estimators of reliability fuctio i expoetial distributio which have dieret a priori parameters. The asymptotic expasios of Bayes risk, computed with respect to the a priori distributio of gamma-type, are derived. For detailed compariso we use limit risk deciecy accordig to Lehma (193). Rezme: V to stat~e my zaimaems sraveiem dvuh baesovskih oceok fukcii adosti v kspoecial~om raspredeleii po vidu baesovskogo riska isqisleogo vzgldom k aprioromu gamma-raspredelei. Baesovskovie oceki otliqats vyborom aprioryh parametrov. Dl sravei my ispol~zuem asimptotiqesku deficieci po Lemau (193). 1. Uvod Uvazujme klasickou situaci, kdy vysledkem experimetu je uply ahody vyber X = (X 1 ::: X ) z expoecialho rozdele shustotou f(x ) = < : 1 ; exp x x>, jiak, kde 2 ( 1) je ezamy parametr. Necht' c je klade cslo. Jestlize X je ahoda velicia s hustotou (1), pak odpovdajc fukce spolehlivosti ma tvar R(c) =R(c ) =P (X >c) = exp f;c=g : (2) (1)

2 Dale predpokladejme, ze ztratova fukce ma tvar L(R(c) b R)=[R(c) ; b R]2, kde R(c) ozacuje ezamou spolehlivost a b R jej odhad. Riziko prsluse odhadu b R, je-li skuteca hodota spolehlivosti R(c), deujeme vztahem r R(c) b R = E L R(c) b R : (3) V tomto claku budeme uvazovat bayesovsky odhad spolehlivosti a studovat jeho vlastosti. Predpokladejme proto, ze parametr = ;1 je ahoda velicia s aprior hustotou q( p a) = < : a p ;(p) p;1 e ;a > a> p> jiak. (4) Bayesovsky odhad R(c) dostaeme jako stred hodotu e ;c aposteriormurozdele, coz vede a odhad vzhledem k br 3 b R3 (c) = T + a T + a + c +p : (5) Pozameejme, ze ozace prvho idexu bylo zvoleo v souladu s ozacem bayesovskeho odhadu v praci Hurt (197) a v praci Atoch, Brzezia a Lika (199), druhym idexem budeme rozlisovat ruze bayesovske odhady. Bayesovske riziko odhadu R b je deovao jako stred hodota rizika r vzhledem k apriormu rozdele q, vasem prpade deovaem hustotou (4), tj. q b R Z = E q r R(c) R b ZIR = R(c) b L R f(x ) dx q( p a) d () kde f(x ) je sdruzea hustota ahodeho vektoru (X 1 ::: X ). 2. Asymptoticky rozvoj bayesovskeho rizika Vtomto odstavci budeme studovat chova bayesovskeho odhadu vzhledem k bayesovskemu riziku. Pro dva ruze bayesovske odhady urcme asymptoticke rozvoje pro jejich bayesovska rizika vzhledem ke kvadraticke ztratove fukci L a aprior hustote (4). Oba odhady potom porovame pomoc asymptoticke deciece. Uvazujme ejprve situaci, kdy hledame asymptoticky rozvoj pro bayesovske rizikobayesovskeho odhadu R3 b,pricemz toto bayesovske rizikopoctame

3 vzhledem k apriormu rozdele deovaemu hustotou (4). Je-li X 1 ::: X ahody vyber z expoecialho rozdele shustotou (1) a = ;1, potom ahoda velicia T = 1 X i=1 X i ma hustotu h(t ) = < : ;() t;1 e ;t t> > jiak. (7) Ze zamych vlastost gamma rozdeleazrejmych upravach pro bayesovske riziko odhadu b R3 dostavame (q b R3 )= = = Z 1 Z 1 t+ a a a +2c t+ a + c p ; ap ;( + p) p ;();(p) +p 2 ; expf;cg h(t )q( p a) d dt = Z 1 p;1; x 1+ ax 1+ (a+c) x +p 2(+p) dx: () Kostrukce asymptotickeho rozvoje pro bayesovske riziko odhadu R3 b fukce spolehlivosti vyuzva Taylorovu a Lebesquovu vetu. Protoze itegrady vystupujc v itegralch vyjadrech pro bayesovska rizika, jako fukce v 1=, ejsou deovay vule, tz. v bode, ve kterem provadme kostrukci odhadu, je ute odvodit modikaci Taylorovy vety profukce spojite dodeovatelevtomto bode. Po alezerozvojeitegradu aplikujeme Lebesquovu vetu. Jeda seopostuptechicky arocy a je ezbyte dokazat radu dlcch tvrze. Vysledek je uvede v asledujc vete. Veta 1: Necht' aprior hustota q je deovaa vztahem (4), echt' 2 IN a p a c 2 ( 1). Polozme 1 (q R3 b )= ap c 2 (p +1)p (9) (a +2c) p+2 2 (q b R3 )= ap c 2 p (1 + p) ; ;2a 2 +2c 2 ; 2a 2 p ; 5c 2 p ; 4acp ; c 2 p 2 2(a +2c) p+4 : (1)

4 Potom pro asymptoticky rozvoj bayesovskeho rizika odhadu b R3 plat (q b R3 ) = 1(q b R3 ) + 2(q b R3 ) 2 + O p a c ( ;3 ) pro!1: (11) Dukaz. Podroby dukaz viz Atoch, Brzezia a Lika (199). 2 Predpokladejme y, ze parametr je ahoda velicia s aprior hustotou (4) s parametry p 1 a a 1. Potom prslusy bayesovsky odhad fukce spolehlivosti R(c) ma tvar br 31 b R31 (c) = T + a 1 T + a 1 + c +p 1 : (12) To odpovda situaci, kdy jsme eprese urcili aprior parametry. Jako aprior parametry parametry jsme zvolili p 1 a 1, ale sprave jsme meli pouzt p a. Ny vypocteme asymptoticky rozvoj bayesovskeho rizika odhadu b R31 vzhledem ke kvadraticke ztratove fukci L a aprior hustote (4). Po kratkem vypoctu pro riziko odhadu b R31 dostavame (q b R31 )= = = Z 1 Z 1 t+ a1 a a +2c 2 4 t+ a 1 + c p + ap ;( + p) p ;();(p) ; 1+ a1 x +p 1 (+p) ; 2 1+ (ax +p 1 Z 1 ; expf;cg 2 h(t )q( p a) d dt = 1+ (a1+c) x 1+ ((a+c) x p;1; x 1+ a1 x 1+ (a1+c) x +p (+p) +p 1 2(+p 1) 5 dx: (13) Pro odvoze asymptotickeho rozvoje pouzijeme podobeho postupu jako jsme pouzili pro odhad b R3. Dostaeme asledujc tvrze. Veta 2 Necht' aprior hustota q je deovaa vztahem (4), echt' 2 IN a p a c 2 ( 1). Polozme 1 (q b R31 )= ap c 2 (p +1)p (a +2c) p+2 2 (q b R31 )=

5 = ; 12a 2 +a 4 ; 12a 1 2 ; 12a 2 a 1 2 +a ac +4a 3 c ; 4a 1 c; ; 4a 2 a 1 c ; 4aa 1 2 c +4a 1 3 c +a 2 c 2 ; 192aa 1 c 2 +9a 1 2 c 2 + +c 4 +1a 2 p +5a 4 p ; 1a 1 2 p ; 1a 2 a 1 2 p +5a 1 4 p +4acp + +4a 3 cp ; 4a 1 cp ; 4a 3 cp ; 4a 1 cp ; 4a 2 a 1 cp ; 4aa 1 2 cp + +4a 1 3 cp +4a 2 c 2 p ; 12aa 1 c 2 p +a 1 2 c 2 p ; ac 3 p +4a 1 c 3 p ; ; 2c 4 p +2a 2 p 2 + a 4 p 2 ; 2a 1 2 p 2 ; 2a 2 a 1 2 p 2 + a 1 4 p 2 +acp 2 + +a 3 cp 2 ; a 1 cp 2 ; a 2 a 1 cp 2 ; aa 1 2 cp 2 +a 1 3 cp 2 +a 2 c 2 p 2 ; ; 1aa 1 c 2 p 2 +1a 1 2 c 2 p 2 +32a 1 c 3 p 2 +2c 4 p 2 +32a 2 c 2 p 1 ; ; 32aa 1 c 2 p 1 +4ac 3 p 1 ; 4a 1 c 3 p 1 ; 1aa 1 c 2 pp 1 ; 32ac 3 pp 1 ; ; 32a 1 c 3 pp 1 ; 4c 4 pp 1 +a 2 c 2 p 1 2 +a 2 c 2 p ac 3 p c 4 p 1 2 a p (a +2c) ;4;p p (1 + p) : (14) Potom asymptoticky rozvoj bayesovskeho rizika odhadu b R31 je da vztahem (q b R31 ) = 1(q b R31 ) + 2(q b R31 ) 2 + O p a c ( ;3 ) pro!1: (15) Dukaz. Detail odvoze viz Lika (199) Vypocet asymptoticke deficiece Vzhledem k tomu, ze odhady b R3 a b R31 jsou tzv. asymptoticky sile eciet vzhledem k stred kvadraticke odchylce, asymptoticke rozvoje bayesovskeho rizika pro odhady b R3 a b R31 maj tvar (q R3i b ) = a + b 3i + 2 o p a c( ;2 ) i = 1 tj. koeciet u1= je pro oba odhady stejy. Pro detail porova odhadu b R3 a b R31 muzeme uzt decieci, blze viz Lehma (193). Zhruba receo, deciece spoctea pro jistou pevou dvojici odhadu bude v asem prpade ukazovat o kolik vce (ebo mee) pozorova vyzaduje odhad B, ma-li mt steje bayesovske riziko jako odhad A zalozey a vyberu rozsahu. V praxi se obvykle uzva asymptoticka deciece pro! 1. Jestlize ozacme (q A) a (q B) bayesovska rizika odhadu A a B, aplat-li (q A) = a r + b r+1 + o ;(r+1) (1)

6 a (q B) = a + c + r r+1 o ;(r+1) (17) pak asymptoticka deciece odhadu B vzhledem k odhadu A je deovaa vztahem d BA = c ; b ar : (1) Veta 3 Necht' p a c 2 ( 1). Pro asymptotickou decieci odhadu R3 b br 31 vzhledem k bayesovskemu riziku plat a d br31 br3 (p a p 1 a 1 c) = = ; ;12a 2 ; a 4 +12a a 2 a 1 2 ; a 1 4 ; 4ac ; 4a 3 c +4a 2 a 1 c + +4a 1 c +4aa 1 2 c ; 4a 1 3 c ; 9a 2 c aa 1 c 2 ; 9a 1 2 c 2 ; 1a 2 p ; ; 5a 4 p +1a 1 2 p +1a 2 a 1 2 p ; 5a 1 4 p ; 4acp ; 4a 3 cp +4a 1 cp + +4a 2 a 1 cp +4aa 1 2 cp ; 4a 1 3 cp ; 4a 2 c 2 p +12aa 1 c 2 p ; ; a 1 2 c 2 p +4ac 3 p ; 4a 1 c 3 p ; 2a 2 p 2 ; a 4 p 2 +2a 1 2 p a 2 a 1 2 p 2 ; a 1 4 p 2 ; acp 2 ; a 3 cp 2 +a 1 cp 2 +a 2 a 1 cp 2 + +aa 1 2 cp 2 ; a 1 3 cp 2 ; a 2 c 2 p 2 +1aa 1 c 2 p 2 ; 1a 1 2 c 2 p 2 ; ; 32a 1 c 3 p 2 ; 32c 4 p 2 ; 32a 2 c 2 p 1 +32aa 1 c 2 p 1 ; 4ac 3 p a 1 c 3 p 1 +1aa 1 c 2 pp 1 +32ac 3 pp 1 +32a 1 c 3 pp 1 +4c 4 pp 1 ; a 2 c 2 p 1 2 ; 32ac 3 p 1 2 ; 32c 4 p 1 2 ;1 c ;2 (a +2c) ;2 (19) Dukaz. Vysledek dostaeme dosazem do vzorce (1) podle vet 1 a Prklad Prklad1. Bott a Hass (197) uvad doby do poruchyvstupchtescch zaklopych vetilu pro jadere reaktory. Kombiac techto historickych dat a rostouc urove zatze byly staovey pozadovae hodoty pro 5 a 95 kvatil apriorho rozdele pro itezitu poruch. Pro hodotu 5 kvatilu byla staovea hodota 1:4 1 ;5 (poruch zahodiu) a pro 95 kvatil hodota 4:9 1 ;5. V moograi Martz a Waller (19) v kapitole muzeme alezt metodu, kterou tito autori vypracovali, pro staove parametru apriorho gamma rozdele. Na zaklade tohoto postupu staovme aprior rozdele jako gamma rozdele shustotou (4) s parametry a = 25714ap = :5.

7 Vzhledem k vyse uvedeemu rozdele budeme uvazovat odhad b R3, ktery am predstavuje odhad se sprave zvoleymi apriormi parametry. Ny porovame odhad b R3 sodhadem b R31, kdy jsme se etreli prese do apriorch parametru. K porova pouzijeme asymptotickou decieci (19). Na obrazcch 1{5 jsou zazorey grafy deciece d br31 br3 (p a p 1 a 1 c) pro a = p =:5 a c = Pro tyto hodoty c jsou rovez uvedey hodoty deciece v krajch bodech itervalu (:7 p 1:3 p) (:7 a 1:3 a) a1 p Obr.1 d br31 br3 (: p 1 a 1 21 ) Tab.1 d br31 br3 (: p 1 a 1 21 ) pro vybrae hodoty p 1 a a 1. a1.7 a.7 a 1.3 a 1.3 a p1.7 p 1.3 p.7 p 1.3 p d br 31bR

8 a1 p Obr.2 d br31 br3 (: p 1 a 1 1 ) Tab.2 d br31 br3 (: p 1 a 1 1 ) pro vybrae hodoty p 1 a a 1 a1.7 a.7 a 1.3 a 1.3 a p1.7 p 1.3 p.7 p 1.3 p br 31bR d a1 p Obr.3 d br31 br3 (: p 1 a 1 11 ) Tab.3 d br31 br3 (: p 1 a 1 11 ) pro vybrae hodoty p 1 a a 1. a1.7 a.7 a 1.3 a 1.3 a p1.7 p 1.3 p.7 p 1.3 p d br 31bR

9 a1 p Obr.4 d br31 br3 (: p 1 a 1 ) Tab.4 d br31 br3 (: p 1 a 1 ) pro vybrae hodoty p 1 a a 1. a1.7 a.7 a 1.3 a 1.3 a p1.7 p 1.3 p.7 p 1.3 p d br 31bR a1 p Obr.5 d br31 br3 (: p 1 a 1 1 ) Tab.5 d br31 br3 (: p 1 a 1 1 ) pro vybrae hodoty p 1 a a 1 a1.7 a.7 a 1.3 a 1.3 a p1.7 p 1.3 p.7 p 1.3 p d br 31bR

10 5. Zaver Z uvedeych obrazku 1{5 vyplyva, ze hlediska asymptoticke deciece ma bayesovsky odhad b R31 fukce spolehlivosti R(c), tj. odhad, kdy jsme etre- li aprior parametry, mohem hors chova s klesajc hodotou doby do poruchy c. V prpade c = 1 a prehodotme-li parametry o 3 tato deciece c dokoce 575. Naopak pro velke hodoty c se rozdly odhadu br 3 a b R31 straj. Literatura [1] Atoch J., Brzezia M., Lika A., Asymptotic approximatio of Bayes risk of estimators of reliability for expoetially distributed data, Statistics & Decisio, (199), to appear. [2] Bott T. F., Haas P. M., Iitial Data Collectio Eorts of CREDO : Sodium Value Failers, NCSR R2, (197), Natioal Ceter of Systems Reliability. [3] Hurt J., O estimatio of reliability i expoetial case, Aplikace matematiky 21 (197), [4] Lika A. Notice o Bayes estimators, Techical Report N.7, Techical Uiversity of Liberec, (199). [5] Lehma E. L., Theory of Poit Estimatio, Joh Wiley & Sos (193), New York. [] Martz H. F., WallerR. A., Bayesia Reliability Aalysis, Joh Wiley & Sos (192), New York.

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

Laboratorní práce č. 4: Úlohy z paprskové optiky

Laboratorní práce č. 4: Úlohy z paprskové optiky Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

MATEMATIKA MEZI... ANEB NĚCO MÁLO O DISKRIMINACI

MATEMATIKA MEZI... ANEB NĚCO MÁLO O DISKRIMINACI ROBUST 2000, 119 124 c JČMF 2001 MATEMATIKA MEZI... ANEB NĚCO MÁLO O DISKRIMINACI ARNOŠT KOMÁREK Abstrakt. If somebody wants to distinguish objects from two groups,he can use a statistical model to achieve

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

Á Č ŘÍ ň Í ň ý ě ň ý ň ň ů Í Í ý Í ů Í ě š ě š ě ů š ě Ě Ě Í Í ý š ě Í ý Í ý Í ý š ě š ě Ž ě ý ý ů Ř Í Á Ž ý ó š ý ě š ě š ě š ě š ě ý š ě š ě ě š ě ú ů š ě š ě Í ú ú ě Á Á Í Ě Í Í ÁŘ Í ě ý š ě š ě Ý ý

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

Í é čá í á ř í á ó ř é ď ň í á é č é ř á í á á á í í á á á á ď á é č á ó ů č á í ů č é é í Í é ů é ř í í ů í ď é ř é é í é í é é é á č é á á á é í ů í é á é Á Í Š Í É é á é í íčí ů Í ů é á á í ř é á é

Více

Ě ÁÁ Ú é é ý ů ý ů é ý ů é é ú Ž ý ů é ů é é Ě ÁÁ Ú é Ý ž ý ž ý ý ů ž ů ň é Ž ý Ž ů ý é é é é ý ž Í Ě ÁÁ Ú é é ň é Ž ý ž Ž Í ý é ý Í ů ý ý ý é ý é ý é ň Ž Ž Ě ÁÁ Ú é é ý Ý é é ý Ž Í Í é ž Í Ž Ě ÁÁ Ú é

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

Využití Markovových řetězců pro predikování pohybu cen akcií

Využití Markovových řetězců pro predikování pohybu cen akcií Využití Markovových řetězců pro predikováí pohybu ce akcií Mila Svoboda Tredy v podikáí, 4(2) 63-70 The Author(s) 2014 ISSN 1805-0603 Publisher: UWB i Pilse http://www.fek.zcu.cz/tvp/ Úvod K vybudováí

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

ANALÝZA PROVOZU MĚSTSKÝCH AUTOBUSŮ

ANALÝZA PROVOZU MĚSTSKÝCH AUTOBUSŮ ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročík LVII 28 Číslo 5, 2009 ANALÝZA PROVOZU MĚSTSKÝCH AUTOBUSŮ L. Papírík

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

ŘÍ ó Ý Ň É Ť Í ň ó Ř Í Í Ň ď ď ď Ě Í Á Ý ó Á ó ď ó Í ó Ř Č ó Ř Ř Á Š Ď ď ď Č Ý Ý Í ň Ý ň Ý Ý ň Í Ý Ó Í Ý ň Ň ď ň ó ó ó ď ň Á Á Á Ě Ě ň ň ň Á Á ó ď Í Ě ď Ď ň Ý ď ó ň Š Í Á ÁŠ Ě Š Í Á ď ď ď ď Ý ň ň Í Ž

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Všeobecné instrukce pro instalaci, použití a údržbu

Všeobecné instrukce pro instalaci, použití a údržbu Všeobecé istruce pro istalaci, použití a údržbu SPORÁKY PLYNOVÉ MODELY CG-2002 CG-1502 CG-1002 2 3 4 5 Tabula techicých parametrů (č. 1) VNĚJŠÍ ROZMĚRY ROZMĚRY TROUBY POČET Ů NOMINÁLNÍ SPOTŘEBA CELKOVÝ

Více

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA RVDĚODONOST STTISTIK Gymázium Jiřího Wolkera v rostějově Výukové materiály z matematiky pro vyšší gymázia utoři projektu Studet a prahu. století - využití ICT ve vyučováí matematiky a gymáziu Teto projekt

Více

š ú ě Ú ě ě ú Ú Ý Í Ě Í Ú Í Á Ý Ů Ý Ů Í ě Á Í ě Č ú ř ě ň ř ů ň ř ů Č ň ř ů ů ň ř ů Í ň ř šť š ů ř ř ě ř ř ů ň ů ř ě ř š ř ř ř ů ř ů ř ů ř ř ř ů ě ě ě ř ř ů ř ů ě š ě ř ů Ú ř ě ř ř ě Č ř ů ř ř ě ř ů ř

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Cvičení 3 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

16 - Pozorovatel a výstupní ZV

16 - Pozorovatel a výstupní ZV 16 - Pozorovatel a výstupní ZV Automatické řízení 2015 14-4-15 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

I Z klad pojmy teorie pravd podobosti { eoci l u eb text pro p edm t MATEMATIKA V, FS,FM TUL, ( drob chyby ejsou vylou ey) P. Volf, b eze 999 N hod pokus, syst m jev P edm tem teorie pravd podobosti je

Více

Ý Ř ÁŘ Í Ť Č ú š ž é ú ř é é Ň ÁŘ Á Í É Í ú ř ř ř š š é š é ř é ů Ň Ý ť ÁŘ Á Ř ř é ř š ž ů é ř ú ú é ř é ú ů ř ů ř ó ž é ř é ř é ů ř é ž é ó ůž ž ř ř ú ž ř é ž ř é é é ř ž ž é é é š ž é š é ž é š é É š

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

stavební obzor 1 2/2014 11

stavební obzor 1 2/2014 11 tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

Vybrané poznámky k řízení rizik v bankách

Vybrané poznámky k řízení rizik v bankách Vybrané poznámky k řízení rizik v bankách Seminář z aktuárských věd Petr Myška 7.11.2008 Obsah přednášky Oceňování nestandartních instrumentů finančních trhů Aplikace analytických vzorců Simulační techniky

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

Statistická analýza dat

Statistická analýza dat INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Statstcká aalýza dat Učebí texty k semář Autor: Prof. RNDr. Mla Melou, DrSc. Datum: 5.. 011 Cetrum pro rozvoj výzkumu pokročlých řídcích a sezorckých techologí CZ.1.07/.3.00/09.0031

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu Apliace margiálích áladů Oceňováí ztrát v distribučím rozvodu Učebí text předmětu MES Doc. Ig. J. Vastl, CSc. Celové ročí álady a ztráty N P ( T ) z z sj z wj Kč de N z celové ročí álady a ztráty *Kč+

Více

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc.

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc. IDEÁLÍ PLY I Prof. RDr. Eanuel Soboda, CSc. DEFIICE IDEÁLÍHO PLYU (MODEL IP) O oleulách ideálního plynu ysloujee 3 předpolady: 1. Rozěry oleul jsou zanedbatelně alé e sronání se střední zdáleností oleul

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

SML33 / SMM33 / SMN3. Multifunkční měřící přístroje Návod k obsluze. Firmware 3.0 / 2013

SML33 / SMM33 / SMN3. Multifunkční měřící přístroje Návod k obsluze. Firmware 3.0 / 2013 KMB systems, s.r.o. Dr. M. Horákové 559, 460 06 Liberec 7, Czech Republic tel. +420 485 30 34, fax +420 482 736 896 email : kmb@kmb.cz, iteret : www.kmb.cz SML33 / SMM33 / SMN3 Multifukčí měřící přístroje

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

Algoritmus RSA. Vilém Vychodil. 4. března 2002. Abstrakt

Algoritmus RSA. Vilém Vychodil. 4. března 2002. Abstrakt Algoritmus RSA Vilém Vychodil 4. břza 2002 Abstrakt Násldující podpůrý txt stručě shruj základí problmatiky při šifrováí algoritmm RSA. Sm spadá j samotý pricip algoritmu, al i základí mtody grováí vlkých

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více