1. Mení ve fyzice, soustava jednotek SI

Rozměr: px
Začít zobrazení ze stránky:

Download "1. Mení ve fyzice, soustava jednotek SI"

Transkript

1 . Meí ve fyzce, soustv jedotek SI Fyzk její rozdleí: ) podle metod práce - epermetálí - teoretcká - poítové modelováí b) podle zkoumých proces forem pohybu - mechk - molekulová fyzk - termodymk - elekt mgetsmus - optk - kvtová fyzk - tomová jderá fyzk - strofyzk c) podle velkost zkoumých objekt - fyzk mkrosvt - fyzk mkrosvt - fyzk megsvt (zkoumá vesmír) d) podle cíl zkoumáí - plkové fyzkálí obory Meí fyzkálích vel: Rozdleí mcích metod: ) - pímé (délk, teplot, ) - epímé (hustot, mrá tepelá kpct, ) užtím fyzkálích vzth z hodot jých meých vel ) - sttcké (hodot vely z kldového stvu systému) - dymcké (hodot vely z pohybu systému) ) Chyby meí: - systemtcké (soustvé) edokolost smysl, mdel, mcích metod - hrubé omyl, úv, - áhodé psobeí áhodých vlv (edá se vylout) Kždá meá vel je ztíže epesostí meí. Ureí hodoty fyzkálí vely pímým meím (jed z možostí užívá p dostteém potu meí):. Ureí rtmetckého prmru z meých hodot,,, =. smrodté odchylky s jedoho meí s =. ( ). Ureí mezí chyby (užtím s-krtér) vyloueí hrubých chyb toz., že ze souboru meých hodot vylouíme ty, které se od prmru lší o více ež.s (ze zbylých hodot se musí s vypoítt zovu)

2 =. ( ) ( ). 4. Zokrouhleí smrodté odchylky rtmetckého prmru (zprvdl jedu ž dv plté cfry) rtmetckého prmru (podle smrodté odchylky) 5. Záps výsledku meí = ± s( ) s ureí reltví chyby ( ) ( ) ρ =.00% 6. Pokud výsledek zpíšeme v podob = ±.s( ), kde.s( ) je mezí chyb, pk je skuteá hodot vely v tervlu (.s( ) ; +.s( ) ) s prvdpodobostí. s 99,7%. V tom pípd je reltví mezí chyb ( ) ( ) ε =.00%.. Ureí smrodté odchylky rtmetckého prmru s( ) Píkld ureí tloušky skleé desky: íslo Nmeé hodoty Odchylk od meí = - mm mm mm ,,5,7,,,6,5,4,, -0,08 +0,0 +0,0-0,08-0,008 +0,0 +0,0 +0,00-0,008-0,08 0,0004 0, ,0004 0, , , , , , ,0004 =,8 mm 0 + = +0,080 = 0,0060 = -0,080 Smrodtá odchylk jedoho meí: s =. 0 =.0,0060mm 0, 09mm 0 9 Žádá z meých hodot se od elší více ež o.s 0,060 mm. Smrodtá odchylk s( ) rtmetckého prmru její zokrouhleí jedu pltou 0 cfru: s( ) =..0,0060mm 0,006mm 0, 006mm 0. ( 0 ) = 90 Záps výsledku meí: = (,8 ± 0,006) mm s Reltví chyb: ( ) ( ) 0,006 ρ =. 00% =.00% 0,5% 0,%, Poz..: Do chyby výsledku je teb zpoítávt chybu mdl (její výzm je logcký jko smrodtá odchylk rtmetckého prmru). T se uruje p.

3 jko polov ejmešího dílku stupc (mlmetrové délkové mdlo, teplomr, ), hodot udává výrobcem (dgtálí váhy, ), hodot vypoítá podle poky výrobce zákld jím udé tídy pesost (elektrcké mcí pístroje), Poz..: Termíu smrodtá odchylk je ekvvletí termí bsolutí 5. + chyb. Lze j vypoítt dostte pes tké podle vzorce s( ) =.. Poz..: Nkdy mže postt je ejjedodušší zpsob zprcováí výsledk meí (vz ásledující postup): Artmetcký prmr: = =.. Prmrá odchylk: =. Záps výsledku: = ± 4. Prmrá reltví odchylk: δ ( ) =.00% Ureí hodoty fyzkálí vely epímo výpotem: Jsou-l, y, z, meé hodoty fyzkálích vel je-l w hledá vel, pro ž pltí w = f(, y, z, ), pk ejprve uríme rtmetcký prmr logcky, tj. w = f(, y, z, ) pk podle specálích prvdel pltých pro jedotlvé mtemtcké operce s používým velm uríme smrodtou odchylku tohoto prmru reltví chybu. Operce s velm, jejchž hodoty byly získáy meím ( prvdl pro poítáí s eúplým ísly):. SÍTÁNÍ + b =? obec: kokrétí píkld: = (6,7 ± 0,) cm 0, ρ ( ) =.00% 0,5% 6,7 b = (4,58 ± 0,09) cm 0,09 ρ ( b ) =.00% 0,6% 4,58 Pltí: Reltví chyb v ureí soutu + b je rov ejvýše reltví chyb té z vel, která byl ure s meší pesostí. + b = + b + b = (6,7 + 4,58) cm = 40,95 cm ρ b ρ + b = m (0,5%,0,6%) = 0,6% ρ ( + b) = m ( ( ) ( ) ( ) ( + b) s + b =. ( + b) ρ, ( ) ρ ( ) 0,6 s + b =.40,95cm 0,457cm 0, cm + b = + b ± s( + b) + b = (40,95 ± 0,5) cm

4 . ODÍTÁNÍ b =? obec: kokrétí píkld: = (,04 ± 0,00) g 0,00 ρ ( ) =.00% 0,%,04 b = (,5 ± 0,00) g 0,00 ρ ( b ) =.00% 0,%,5 Pltí: Smrodtá odchylk rozdílu - b je rov soutu smrodtých odchylek mešece meštele. b = b b = (,04 -,5) g = 0,76 g s ( b) = s( ) + s( b ) s( b) = ( 0,00 + 0,00) g = 0, 00g b ± s b - b = (0,76 ± 0,00) g - b = ( ) s ( ) ( b) 0,00 ρ b =.00% ρ ( b) =.00% 0,4% b 0,76 Poz. Z uvedeého prvdl pro odítáí eúplých ísel plye logcky skuteost, že je teb vyhýbt se tkovým mcím metodám, kde by výsledek vycházel jko rozdíl dvou meých hodot málo se od sebe velkostí lšících.. NÁSOBENÍ. b =? obec: kokrétí píkld: = (,5 ± 0,00) cm 0,00 ρ ( ) =.00% 0,5%,5 b = (8,56 ± 0,0) cm 0,0 ρ ( b ) =.00% 0,5% 8,56 Pltí: Reltví chyb v ureí souu.b je rov soutu reltvích chyb tel.. b =. b. b = (,5. 8,56) cm,564cm ρ (.b) = ( ) ρ( b ) ρ ( ) (. b) s. b. (. b) ρ + (.b) ρ 0,5% + 0,5 % = 0,5 % 0,5 = s(. b).,564cm 0,056cm b =. b ± s(. b). b = (,56 ± 0,056) cm

5 4. DLENÍ : b =? obec: kokrétí píkld: = (6, ± 0,) g 0, ρ ( ) =.00% 0,4% 6, b = (8, ± 0,05) cm 0,05 ρ ( b ) =.00% 0,6% 8, Pltí: Reltví chyb v ureí podílu :b je rov soutu reltvích chyb dlece dltele. : b = : b : b = (6, : 8,) g.cm -,995 g. cm ρ ( : b) = ρ ( ) + ρ( b ) ρ ( : b) 0,4% + 0,6 % = % ρ ( ) ( : b) s : b =. ( : b 00 ) s (. b).,995 g. cm 0,0g. cm 00 : b = : b ± s( : b) : b = (,0 ± 0,0) g.cm - 5. UMOCOVÁNÍ A ODMOCOVÁNÍ =? obec: kokrétí píkld: = (,46 ± 0,0) g m =, = 0,0 ρ ( ) =.00% 0,8%,46 Pltí: Reltví chyb v ureí ísl m je rov. ρ ( ). m = ρ = ( ) =,46 g,858g m m. ρ ρ. 0,8% =, % ρ =, s. s.,858g 0,5g = ± s = (,9 ± 0,5) g

6 Mezárodí soustv jedotek SI (Systeme Itertol d'utés): - obshuje zákoé mcí jedotky používé eje v ší republce, le tém v celé Evrop. Jsou rozdley ) zákldí jedotky metr, klogrm, sekud, mpér, kelv, mol, kdel (stovey defcí) b) odvozeé jedotky (odvozují se ze zákldích pomocí defích rovc) c) ásobky díly jedotek (tvoí se ze zákldích ebo odvozeých jedotek pomocí ásobeí vhodou mocou deset s možým užtíormlzových pedpo) d) vedlejší jedotky (používé z prktckých dvod trdce mut, hod, ltr, tu, elektrovolt, ) Nkteré zákldí fyzkálí kostty: rychlost svtl ve vkuu c = m.s - elemetárí elektrcký áboj e =, C permeblt vku 0 = N.A - permtvt vku 0 = 8, N -.m -.C grvtí kostt = 6, N.m -.kg - Avogdrov kostt N = 6,0.0 mol - Boltzmov kostt k =,8.0 - J.K - molárí plyová kostt R m = 8,4 J.K -.mol - tomová hmotostí kostt m u =, kg Plckov kostt h = 6, J.s reduková Plckov kostt h = =, J.s π

1. Měření ve fyzice, soustava jednotek SI

1. Měření ve fyzice, soustava jednotek SI . Měřeí ve fyzice, soustava jedotek SI Fyzika: - je věda o hotě (ta eistuje ve dvou forách jako látka, ebo jako pole), o jejích ejobecějších vlastostech, stavech, zěách, iterakcích Rozděleí fyziky: a)

Více

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

2.4. Rovnováhy v mezifází

2.4. Rovnováhy v mezifází 2.4. Rovováhy v mezfází Mezfázím se rozumí teká vrstv (tloušťk řádově odpovídá molekulárím dmezím) rozhrí dvou fází, která se svým složeím lší od složeí stýkjících se fází. Je-l styčá ploch fází mlá, lze

Více

Vlastnosti posloupností

Vlastnosti posloupností Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti

Více

FYZIKA I. Newtonovy pohybové zákony

FYZIKA I. Newtonovy pohybové zákony VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKULTA STROJNÍ YZIKA I Newtoovy pohybové zákoy Prof. RNDr. Vlé Mádr, CSc. Prof. Ig. Lbor Hlváč, Ph.D. Doc. Ig. Ire Hlváčová, Ph.D. Mgr. Art. Dgr Mádrová

Více

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméo: Petr Česák Datum měřeí:.3.000 Studjí rok: 999-000, Ročík: Datum odevzdáí: 6.3.000 Studjí skupa: 5 Laboratorí skupa:

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzt Krlov v Prze Pedgogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM / CIFRIK Zdáí: Vyšetřete všem probrým prostředky polyom Vyprcováí: Rcoálí kořey Podle věty: Nechť p Q je koře polyomu q

Více

1. Měření ve fyzice, soustava jednotek SI

1. Měření ve fyzice, soustava jednotek SI 1. Měřeí ve fyzice, soustava jedotek SI Fyzika je vědí obor, který zkoumá zákoitosti přírodích jevů. Pozámka: Získáváí pozatků ve fyzice: 1. pozorováí - sledováí určitého jevu v jeho přirozeých podmíkách,

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE V této kaptole se dozvíte: jak je oecě defováa kolmost (ortogoalta) vektorů; co rozumíme ortogoálí a ortoormálí ází; co jsou to tzv relace ortoormalty a Croeckerovo delta;

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

Metodika: Goniometrický tvar komplexního ísla, binomická rovnice

Metodika: Goniometrický tvar komplexního ísla, binomická rovnice ! " #$ % # & ' ( ) * + ), - Idvduálí výuka matematka Vít Ržka, kvte Metodka: Goometrcký tvar komplexího ísla, bomcká rovce Úvod Téma goometrcký tvar komplexího ísla je možé probírat soubž s výkladem pojmu

Více

M - Posloupnosti VARIACE

M - Posloupnosti VARIACE M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,

Více

Dynamická pevnost a životnost Kumulace poškození

Dynamická pevnost a životnost Kumulace poškození DPŽ Hrubý Dymcká pevost žvotost Kumulce poškozeí Ml Růžčk, Josef Jurek, Zbyěk Hrubý mechk.fs.cvut.cz zbyek.hruby@fs.cvut.cz DPŽ Hrubý Kumulce poškozeí (R-low, přepočet ekvvletí mpltudu, bezpečý žvot) DPŽ

Více

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:

Více

SP2 Korelační analýza. Korelační analýza. Libor Žák

SP2 Korelační analýza. Korelační analýza. Libor Žák Koelčí lýz Přpomeutí pojmů áhodá poměá áhodý vekto áhodý vekto m Náhodý výbě: po áhodou poměou : po áhodý vekto : po áhodý vekto : m m Přpomeutí pojmů - kovce Kovce áhodých poměých kovčí koefcet popsuje

Více

IV. NEJISTOTY MENÍ A ZPRACOVÁNÍ VÝSLEDK

IV. NEJISTOTY MENÍ A ZPRACOVÁNÍ VÝSLEDK IV. NEJISTOTY MENÍ A ZPRACOVÁNÍ VÝSLEDK Meí patí mez základí zpsoby získáváí kvattatvích formací o stav sledovaé vely. 4. Chyby meí Nedokoalost metod meí, ašch smysl, omezeá pesost mcích pístroj, promé

Více

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI 6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.. ČÍSELNÉ POSLOUPNOSTI V této kpitole se dozvíte: jk defiujeme posloupost reálých ebo komplexích čísel; defiici vlstí evlstí limity poslouposti; defiici pojmů souvisejících

Více

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic.

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic. temtk I část I Determty mtc řádu Determty mtc řádu Cíle Cílem ktoly je zvládutí řešeí ermtů čtvercových mtc Defce Determtem (řádu ) čtvercové mtce řádu jejímž rvky j jsou reálá (oř komlexí) čísl zýváme

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T DUBNA 08 : 8. dub 08 D : 884 P P P S M. M. M. : 0 : 5,5 % : 0 : 7,8 : -7,5 M.. P : -6,0 : 9,7 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí

Více

8.2.7 Geometrická posloupnost

8.2.7 Geometrická posloupnost 87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob

Více

Interpolace a aproximace. Interpolace algebraickým polynomem a aproximace metodou nejmenších čtverců

Interpolace a aproximace. Interpolace algebraickým polynomem a aproximace metodou nejmenších čtverců Iterpolce promce Iterpolce lgebrckým polomem p g ý p promce metodou ejmeších čtverců Iterpolce lgebrckým polomem Apromce metodou ejmeších čtverců Úloh. Dá tbulk hodot,, j pro j. Hodot jsou přesé. Hledáme

Více

Posloupnosti a řady. Obsah

Posloupnosti a řady. Obsah Poslouposti řdy Poslouposti řdy Obsh. Poslouposti... 8. Úvod do posloupostí... 8. Aritmetická geometrická posloupost... 9. Limit poslouposti... 9. Řdy... 0. Nekoečá geometrická řd... 0 Strák 7 Poslouposti

Více

VY_52_INOVACE_J 05 01

VY_52_INOVACE_J 05 01 Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí

Více

Struktura a architektura počítačů

Struktura a architektura počítačů Struktur rchtektur počítčů Číselé soustvy Převody me soustvm, kódy Artmetcké operce České vysoké učeí techcké Fkult elektrotechcká Ver J Zděek 3 Polydcké číselé soustvy (počí) Hodot čísl v soustvě se ákldem

Více

8. Elementární funkce

8. Elementární funkce Moderí techologie ve studiu plikové fzik CZ.1.07/2.2.00/07.0018 8. Elemetárí fukce Historie přírodích věd potvrzuje, že většiu reálě eistujících dějů lze reprezetovt mtemtickými model, které jsou popsá

Více

Úvod do lineárního programování

Úvod do lineárního programování Úvod do lieárího programováí ) Defiice úlohy Jedá se o optimalizaí problémy které jsou popsáy soustavou lieárích rovic a erovic. Kritéria optimalizace jsou rovž lieárí. Promé v této úloze abývají reálých

Více

Vážeí zákazíci, dovolujeme si Vás upozorit, že a tuto ukázku kihy se vztahují autorská práva, tzv. copyright. To zameá, že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø

Více

Analytická geometrie

Analytická geometrie MATEMATICKÝ ÚSTAV Slezská uverzt N Rybíčku, 746 0 Opv DENNÍ STUDIUM Alytcká geoetre Té 5.: Shodá zobrzeí Defce 5.. Zobrzeí f eukldovského prostoru E do eukldovského prostoru E se zývá shodé (zoetrcké),

Více

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě. 3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

Chyby přímých měření. Úvod

Chyby přímých měření. Úvod Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Náhodý vektor PRAVĚPOOBNOS A SAISIKA Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor přpomeutí pomů z SP V prví část kurzu SP s rozšíříme pomy o áhodém vektoru z SP: Nechť e áhodý vektor eho složky:

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

P1: Úvod do experimentálních metod

P1: Úvod do experimentálních metod P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

Teoretická fyzika Základy kvantové mechaniky

Teoretická fyzika Základy kvantové mechaniky Teoretcká fyzk Zákldy kvtové mechky Mchl Lec podzm Obsh Teoretcká fyzk Zákldy kvtové mechky Velm struý pehled 3 Zákldí pojmy 3 Mtcový záps 5 3 Vlstí vektory vlstí hodoty 6 4 Nepíjemost s rovou vlou Drcovou

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T ÚNORA 08 :. úor 08 D : 96 P P P : 0 M. M. : 0 : 0 M. :,4 % S : -7,5 M. P : -,8 : 4,5 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90 miut

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

ARITMETICKÉ POSLOUPNOSTI s-tého STUPNĚ. Daniela Bittnerová

ARITMETICKÉ POSLOUPNOSTI s-tého STUPNĚ. Daniela Bittnerová The Mthemtc Educto to the t Cetury Project Proceedg of the Itertol Coferece The Decdble d the Udecdble Mthemtc Educto Bro, Czech Republc, September 00 ARITMETICKÉ POSLOUPNOSTI -TÉHO STUPNĚ Del Btterová

Více

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů .8. Mohočley, sčítáí odčítáí mohočleů Předpokldy: 7 Mohočle = zvláští typ výrzů. Jk je pozáme? Mohočley obshují pouze přirozeé mociy ezámých (jedé ebo více) kostty. Př. : Rozhodi, které z ásledujících

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a } Nekoečé řdy. Nekoečé číselé řdy.. Defiice ) Ozčme { } { } = L L ekoečou posloupost reálých čísel.,,,,, Nekoečá číselá řd je součet tvru = + + + L+ + L. Jedotlivá čísl,,, L,, L se zývjí čley řdy, čle obvykle

Více

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x) 9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

Pro orientaci v této problematice jsme se seznámili s nkolika novými pojmy:

Pro orientaci v této problematice jsme se seznámili s nkolika novými pojmy: Ig. Marta Ltschmaová Statsta I., cveí 8 LIMITNÍ VTY Lmtí vty jsou tvrzeí, terá jsou dležtá pro pops pravdpodobostích model v pípad rostoucího potu áhodých pous.. ro oretac v této problematce jsme se sezáml

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

Experimentální postupy. Koncentrace roztoků

Experimentální postupy. Koncentrace roztoků Experimetálí postupy Kocetrace roztoků Kocetrace roztoků možství rozpuštěé látky v roztoku. Hmotostí zlomek (hmotostí proceta) Objemový zlomek (objemová proceta) Molárí zlomek Molarita (molárí kocetrace)

Více

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA OBRAOVACÍ ROVNICE OKY A KULOVÉHO RCADLA vtšení optického zobrzení pedešlých kpitol již víme, že pi zobrzení okmi nebo kulovými zrcdly mohou vznikt zvtšené nebo zmenšené obrzy pedmt. Pro jejich mtemtický

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 :. břez 08 D : 0 P P P : 0 M. M. M. :,8 % S : 0 : 7,5 : -7,5 M. P : -,0 : 0,6 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

2. TEORIE PRAVDĚPODOBNOSTI

2. TEORIE PRAVDĚPODOBNOSTI . TEORIE PRAVDĚPODOBNOSTI V prax se můžeme setat s dvojím typem procesů. Jeda jsou to procesy determstcé, u terých platí, že př dodržeí orétích vstupích podmíe obdržíme přesý, předem zámý výslede (te můžeme

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti sttických mometů souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme že jste

Více

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0).

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0). ČÍSELNÉ VEKTORY Defce Uspořádou -tc čísel = (,,, ) zveme číselým vektoem Čísl,,, jsou složky ebol souřdce vektou Přozeé číslo zýváme ozměem ebo tké dmezí vektou Defce Vekto, jehož všechy složky se ovjí

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ VEKTOROVÁ LGEBR NLYTICKÁ GEOMETRIE V ROVINĚ Délk úsečk, střed úsečk,, B Délk úsečk B : B C, BC Střed úsečk : B S s, s souřdice středu: s, s Vektor Vektor = oži všech souhlsě orietových rovoěžých úseček

Více

íslicová technika Radek Maík Maík Radek 1

íslicová technika Radek Maík Maík Radek 1 íslicová technik Rdek Mík Mík Rdek 1 íselné soustvy ritmetické operce Mík Rdek 2 Pevody mezi soustvmi (z10) Výsledek dostneme vyíslením z-dickéhoz dickéhoísl ve tvru dy. (101,11) 2 = 1.2 2 + 0.2 1 + 1.2

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

Základní elementární funkce.

Základní elementární funkce. 6. předášk Zákldí elemetárí fukce. Defiice: Elemetárími fukcemi zveme všech fukce, které jsou vtvoře koečým počtem zákldích opercí ze zákldích elemetárích fukcí. Zákldí operce s fukcemi jsou:. Sčítáí dvou

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

2. TVRDOMĚRNÉ ZKOUŠENÍ BETONU

2. TVRDOMĚRNÉ ZKOUŠENÍ BETONU 2. TVRDOMĚRNÉ ZKOUŠENÍ BETONU 2.1 Tvrdoměré zkoušky OBECNĚ podle ČSN 73 1373:2011 2.1.1 Předmět ormy Tto orm měl být zruše krátce po vydáí ČSN EN 12504-2 v roce 2002. Místo toho byl v roce 2011 vydá zovu.

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ STEJNOMĚRNÁ KONVERGENCE Ztím ebylo v těchto textech věováo příliš pozorosti kovergeci fukcí, t jko limit poslouposti ebo součet řdy. Jik byl kovergece poslouposti fukcí ebo řdy brá jko bodová kovergece.

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY T BŘEZNA 09 D : 30. břez 09 M. možé skóre: 30 Počet řešitelů testu: 85 M. dosžeé skóre: 30 Počet úloh: 30 Mi. možé skóre: -7,5 Průměrá vyechost: 9, % Mi. dosžeé skóre: -,8 Správé

Více

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky). Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Kuželosečky jako algebraické křivky 2. stupně

Kuželosečky jako algebraické křivky 2. stupně Kuželosečk Pretrické iplicití vjádřeí kuželoseček P. Pech: Kuželosečk, JU České Budějovice 4, 59s Kuželosečk jko lgerické křivk. stupě Kuželosečk je oži odů v roviě, jejichž souřdice (, ) vhovují v ějké

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí

Více

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky.

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky. Návod pro cvičeí předmětu Výkoová elektroika Návod pro výpočet základích iduktorů s jádrem a síťové frekveci pro obvody výkoové elektroiky. Úvod V obvodech výkoové elektroiky je možé většiu prvků vyrobit

Více

2. Definice plazmatu, základní charakteristiky plazmatu

2. Definice plazmatu, základní charakteristiky plazmatu 2. efiice plazmatu, základí charakteristiky plazmatu efiice plazmatu Plazma bývá obyčejě ozačováo za čtvrté skupeství hmoty. Pokud zahříváme pevou látku, dojde k jejímu roztaveí, při dalším zahříváí se

Více

š š Ť ř ň š ú ř ý ž š ř ě Š ě š ř ň š ú ř ý ž ř ý ě ř š ř ň š ú ý ř ý ž ě ě š š ě ě ě ž ž š ě ř ý ěž ů ň ů ý š ř ý ř ě ž ř ě ž ý ž ý ř š ř š ě ř ý š ý ě ž ř ě ž ě ř ěž ř ž ř ň ř ý ý š ě ě ž ň ř ý ř ě ý

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2019

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2019 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 09 T á D P č P č ů ú P ů ě S á :. úor 09 : 004 : 0 M. M. M. á : 9, % ě č M.. P ů ě ž ó : 0 ž ž ó : 0 ó : -7,5 ž ó : -,8 ó : 4,4 Zopkujte si zákldí iformce ke zkoušce: Test

Více

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+ Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte: 6.2. ČÍSELNÉ ŘADY V této kpitole se dozvíte: jk defiujeme číselou řdu; defiici kovergece řdy jejího součtu; jk vypdá ritmetická, geometrická hrmoická řd jk je to s jejich kovergecí; jk zí utá podmík kovergece

Více

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor . LINEÁRNÍ LGEBR Vektorový prostor.. Defiice Nechť V e moži které sou defiováy operce sčítáí + : t. zobrzeí V V V ásobeí i : t zobrzeí R V V. Možiu V zýváme vektorovým prostorem, sou-li splěy ásleduící

Více

Kinetická teorie plynů - tlak F S F S F S. 2n V. tlak plynu. práce vykonaná při stlačení plynu o dx: celková práce vykonaná při stlačení plynu:

Kinetická teorie plynů - tlak F S F S F S. 2n V. tlak plynu. práce vykonaná při stlačení plynu o dx: celková práce vykonaná při stlačení plynu: Kietická teorie plyů - tlak tlak plyu p práce vykoaá při stlačeí plyu o d: d celková práce vykoaá při stlačeí plyu: kdyby všechy molekuly měly stejou -ovou složku rychlost v : hybost předaá při árazu molekuly

Více

Přehled modelů viskoelastických těles a materiálů

Přehled modelů viskoelastických těles a materiálů Přehled modelů vskoelsckých ěles merálů Klscké reologcké modely Klscké reologcké modely vycházejí z předsvy, že chováí ěles lze hrd chováím sysému složeého z pruž písů, edy z ookeových ewoových ěles. ookeovo

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

ÚVOD DO PRAKTICKÉ FYZIKY I

ÚVOD DO PRAKTICKÉ FYZIKY I JIŘÍ ENGLICH ÚVOD DO PRAKTICKÉ FYZIKY I ZPRACOVÁNÍ VÝSLEDKŮ MĚŘENÍ Jede z epermetů, které změly vývoj fyzky v mulém století. V roce 9 prof. H. Kamerlgh Oes ve své laboratoř v Leydeu měřl teplotí závslost

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N.

( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N. .. Derivace elemetárích fukcí II Předpoklady: Př. : Urči derivaci fukce y ; N. Budeme postupovat stejě jako předtím dosazeím do vzorce: f ( + ) f ( ) f f ( + ) + + + +... + (biomická věta) + + +... + f

Více

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě

Více

3 Integrální počet funkcí jedné reálné proměnné

3 Integrální počet funkcí jedné reálné proměnné - 36 - Itegrálí počet fukcí jedé proměé 3 Itegrálí počet fukcí jedé reálé proměé 3. Prmtví fukce, eurčtý tegrál Defce Nechť f je reálá fukce jedé reálé proměé. Fukc F zveme prmtví fukcí k fukc f tervlu

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

ODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady

ODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady ODRAZ A LOM SVTLA Odraz svtla lo svtla idex lou úplý odraz svtla píklady Každý z Vás se urit kdy díval do vody. Na klidé vodí hladi vidl kro svého obrazu také kaey ebo písek a d. Na základí škole jste

Více

DUM č. 19 v sadě. 13. Ma-1 Příprava k maturitě a PZ algebra, logika, teorie množin, funkce, posloupnosti, řady, kombinatorika, pravděpodobnost

DUM č. 19 v sadě. 13. Ma-1 Příprava k maturitě a PZ algebra, logika, teorie množin, funkce, posloupnosti, řady, kombinatorika, pravděpodobnost projekt GML Bro Doces DUM č. 9 v sdě. M- Příprv k mturitě PZ lgebr, logik, teorie moži, fukce, poslouposti, řdy, kombitorik, prvděpodobost Autor: Jrmil Šimečková Dtum:.0.0 Ročík: mturití ročíky Aotce DUMu:

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru

Více

právě jedna správná. Zakroužkujte ji! ax + ay bx by ax ay bx + by d) a b 4) Řešením nerovnice x 3x e) nemá řešení

právě jedna správná. Zakroužkujte ji! ax + ay bx by ax ay bx + by d) a b 4) Řešením nerovnice x 3x e) nemá řešení FSI VUT v Brě zdáí č.. str. MATEMATIKA 0 Příjmeí jméo: Z uvedeých odpovědí je vždy právě jed správá. Zkroužkujte ji! ) Pro všechy přípusté hodoty pltí: + y y b) y + y c) + b b + y b by y b + by d) b +

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Analytická geometrie

Analytická geometrie Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

Náhodné jevy, jevové pole, pravděpodobnost

Náhodné jevy, jevové pole, pravděpodobnost S Náhodé jevy pravděpodobost Náhodé jevy jevové pole pravděpodobost Lbor Žák S Náhodé jevy pravděpodobost Lbor Žák Základí pojmy Expermet česky též vědecký pokus je soubor jedáí a pozorováí jehož účelem

Více

1.2. MOCNINA A ODMOCNINA

1.2. MOCNINA A ODMOCNINA .. MOCNINA A ODMOCNINA V této kpitole se dozvíte: jk je defiová oci s přirozeý, celý, rcioálí oecý reálý epoete jké jsou její vlstosti; jk je defiová přirozeá odoci, jké jsou její vlstosti jk se dá vyjádřit

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

Jednotlivé snímky lze použít jako studijní materiál.

Jednotlivé snímky lze použít jako studijní materiál. Číslo projektu Číslo mteriálu CZ..7/../.9 VY Iovce_8_MA_._ Využití geometrické poslouposti prcoví list Název školy Středí odborá škol Středí odboré učiliště, Hustopeče, Msrykovo ám. Autor Temtický celek

Více