Optické vlastnosti atmosféry, rekonstrukce optického signálu degradovaného průchodem atmosférou



Podobné dokumenty
6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

Deskriptivní statistika 1

Problematika dosahu OE přístrojů v reálných atmosférických podmínkách

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

12. N á h o d n ý v ý b ě r

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Pravděpodobnost a aplikovaná statistika

IAJCE Přednáška č. 12

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Odhady parametrů 1. Odhady parametrů

Náhodný výběr 1. Náhodný výběr

1. Základy měření neelektrických veličin

Sekvenční logické obvody(lso)

2 STEJNORODOST BETONU KONSTRUKCE

P2: Statistické zpracování dat

23. Mechanické vlnění

1 Základy Z-transformace. pro aplikace v oblasti

3. Lineární diferenciální rovnice úvod do teorie

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components

Základní požadavky a pravidla měření

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

Analýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Závislost slovních znaků

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

Geometrická optika. Zákon odrazu a lomu světla

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ

1 ROVNOMĚRNOST BETONU KONSTRUKCE

Lineární a adaptivní zpracování dat. 8. Modely časových řad I.

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

8. Analýza rozptylu.

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

U klasifikace podle minimální vzdálenosti je nutno zvolit:

Pravděpodobnostní modely

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

Modelování jednostupňové extrakce. Grygar Vojtěch

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

Příklady k přednášce 9 - Zpětná vazba

13 Popisná statistika

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje Rychlost pracovního mechanismu

Iterační metody řešení soustav lineárních rovnic

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

6. FUNKCE A POSLOUPNOSTI

2. Náhodná veličina. je konečná nebo spočetná množina;

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

OVMT Přesnost měření a teorie chyb

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

Úloha II.S... odhadnutelná

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Úloha III.S... limitní

Zhodnocení přesnosti měření

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Ústav fyzikálního inženýrství Fakulta strojního inženýrství VUT v Brně GEOMETRICKÁ OPTIKA. Přednáška 10

UŽITÍ MATLABU V KOLORIMETRII. J.Novák, A.Mikš. Katedra fyziky, FSv ČVUT, Praha

Matematika I, část II

ANALÝZA VLIVU NUMERICKÉ APERTURY A ZVĚTŠENÍ NA HODNOTU ROZPTYLOVÉ FUNKCE BODU

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů

6. Posloupnosti a jejich limity, řady

OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH

MATICOVÉ HRY MATICOVÝCH HER

Popisná statistika. Zdeněk Janák 9. prosince 2007

Měřící technika - MT úvod

Vyhledávání v tabulkách

2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II

V. Normální rozdělení

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Analýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

PRAVDĚPODOBNOST A STATISTIKA

Intervalové odhady parametrů některých rozdělení.

NEPARAMETRICKÉ METODY

Iterační výpočty projekt č. 2

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Statistika pro metrologii

Spojitost a limita funkcí jedné reálné proměnné

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Téma: 11) Dynamika stavebních konstrukcí

Teorie kompenzace jalového induktivního výkonu

Geometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí:

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy

3. Decibelové veličiny v akustice, kmitočtová pásma

Obsah. skentest. 1. Úvod. 2. Metoda výpočtu Základní pojmy

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

je vstupní kvantovaný signál. Průběh kvantizační chyby e { x ( t )}

Interakce světla s prostředím

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Číselné charakteristiky náhodných veličin

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.

Transkript:

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Optické vlastosti atmosféry, rekostrukce optického sigálu degradovaého průchodem atmosférou Učebí texty k semiáři Autor: Dr. Ig. Zdeěk Řehoř UO Bro) Datum: 22. 10. 2010 Cetrum pro rozvoj výzkumu pokročilých řídicích a sezorických techologií CZ.1.07/2.3.00/09.0031 TENTO STUDIJNÍ MATERIÁL JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

OBSAH Obsah... 1 1. Optické vlastosti atmosféry Země... 2 1.1. Útlum optického zářeí... 2 1.1.1. Absorpce optického zářeí... 4 1.1.2. Rozptyl optického zářeí v atmosféře... 5 1.2. Turbulece vzduchu... 7 2. Vliv atmosféry a optický sigál... 10 2.1. Vliv statických vlivů... 10 2.2. Vliv dyamických vlivů... 14 2.2.1. Model detekce turbulece metodou plovoucího bodu... 15 2.2.2. Predikce pozice bodu ve frekvečí oblasti... 16 3. Rekostrukce optického sigálu... 21 3.1. Rekostrukce obrazu s využitím hardwarových prostředků... 21 3.1.1. Spektrálí filtrace optického sigálu... 21 3.1.2. Prostorově-frekvečí filtr... 23 3.2. Rekostrukce obrazu s využitím softwarových prostředků... 24 3.2.1. Lieárí zpracováí obrazu... 25 3.2.2. Sychroí símáí a pokročilé metody zpracováí obrazu... 28 3.2.3. Restaurace dyamických vlivů a optický sigál... 32 4. Závěr... 35 Sezam použité literatury... 36 1

1. OPTICKÉ VLASTNOSTI ATMOSFÉRY ZEMĚ Pro plohodotý popis pozorovaých scé je uto zahrout eje vlastí vlastosti použitého přístroje, operátora a pozorovaé scéy samoté, ale i přeosové vlastostí prostředí atmosféry. Právě atmosféra Země je jedou z klíčových vlastostí, a kterých závisí kvalita přijímaého optického sigálu. S rostoucí vzdáleostí objektů je vliv atmosféry stále markatější. V této části je proto provede zjedodušeý popis základích vlivů, které výsledý optický sigál ovlivňují. V popisu jsou zahruty oba její domiatí vlivy útlum optického zářeí i turbulece atmosféry. 1.1. Útlum optického zářeí Zjišťováí charakteristik pozorovaých objektů apř. jejich vzdáleostí) je závislé mj. a okamžitém stavu atmosféry. Na základě zalosti tohoto vlivu je možé provádět aalýzu vlivu atmosféry a přeášeou obrazovou iformaci a tím i míru vlivu a vlastí parametry optického, popř. optoelektroického přístroje. K výše uvedeým vlivům přispívají estejou vahou růzé fyzikálí jevy v atmosféře se vyskytující. Mezi ejvýrazější patří absorpce a rozptyl optického zářeí souhrě ozačovaé jako útlum optického zářeí a turbulece atmosféry. Útlum optického zářeí způsobuje zejméa pokles itezity optického zářeí a pokles kotrastu pozorovaého objektu. Na útlumu optického zářeí v atmosféře je dá součtem 2 ezávislých fyzikálích jevů absorpce a rozptylu. V obou případech se jedá v relativě krátkém časovém rozmezí miuty, desítky miut) z pohledu pozorovatele o děje prakticky statické. Stěžejí pro modelováí útlumu optického zářeí je proto staoveí přeosové fukce atmosféry v závislosti a útlumu optického zářeí. 2

Scéa Rozptyl Absorpce Turbulece atmosféry Pozorovaý obraz scéy Obrázek 1.1 Schéma vlivů působících v atmosféře a výsledé zobrazeí Obrázek 1.2 ilustruje vliv atmosféry a pozorovaý objekt. Obrázek 1.2a demostruje objekt pozorovaý z krátké vzdáleosti. Obrázek 1.2b pak ukazuje stejou scéu pozorovaou a hraici meteorologické dohledosti v tomto případě 3 km). Při porováí obou símku je patrý pokles kvality zobrazeí pozorovaého objektu. a) b) Obrázek 1.2 Vliv atmosféry a zobrazeí vzdáleých objektů. a) símek ezatížeý vlivem atmosféry, b) símek po průchodu atmosférou 3

1.1.1. Absorpce optického zářeí K absorpci optického zářeí dochází v atmosféře zejméa: vodími parami, kysličíkem uhličitým CO 2 ) a aerosolovými částicemi. Pro účely této práce je postačující přiblížeí, ve kterém je zahruta pouze absorpce vodími parami. Základem pro vyhodoceí je možství obsažeé vody w l a optické trase. Teto parametr je číselě rove výšce vodího sloupce [mm], který vzike zkodezováím všech vodích par a trase délky l. Je urče vztahem uvedeým apř. v [5]. w l 2167 10 6 2 T 0. 9. RH ph O p l p 0, 1.1) kde pro výpočet parciálího tlaku asyceých vodích par lze využít s výhodou aproximačí vztah: p i mi T 27315. ), 2 H O 3 i0 1.2) kde: koeficiety m i mají hodotu: m 0 = 6.107 10-4 Pa, m 1 = 4.436 10-5 PaK -1, m 2 = 1.429 10-6 PaK -2, m 3 = 2.654 10-8 PaK -3. Hledaou spektrálí trasmitaci atmosféry H2O ) lze ásledě z možství zkodezovaé vody w l přímo určit z tabelovaých hodot viz apř. *1+). Model atmosféry využívá tabelovaých hodot k aproximaci hodot postačuje lieárí iterpolace) mezi dvěmi ejbližšími sousedími hodotami. Takto staoveá hodota je určea s dostatečou přesostí. Spektrálí koeficiet absorpce pak je urče rovicí *1+: ) p s p0 0.9 l. 1.3) Zpřesěí určeí celkového spektrálího koeficietu absorpce je možé především zahrutím vlivu CO 2. Hodoty spektrálí trasmitace CO 2 jsou rověž tabelovaé apř. *2+) pro hodotu CO 2 0,03 % a stadardí atmosférické podmíky dle stadardí atmosféry USSA-1962. 4

Obrázek 1.3 Optické vlastosti atmosféry Země Na absorpci optického zářeí zejméa v přízemích vrstvách se podílí rověž aerosol v í obsažeý. Pro vyčísleí jeho vlivu je zpravidla přijato zjedodušeí rovoměrého rozložeí aerosolu podél trasy. Teto předpoklad sižuje přesost určeí hodoty w a, ale pro přibližé určeí spektrálího koeficietu absorpce vodími částicemi ho lze připustit *1]. Z hodoty w a pak lze staovit spektrálí koeficiet absorpce vodími aerosolovými částicemi a ) podobě jako pro případ vodích par. 1.1.2. Rozptyl optického zářeí v atmosféře Druhým důležitým faktorem ovlivňující útlum optického sigálu v atmosféře je rozptyl optického zářeí. K rozptylu optického zářeí dochází v atmosféře jak a jejích vlastích složkách molekuly vlastích plyů zejméa dusíku, kyslíku a kysličíku uhličitého, ), tak i a aerosolových částicích, které jsou v í obsažey. Pro účely této práce je uvažová pouze rozptyl vziklý a aerosolových částicích. Rozptyl a vlastích složkách molekuly vlastích plyů zejméa dusíku, kyslíku a kysličíku uhličitého) je pro jeho velikost zaedbá. Atmosférický aerosol se vyzačuje začě variabilím rozložeím v čase i prostoru. Rověž rozměrové složeí jedotlivých druhů aerosolu je začě 5

proměé. Přitom aerosol se podílí v běžých středoevropských podmíkách v přízemích vrstvách atmosféry a celkové hodotě rozptylu rozhodující měrou. Model pro přibližé určeí spektrálího koeficietu rozptylu ) [km -1 + lze určit ze vztahu [3]: 0,585 1 / 3 S m 3,91 0,55, S m kde: S m... meteorologická dohledost *km+. 1.4) Ze zámých vlastostí útlumu lze ásledě popsat vliv útlumu a optický sigál. Te je možé výhodě popsat obecě komplexí přeosovou fukcí systému tj. v tomto případě atmosféry). Protože v této práci je řešea pouze otázka přeosové fukce z hlediska přeosu ekoheretího optického sigálu je dále pracováo pouze s modulem této fukce - modulačí přeosovou fukcí MTF). Pro jedoduchost je dále předpokládáo, že je vliv atmosféry homogeí v celém zorém poli pozorovacího přístroje. MTF se měí během de je velmi pozvola. Proto ji lze z pohledu krátkodobého pozorováí považovat za statickou. Na základě zalosti koeficietu absorpce a rozptylu lze vyjádřit zjedodušeý model MTF útlumu optického zářeí v atmosféře ve tvaru [5]: exp [ ) s ) s f r f c 2 ],pro f r f c, 1.5) M f, r, ) a r exp [ ) )] s, pro f r f c, kde: ).. spektrálí koeficiet absorpce *km -1 ], ).. spektrálí koeficiet rozptylu [km -1 ], s.. délka trasy *km+, r.. char. poloměr částice aerosolu [m],.. vlová délka optického zářeí *m], f r.. prostorová frekvece *čar/rad+, f c.. mezí prostorová frekvece *čar/rad+, kde:, r f c. 6

1.2. Turbulece vzduchu Z pohledu pozorovatele turbulece atmosféry způsobuje zejméa prostorově závislý odklo optického zářeí od původího směru šířeí což se v roviě pozorovatele projevuje fluktuacemi amplitudy optického zářeí a geometrickými deformacemi pozorovaého obrazu. Pro popis vlivu turbulece je používá strukturálí parametr idexu lomu C 2. V *5+ byl experimetálě ověře regresiví model umožňující určeí C 2 pomocí stadardě měřeých meteorologických údajů: 2 2 3 2 3 C A W B T C RH C RH C RH D WS D WS D WS E SF F TCSA G 1.6) 1 1 1 2 3 1 2 3 1 1 kde: W... časová váhová fukce viz. obrázek 1.4), A1,B1,C1,C2,C3,D1,D2,D3,E1,F1,F2,G... regresí koeficiety [5]. Obrázek 1.4 Průběh časové váhové fukce popisující vývoj turbulece během de Obdobě jako v případě útlumu lze staovit MTF turbulece atmosféry. Na základě zalosti strukturálího parametru idexu lomu C 2 lze MTF turbulece atmosféry se zohleděím délky expozice jedoho símku defiovat jako *5+: 7

5/ 3 2 1/ 3 a) pro dlouhé expozice: MTFturbulexp 57.3 fr C s) b) pro krátké expozice: 1.7) kde: MTF turbul exp 57.3 f 5/ 3 r C 2 1/ 3 f r... prostorová frekvece *čar/rad+, f s 1 x D C 2 strukturálí parametr idexu lomu [m 2/3 ],... vlová délka *m], r 1/ 3, s... délka trasy *km+, x... je rove 1 pro blízké pole, 0,5 pro vzdáleé pole *-], D... průměr vstupí apertury *mm+. Za krátkou expozici lze přitom považovat expozici, jejíž délka je podstatě kratší ež středí doba jedé fluktuace amplitudy přijímaého optického zářeí typicky 5 10 ms). Na rozdíl od útlumu elze v tomto případě předpokládat, že vliv turbulece je homogeí v celém zorém poli. Na základě zalosti dílčích MTF útlumu a rozptylu lze staovit výsledou MTF atmosféry. Ta, při přijetí předpokladu vzájemé ezávislosti těchto vlivů, je dáa součiem dílčích přeosových fukcí: MTF MTF a MTF turbul 1.8) U soudobých zobrazovacích systémů eí vliv atmosféry kompezová. Nerespektováí této skutečosti způsobuje mj. pokles kotrastu cíl proti pozadí, a tím zhoršeí kvality zobrazeí zejméa a dlouhých trasách) a zmešeí vzdáleosti, a které lze pozorovaý cíl zobrazovacím systémem zjistit, případě rozpozat, s požadovaou pravděpodobostí. Poz.: V atmosféře dochází eje k rychlým změám idexu lomu v důsledku turbulece, ale i k mohem pomalejším. Pomalé změy idexu lomu vzduchu mají za ásledek refrakci paprsků. Úhel mezi tečou paprsku v počátečým ebo koečým bodem optické dráhy a přímkou, která spojuje počátečý a koečý bod se azývá úhel refrakce. Pro úhel refrakce, pod kterým dopade paprsek a vstupí pupilu optické soustavy lze ze zákou lomu odvodit vztah: 8

kde: T gradiet teploty [K]. p s 0 si d dt T ds 1.9) Pro případ déle trvajícího pozorováí je proto uto zahrou i teto vliv. V opačém případě lze vliv refrakce zaedbat. 9

2. VLIV ATMOSFÉRY NA OPTICKÝ SIGNÁL Vliv atmosféry a výsledé zobrazeí optickým/optoelektroickým systémem se projevuje zejméa poklesem itezity optického zářeí během šířeí v atmosféře, sížeím kotrastu cíl/pozadí, fluktuací přijímaé úrově optického zářeí vlivem turbulece, deformací obrazů pozorovaých objektů a zkresleím barevých charakteristik objektů. Pro zpracováí optického sigálu je možo pohlížet a vliv atmosféry i z časového hlediska. Pak lze vliv atmosféry rozdělit a: statický a dyamický vliv atmosféry. Rozděleí vlivu atmosféry a statický a dyamický umožňuje přistoupit k jejich separaci a tím ke kvatifikováí jejich dílčích vlivů, popř. ásledě i k přijetí opatřeí pro miimalizaci jedotlivých vlivů. 2.1. Vliv statických vlivů Za statické vlivy lze považovat vlivy, jejichž úroveň zůstává v krátkém časovém horizotu prakticky eměá, ebo se měí kolem určité hodoty. To umožňuje využít kvatifikace středí hodoty tohoto vlivu eje k jeho popisu, ale zejméa i k jeho potlačeí. Mimo útlumu optického zářeí lze mezi statické vlivy zahrout i atmosférickou refrakci a pro případ dostatečě dlouhých expozicí částečě i turbuleci vzduchu. Jak již bylo uvedeo, vliv útlumu atmosféry se a výsledém zobrazeí optickým, resp. optoelektroickým systémem projevuje zejméa poklesem itezity optického zářeí během šířeí v atmosféře a sížeím kotrastu cíl/pozadí. S výhodou lze popsat vliv statických vlivů prostředictvím jejich modulačí přeosové fukce MTF) *1+. Nízké prostorové frekvece v obraze esou základí iformaci o umístěí a o základích tvarech objektů. Středí oblast prostorových frekvecí je výzamá pro správé rozděleí stupice záře a zobrazeí základích obrysů objektů. Vysoké prostorové frekvece mají zásadí roli pro zobrazeí jemých struktur obrazu, a ostrých přechodů mezi objekty a jejich pozadím. Ze zalosti MTF atmosféry lze usuzovat a celou řadu vlastostí eje atmosféry, ale i výsledého obrazu. Kvalitou obrazu je rozuměa veličia 10

vyjadřující věrost reprodukce prostorové distribuce určitého parametru apř. záře) a výstupu zobrazovacího systému vzhledem k distribuci tohoto parametru v roviě objektu. MTF atmosféry lze využít pro hodoceí kvality obrazu ásledujícími způsoby: 1) Mírou kvality je hodota, a kterou poklese MTF při určité prostorové frekveci. 2) Mírou kvality je prostorová frekvece, a které hodota MTF poklese a defiovaou úroveň. Voleé hodoty jsou zpravidla v rozmezí 0,001-0,707). 3) Mírou kvality je koeficiet určeý z průběhu MTF. Nevýhodou prvího a druhého způsobu hodoceí kvality obrazu je, že erespektují celý průběh MTF, ale pouze její část. Hodoceí kvality obrazu podle třetího způsobu respektuje celý průběh MTF, ebo jeho podstatou část, a je proto považová za ejvhodější pro další využití. Pro hodoceí kvality zobrazeí je v odboré literatuře často využívá koeficiet MCFA Modulatio Cotrast Fuctio Area)), který je defiová vztahem *apř. 2+: MCFA 0 MTF f r 2.1) f r ) df kde f r je prostorová frekvece *čar/rad+ a MTF je modulačí přeosová fukce atmosféry. Podle *4+ lze obraz jehož hodota MCFA je větší ež 0,68 považovat za kvalití. Omezeí vyvolaá atmosférickým přeosovým kaálem se prakticky eprojevují. Pro MCFA z itervalu 0,5-0,68) je obraz adále kvalití. Vliv atmosférického přeosového kaálu je patrý zejméa a zobrazeí jemých struktur sledovaého objektu tj. struktur s rozměry srovatelými s rozlišovací mezí použitého zobrazovacího systému). Pro MCFA 0,33-0,5) dochází v obraze k výrazé degradaci. Přesto jsou v ěm zřetelé všechy charakteristické struktury. Pro MCFA 0,1-0,33) jsou v obraze patré pouze základí struktury. Vhodým zpracováím obrazu je však možé ve začé míře tyto iformace restaurovat. Pro MCFA meší ež 0,1 je obraz zcela degradová. Neávratě se ztrácí základí iformace o všech objektech. r 11

S klesající hodotou koeficietu přeosu kotrastu MCFA klesá i hodota dosahu optoelektroického přístroje oproti jeho teoretické hodotě. Kolikrát bude tato vzdáleost meší oproti teoretické hodotě lze vyjádřit vztahem *4+: z t MCFA l MCFA 1 MCFA id id poz ), 2.2) kde: MCFA id je koeficiet kvality zobrazeí bez vlivu atmosféry a MCFA poz koeficiet kvality pozorovaého obrazu. Výhodé se zde jeví využití modelu atmosféry *1+, který z meteorologických údajů teplota s relativí vlhkost vzduchu, atmosférický tlak, ) umožňuje staovit hodotu koeficietu MCFA a tím i koeficiet zkráceí dosahu optoelektroického přístroje. 6 Koeficiet zkráceí dosahu přístroje 5.5 4,5 5 zt [-] 3.5 4 3 2,5 2 1.5 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 MCFA [-] Obrázek 2.1 Koeficiet zkráceí dosahu optoelektroického přístroje Pro hodoceí středího vlivu turbulece a optický sigál je výhodé využít model turbulece viz. kapitolu 0) vyjadřující závislost strukturálího koeficietu turbulece a stěžejích meteorologických parametrech. Mimo již uvedeého zkráceí dosahu optického přístroje lze aalyzovat i další závislosti a dopady. Z provedeé aalýzy *2+ vyplývá, že s rostoucí rychlostí větru a relativí vlhkostí vzduchu strukturálí koeficiet turbulece a tím i vliv turbulece jako takové) klesá. Naopak s rostoucí teplotou vzduchu a zejméa s rostoucí hustotou eergie sluečího zářeí sluečího svitu) roste. Vliv turbulece ukážeme a příkladu chyby měřeí dálky u optoelektroického systému využívajícího měřeí vrcholového úhlu tzv. paralaxy) mezi měřeým 12

objektem a základou přístroje tzv. bází). S využitím uvedeého modelu turbulece lze vyjádřit průměré chyby způsobeé turbulecí vzduchu. Na základě aalýzy meteorologických údajů ve středoevropském regiou a s využitím modelu turbulece viz kapitolu 0) lze v rozsahu běžých meteorologických situací přistoupit k přibližému určeí rozložeí chyby dopadového úhlu paprsku a tím i apř. chyby určeé dálky vlivem turbulece. Pro strukturálí koeficiet C z itervalu 1*10-8 5*10-7 ) lze pro modelováí rozložeí chyb využít ormálího rozděleí N T, T ) [6]. Hodota parametru je rova 0 a parametr T abývá hodot z itervalu 0, T, max ), kde pro T, max platí [3]: T,max st, 2.3) kde: je koeficiet podobosti [-+, který abývá zpravidla hodot v rozmezí 1-3); typická hodota pro běžé meteorologické podmíky ve středoevropském regiou je kolem 2,5. Obrázek 2.2 ilustruje chybu určeé dálky pro slabou, středě silou a silou turbuleci. Příklad chyby způsobeé slabou turbulecí C =510-9 m -1/3 ), středě silou turbulecí C=510-8 m -1/3 ) i silou turbulecí C=510-7 m -1/3 ) je staovea pro bázi přístroje rovu 1m a vstupí pupilu objektivů 50 mm. Z uvedeého apř. vyplývá, že ve slabé turbuleci je chyba určeé dálky prakticky zaedbatelá a dosahuje hodot pod 1% měřeé dálky. Pro středě silou turbuleci dosahuje chyba hodot do 5% měřeé dálky. V silé turbuleci však chyba může dosáhout až 25-33% měřeé vzdáleosti. Pro velmi dlouhé expozice v turbuletí atmosféře ustupuje deformace tvarů vlivem turbulece atmosféry do pozadí vliv skládáí kratších expozic do jedé delší). To způsobuje pokles kotrastu pozorovaé scéy. Chyba určeé dálky je pak určea obdobě jako v případě epřesého zamířeí vlivem poklesu kotrastu pozorovaé scéy. 13

1400 1200 1000 ds [m] 800 600 400 200 0 500 1000 1500 2000 2500 3000 3500 4000 4500 s [m] silá turbulece C=5 10-7 m-1/3) středě silá turbulece C=5 10-8 m-1/3) slabá turbulece C=5 10-9 m-1/3) Obrázek 2.2: Chyba dálky vlivem turbulece 2.2. Vliv dyamických vlivů Nejvýzamějším dyamickým vlivem, který ovlivňuje vlastosti optického sigálu přijímaého po průchodu atmosférou je turbulece vzduchu zejméa pak, přijímáme-li optický sigál optoelektroickým zařízeím s krátkými expozicemi. Z pohledu pozorovatele představuje deformace pozorovaého obrazu resp. přijímaého optického sigálu) fluktuačí pole tvořeé fragmety, jejichž itezita a souvztažost tj. sobě si odpovídající souřadice) se měí v čase. Fragmetem se přitom erozumí jediý obrazový bod, ale možia bodů, jejichž parametry lze v daém čase vůči sobě považovat za kostatí. Pro jedoduchost popisu se dále zaměříme pouze a fluktuaci jediého fragmetu tzv. záměrého bodu. Zobecěí fluktuací a celou obrazovou roviu eí předmětem této práce. 14

Pro popis dyamických vlivů atmosféry a optický sigál je klíčové staovit vhodý algoritmus eje určeí polohy, ale zejméa predikce pohybu záměrého bodu sledovaého fragmetu). Na základě výsledků dlouhodobých měřeí a aalýz byl autorem této práce sestave matematický model driftu záměrého bodu, který umožňuje popsat s dostatečou přesostí pohyb záměrého bodu a to i v blízké budoucosti tj. v ejbližší periodě jeho pohybu). To vytváří základí předpoklad pro kompezaci driftu záměrého bodu HW prostředky. Uvedeý model umožňuje mimo vlastí hodotu driftu staovit pro defiovaou zájmovou oblast i jeho převažující směr. 2.2.1. Model detekce turbulece metodou plovoucího bodu Na obraz pozorovaé scéy degradovaé vlivem turbulece atmosféry lze pohlížet jako a obraz složeý z jedotlivých polí/fragmetů. Jedotlivé fragmety se vůči sobě pohybují růzými směry a rychlostmi. Velikost jejich pohybu je fukcí itezity turbulece atmosféry. V důsledku toho dochází ke změám souřadic jedotlivých fragmetů resp. jejich výzačých bodů) a eustálému kolísáí itezity optického zářeí přicházejícímu od jedotlivých obrazových bodů pozorovaé scéy. Výchozím předpokladem je, že scéu mezi jedotlivými símky lze považovat za přibližě statickou eí v í žádý rychle se pohybující cíl). Základem metody plovoucího bodu je využití matematického popisu optického proudu ze série po sobě jdoucích símků ze změ itezity fragmetu v závislosti a jeho pozici a čase s využitím Taylorovy řady : x, y, t E x, y, t E x, y, t E1 1 1 E x, y, t E0x, y, t..., x y t 15 2.4) kde: E i x,y,t) itezita optického zářeí v obrazovém poli v souřadici x,y) v čase t. Pro zpracováí optického proudu vyvolaého vlivem turbulece lze vyšší řády parciálích derivací zaedbat. Vlastí popis optického proudu vziklého ze sekvece símků v čase t a t+dt) platí: E t x, y, t Ex, y, t dx Ex, y, t x dt y dy dt, 2.5)

resp. x y, t E x, y, t E, v 0, t 2.6) kde: operátor prostorového gradietu itezity fragmetu, v vektor rychlosti pohybu fragmetu obrazového bodu). 2.2.2. Predikce pozice bodu ve frekvečí oblasti Pro úspěšou predikci driftu záměrého bodu je předpokládáo, že jeho pohyb je spojitý bez skokových změ. Dále je předpokládáo, že v krátkém časovém itervalu lze vlastí pohyb záměrého bodu rozdělit a složku systémovou a áhodou. Systémová složka je zastoupea domiatí frekvecí frekvecemi), která určuje základí pohyb záměrého bodu kolem středí hodoty. Na í jsou superpoováy další, áhodé složky. Vyjádřeo v časové oblasti: kde: S R S R, 2.7) celkový vektor pohybu záměrého bodu, systémová složka pohybu, áhodá složka pohybu. Za předpokladu platosti superpozice sigálu lze výše uvedeý vztah přepsat do frekvečí oblasti: F. 2.8) F S F R Predikce polohy záměrého bodu ve spektrálí oblasti vychází z matematického popisu systémové složky turbulece. Náhodá složka z pohledu sigálu šum) pak způsobuje odchylky v predikovaé poloze. Základem metody extrapolace spektra je rozděleí spektra F a oblasti se stejým obsahem resp. počtem hodot) ekvivalet kvartil, popř. decil. kos u ju F j df 2.9) 16

10 3 Power spectral desity 10 2 10 1 10 0 10-1 10-2 10-3 10-4 10-5 10 0 10 1 10 2 10 3 Frequecy Hz) Obrázek 2.3: Diskretizace spektra turbulece do oblastí Postačující je zpravidla 10 oblastí F 1 až F 10. S ohledem a typické spektrum turbulece jsou oblasti s ižšími frekvecemi zpravidla užší a vyšší) ež oblasti popisující vyšší frekvece. Každá tato oblast je vyhodocea samostatě. V dalším zpracováí je zastoupea charakteristickou frekvecí, která odpovídá pozici kvatilu uvitř oblasti. Ze změ hodoty uvitř oblasti je vytvoře stavový vektor W j obsahuje iformaci jak o amplitudě j tak i fázi j ). W j tedy obsahuje vývoj daé oblasti spektra za určitý časový úsek. W j e j i j i j1e j 1 j2 e i j2... 2.10) Teto přístup umožňuje popsat eje velikost příslušé charakteristické frekvece pro přísě periodický sigál by stavový vektor W j byl ulový), ale i její tedeci vývoje systémovou změu amplitudy, popř. fáze). Z hodot stavového vektoru W j je extrapolováa budoucí hodota vektoru W j+1. K tomu lze využít postup uvedeý výše v části věovaé predikci pozice záměrého bodu v časové oblasti. 17

[px] 10 3 Power spectral desity 10 2 10 1 10 0-1 10-2 j-4 j-3 j-2 j-1 j j+1 Obrázek 2.4: Stavový vektor Wi a jeho aproximace amplitudová složka) červeě aproximačí fukce, modře predikovaá hodota Oproti případu extrapolace v časové oblasti je výsledá hodota komplexí ese iformaci jak o velikosti, tak i fázi charakteristické frekvece). Výsledé diskrétí spektrum F d,j+1 je pak dáo složeím dílčích oblastí W j+1. W 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 Obrázek 2.5: Srováí chyby predikce záměrého bodu tečkovaě fialově) středí hodota driftu vlivem turbulece, čárkovaě zeleě) chyba predikovaé pozice za předpokladu rovoměrého pohybu bodu, čerchovaě modře) chyba predikovaé pozice metodou ejmeších čtverců, plá červeá) chyba predikovaé pozice z vývoje spektra turbulece Uvedeý přístup k driftu záměrého bodu vlivem turbulece umožňuje s dostatečou přesostí provádět dostatečě přesý odhad pozice bodu oproti j 18

odhadu přímo v časové oblasti ve větším časovém horizotu řádově jedotek period domiatích frekvecí). Obrázek 2.5 ilustruje srováí chyby predikce mezi jedotlivými metodami predikce v podmíkách slabé turbulece hodota směrodaté odchylky driftu záměrého bodu je =0.7 pix). Předpokládáa je obrazová frekvece 60 obr./s. Pohybový vektor byl vytvoře z 15 předchozích símků tj. cca z doby 250 ms, jsou tedy zahruty zejméa domiatí ízké frekvece). Za evyhovující je považováa taková chyba predikce, kdy je chyba predikce větší, ež je hodota směrodaté odchylky. Nejjedodušší metoda predikce předpokládající rovoměrý přímočarý pohyb záměrého bodu je pro účely predikce pozice záměrého bodu evhodá již a ásledujícím símku je chyba predikce velmi často srovatelá s hodotou směrodaté odchylky ). Středí doba přijatelé chyby predikce je v tomto případě cca 15ms. Lepší výsledky poskytuje využití metody ejmeších čtverců. I v tomto případě má metoda dostatečou přesost je omezeou. Lze ji proto zpravidla využít je pro ásledující símek a to pouze za předpokladu, že se bod pohybuje v okolí své středí pozice. Středí doba akceptovatelé chyby predikce je pro tuto metodu predikce pro uvažovaou situaci 33 ms. Nejlepší podmíky dává využití aalýzy spektra turbulece. S přijatelou přesostí bylo v tomto případě možé predikovat pozici bodu cca 4-5 obrázku vpřed. Středí doba přípusté chyby byla cca 80 ms. V případě sížeí ároků a přesost predikce apř. a jede pixel je středí doba úspěšé predikce polohy dokoce cca 150 ms. V podmíkách silé turbulece je doba úspěšé predikce obdobá. Uvažujme apř. hodotu směrodaté odchylky driftu záměrého bodu =3.1 pixelu. Odhad pozice záměrého bodu algoritmem využívajícím predikci ve frekvečí oblasti v tomto případě dokázal úspěšě predikovat polohu s chybou meší ež po dobu téměř 300 ms. Ve velké míře se a délce úspěšé predikce podílela právě velká hodota turbulece, která byla do začé míry ustáleá a podíl áhodé složky byl velmi ízký. 19

[px] 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 Obrázek 2.6: Srováí chyby predikce záměrého bodu v silé turbuleci tečkovaě fialově) středí hodota driftu vlivem turbulece, čárkovaě zeleě) chyba predikovaé pozice za předpokladu rovoměrého pohybu bodu, čerchovaě modře) chyba predikovaé pozice metodou ejmeších čtverců, plá červeá) chyba predikovaé pozice z vývoje spektra turbulece j 20

3. REKONSTRUKCE OPTICKÉHO SIGNÁLU Na základě pozatků uvedeých v předchozích kapitolách lze přistoupit k efektiví rekostrukci optického sigálu degradovaého průchodem atmosférou. V závislosti a požadavcích a rychlost a kvalitu rekostrukce je možé zvolit dva přístupy. S využitím hardwarových prostředků lze prakticky bez časového zpožděí do začé míry potlačit vliv statických vlivů. Jejich schopost potlačit dyamické vlivy je, pokud pomieme omezeé možosti adaptiví optiky, velmi malá. Tímto omezeím etrpí vybraé metody softwarového zpracováí optického sigálu. Mimo potlačeí statických vlivů tak umožňují relativě efektivě potlačit i vliv vlivů dyamických. Jejich využití je ale do začé míry omezeo určitou časovou áročostí a tím i vzikajícím časovým zpožděím mezi přijetím obrazové iformace a výsledkem jejího zpracováí. 3.1. Rekostrukce obrazu s využitím hardwarových prostředků 3.1.1. Spektrálí filtrace optického sigálu Obrázek 3.1 ilustruje vliv vlové délky optického zářeí procházejícího atmosférou a výsledé zobrazeí. Vliv turbulece je ve viditelé a blízké IČ oblasti spektrálě závislý je miimálě. Jiá situace je v ifračerveé oblasti, kde je propustost optického zářeí omezea tzv. atmosférickými oky viz obrázek 1.2). Oproti tomu útlum optického zářeí zejméa rozptyl) měí svoji hodotu v závislosti a vlové délce velmi výrazě. S rostoucí vlovou délkou se jeho vliv zpravidla sižuje. Soudobé CCD a CMOS maticové detektory optického zářeí mají bez předřazeých spektrálích filtrů maximum spektrálí citlivosti zpravidla v okolí červeé barvy a blízké IČ oblasti. Této vlastosti lze využít pro sadé sížeí vlivu útlumu a výsledé zobrazeí. S využitím modelu atmosféry kapitola 1) a zámé citlivosti typického CCD detektoru lze avrhout optimálí průběh spektrálího filtru omezujícího vliv útlumu atmosféry. Obrázek 3.2 ukazuje vhodý průběh spektrálího filtru pro potlačeí vlivu atmosféry. V případě čerobílých zobrazovacích systémů je optimálí průběh zobraze modře. Svým průběhem jde o obdobu IČ filtru typu pásmová propust optimalizovaého a spektrálí vlastosti atmosféry. 21

Rel. citlivost [-] Trasmitace [-] 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 200 300 400 500 600 700 800 900 1000 1100 Vlová délka [m] Obrázek 3.1: Spektrálí vliv útlumu a turbulece v porováí se spektrálí typického detektoru CCD vyrobeého a bázi křemíku V případě barevý detektorů resp.systémů pracujících s barevým obrazem) je uté zahrout i určitou část z oblasti kratších vlových délek. Na obrázku íže je uvede modelový ávrh pro Bayerovu masku RGB, kdy zbývající barevé složky jsou ozačey červeě a zeleě. Protože filtry využité v Bayerově masce se částečě liší výrobce od výrobce je pro barevou věrohodost uto počítat s částečým vyvážeí bílé barvy v obraze. Obrázek 3.2: Filtr pro omezeí vlivu útlumu optického zářeí A-IR Pro742 Takto avržeý filtr umožňuje jedoduchým umístěím v optické soustavě apř. a vstupí pupilu objektivu) výrazé zvýšeí kotrastu pozorovaého objektu i za zhoršeých meteorologických podmíek vlivem útlumu optického zářeí. Poěkud složitější je sížeí vlivu turbulece atmosféry. V přecházející 22

kapitole uvedeý postup predikce pozice záměrého bodu umožňuje využití v systémech určeých pro sížeí vlivu atmosféry. Z eergetického hlediska je výhodé, aby šířka pracovího pásma optoelektroického přístroje byla co ejvětší. Neměla by však přesahovat šířku aktuálě využívaého atmosférického oka. V případě silého rozptylu optického zářeí je aopak výhodé zvolit co ejužší pracoví pásmo a to v co ejvětších vlových délkách a kterých je schope daý optoelektroický systém pracovat. Kompromisem pro většiu meteorologických situací je omezeí pracovího pásma a třetiu aktuálě používaého atmosférického oka v oblasti větších vlových délek. 3.1.2. Prostorově-frekvečí filtr Omezeí se pouze a rekostrukci optického sigálu pouze ve spektrálí oblasti eumožňuje účiě potlačit zbylé statické vlivy, které se projevují zejméa v prostorové oblasti. Proto je vhodé doplit optický soustavu o subsystém umožňující prostorovou filtraci optického sigálu. Obrázek 3.3 ukazuje příklad prostorově-frekvečího filtru. 1 2 3 1 1. Vstupí a výstupí optická soustava 2. Prostorově-frekvečí modulátor 3. Spektrálí filtr Obrázek 3.3: Prostorově frekvečí filtr doplěý o spektrálí filtr Vstupí optická soustava zajišťuje průchod paralelího svazku přes jádro prostorově frekvečího filtru prostorově frekvečí modulátor. Vlastí prostorově frekvečí modulátor představuje realizaci iverzí fukce 23

k přeosové fukci atmosféry. To umožňuje zvýrazěí těch prostorových frekvecí, které jsou v atmosféře potlačováy. Prostorově frekvečí modulátor lze realizovat jako kostatí pro určité meteorologické podmíky ebo stavitelý prvek pro určitý omezeý rozsah průběhů modulačě přeosové fukce atmosféry a tím i meteorologických podmíek. Spektrálí propustost celého prostorově frekvečího filtru je vhodé volit dle kritérií uvedeých v kapitole výše pomocí vhodého spektrálího filtru. Výstupí optická soustava pak zajišťuje oboveí sbíhavosti svazku a původí hodotu. Jak z povahy modulačě přeosové fukce vyplývá a tím i fukci k í iverzí), klíčové pro korektí fukci tohoto filtru je dostatečý odstup vlastího optického sigálu od šumu, tj. fluktuaci optického zářeí pozadí. V opačém případě tato relativě jedoduchá metoda filtrace selhává. Mimo potlačeí vlivu útlumu optického zářeí je uvedeý prostorově frekvečí filtr vhodý pro potlačeí i jiých statických vlivů v atmosféře a optický sigál působících refrakce, vliv turbulece pro dlouhé expozice). I když je pricipielě možé avrhout řízeý prostorově frekvečí filtr tak, aby jeho aktuálí trasformačí fukce odpovídala většímu rozsahu meteorologických podmíek, eí teto přístup příliš úspěšý pro potlačeí rychlých lokálích prostorových fluktuací vlivem dyamických jevů turbulece vzduchu. Pro jejich potlačeí je uté použít jié řešeí. Pokud pomieme možosti adaptiví optiky, která je schopa velmi účiě potlačit vliv atmosféry, ale je za podmíky existece referečího sigálu zpravidla umělé hvězdy) a to pouze v omezeém zorém poli, je uté použít ěkterou z metod softwarové rekostrukce optického sigálu obrazu). 3.2. Rekostrukce obrazu s využitím softwarových prostředků Cílem rekostrukce obrazu, degradovaého průchodem atmosférou, obecě je zvýšit jeho kvalitu, tz. omezit v maximálě možé míře vliv atmosférického přeosového kaálu. Výše uvedeé modely, jak již bylo uvedeo, popisují středí hodoty vlivu atmosféry a výsledý obraz a možé postupy potlačeí jejího vlivu. 24

Metody softwarového zpracováí optického sigálu obrazu) umožňují sice rověž odstrait středí vliv atmosféry, a tím i její statický vliv a optický sigál, ale jejich možosti jsou mohem širší. Pomocí ich lze avíc apř. realizovat jak potlačeí šumu v obraze a to eergetického apř. šum detektoru, tak i prostorového fluktuace poloh fragmetů obrazu vlivem turbulece), tak apř. i zvýšeí výsledé rozlišovací schoposti přístroje jako takového a to vhodým skládáím za sebou ásledujících símků. 3.2.1. Lieárí zpracováí obrazu Jedou z ejjedodušších a přitom relativě účiých metod restaurace obrazu je využití filtru s koečou impulsí odezvou FIR. Východiskem pro určeí požadovaé amplitudové frekvečí odezvy filtru je modulačě přeosová fukce atmosféry MTF atmosféry). MTF atmosféry lze určit z modelu uvedeém apř. v *3+. Vlastí rekostruovaý obraz f pak je urče předpisem: f Norm[FFT 1 F)], kde F FIR. 3.1) Za předpokladu dostatečého odstupu sigál/šum je hledaá amplitudová frekvečí odezva filtru FIR je pak čtvercová matice řádu 2+1), pro kterou platí: 1 FIR Nor ), kde: Nor vyjadřuje operaci ormováí dle maximálí hodoty výrazu M f 1 M f ). 3.2) Z meteorologických parametrů je urče průběh MTF atmosféry *1+. Pro ásledé určeí rekostrukčího filtru je postačující *3+ rozměr matice 5x5 až 99. Protože výše uvedeá MTF atmosféry charakterizuje středí vliv atmosféry a výsledý obraz i použití filtru FIR využívajícího její zalosti je touto skutečostí 25

limitováo. Odchylky obrazu při zpracováí reálých símků pak podléhají statistickým charakteristikám daým povahou MTF ormálí rozděleí). Z toho plye i omezeí jejího použití. Uvedeá metoda je velmi účiá pro kompezaci statických vlivů tedy těch, jejichž charakteristiky se měí je velmi pozvola), které vyvolávají degradaci zobrazeí. Primárě je tedy vhodá pro miimalizaci vlivu útlumu optického zářeí a částečě i pro kompezaci degradací obrazu při velmi dlouhých expozicích v turbuletí atmosféře. Tato metoda s kostatím filtrem FIR edokáže přímo kompezovat degradace vyvolaé dyamickými jevy turbulecí atmosféry), tedy ai deformaci vloplochy a s tím související projevy. Teto vliv je možé omezit ze série po sobě jdoucích símků a to pomocí skládáí símků. a) b) c) Obrázek 3.4: Výřez símku jasý bod série símků ve falešých barvách) a) ejlepší jedotlivý símek, b) jedotlivý símek deformovaý turbulecí, c) průměrý símek z 10 po sobě jdoucích. Předpokládejme po sobě jdoucích símků. Protože jsou símky pořízey prakticky za stejých podmíek jedou optickou soustavou, je jejich geometrické zkresleí a zatížeí optickými aberacemi prakticky totožé. 26

Jedotlivé símky jsou ale degradováy růzou měrou vlivem atmosféry obrázek 1.1). Rověž vliv símače CCD) se projeví áhodým šumem v obraze. Pro výběr símků ejméě zatížeých áhodými vlivy je výhodé pro prví přiblížeí využít apř. zobrazeí bodu popř. zobrazeí bodových detailů v obraze). Prosté skládáí símků q je dáo předpisem: q p qi x, y, Li i x, y, L 1. 3.3) Výsledý símek složeý pomocí tohoto předpisu má do začé míry potlače áhodý šum vyvolaý detektorem optického zářeí. Rověž dyamický vliv atmosféry je do začé míry vyhlaze. Obrázek 3.5 ilustruje příklad skládáí po sobě jdoucích símků. V aalyzovaém případě se vliv atmosféry projevuje je posuem obrazu aalyzovaého bodu. Deformace lokálích fragmetů obrazu, které dále sižují účiost tohoto algoritmu, ejsou uvažováy. a) b) Obrázek 3.5: Model skládáí símků odezev bodů a) X odezev z vybraých ejlepších símků, b) modře ideálí odezva bodu, červeě výsledá odezva vziklá zprůměrováím dílčích odezev dle a) Obrázek 3.5b ukazuje výsledek zpracováí. Je patré, že oproti ideálí odezvě bodu je výsledá odezva bodu širší. To v praxi zameá ižší rozlišovací 27

schopost celého systému oproti maximálí teoretické hodotě. Oproti dílčím símkům však dochází k výrazému zlepšeí. 3.2.2. Sychroí símáí a pokročilé metody zpracováí obrazu Prosté zpracováí obrazu uvedeé v kapitole 3.2.1 umožňuje sice zvýšit kvalitu obrazu degradovaého áhodými vlivy apř. i šumy detektoru, geometrickým zkresleím optické soustavy, ), jeho aplikace a potlačeí vlivu atmosféry je však omezea a elimiaci jeho středího vlivu ebo zatížea vedlejšími efekty částečí sížeí maximálí rozlišovací schoposti). Obrázek 3.6 ukazuje možé doplěí měřícího/símacího systému tak, aby bylo možé realizovat rekostrukci obrazu degradovaého vlivem atmosféry v co ejvyšší možé míře. CCD1 je uložea v ohiskové roviě přijímacího objektivu a předává do zázamového systému PC) ostrý obraz pozorovaé scéy, který je základem pro rekostrukci obrazu. CCD2 je posuuta mimo obrazovou roviu. Iformace z í jsou využity k určeí deformace vloplochy vlivem turbulece atmosféry. V defiovaé vzdáleostí před í je umístěa v případě potřeby referečí mřížka umožňující separovat vliv atmosféry. Umístěí símače mimo ohiskovou roviu vyvolá v roviě detekce rozostřeí, jehož velikost závisí a parametrech optické soustavy a velikosti posuu detekčí roviy od obrazové. V obrazu tak s rostoucí hodotou posuu símače od obrazové roviy driftu) klesá podíl vyšších obrazových frekvecí. Rozlišeí detailů v obraze klesá. Vlastí rozostřeí obrazu se řídí Gaussovým rozděleím. Vliv atmosféry ale vyvolává deformace předpokládaé vloplochy od skutečě detekovaé. Vhodým zpracováím je pak možé separovat vlastí vliv atmosféry od vlastí obrazové iformace a takto 28

obdržeou iformaci využít pro rekostrukci obrazu pořizovaého símačem CCD1 viz apř. obrázek 3.9). Vlastí zpracováí símku je pak oproti statickému filtru z kapitoly 3.2.1 adaptiví filtr. Parametry vlastího zpracováí zázamu je pak možé pro aktuálě zpracovávaý símek-část símku dyamicky přizpůsobovat. Atmosféra Přijímací objektiv Fokuser, dělič svazku CCD 2 CCD 1 METEO PC Obrázek 3.6: Blokové schéma sychroího símái Existuje celá řada algoritmů, které dokáží s výše uvedeou iformací efektivě pracovat. Za všechy uveďme alespoň hojě užívaý algoritmus Richardso- Lucy. Teto algoritmus je robustí iteračí algoritmus *3+, který umožňuje zvýšit kvalitu obrazu a tím i ostrost detailů obrazu. V tomto algoritmu eí požadová žádý specifický statistický model šumu, který u jiých algoritmů může vyvolávat estabilitu řešeí. V případě existece šumu ale esmí být jeho velikost příliš velká doporučeý poměr sigál/šum je řádově jedotky, lépe mi 10). V tomto případě je řešeí velmi stabilí a odolé proti áhodému šumu. Výhodou rověž je, že algoritmus rověž evyžaduje žádou a priori iformaci o origiálím símku. Celý algoritmus je efektiví zejméa při zalosti PSF. 29

30 Jádro algoritmu Richardso-Lucy spočívá v opakovaém voláí předpisu: f H q H f f 1, 3.4) kde F i je výsledek výpočtu po i iteracích a q je původí zazameaý símek. H je digitalizovaá PSF, jejíž iiciačí hodotu lze sado staovit z modelu atmosféry. V případě ezámé fukce odezvy bodu lze výpočet Richadso-Lucy upravit a předpis iterací: f H q H f f f H q f H H 1 1 1, 3.5) Obrázek 3.7 je příklad iterace algoritmu a bodový zdroj umístěý ve velké vzdáleosti. Vlivem atmosféry je pozorovaý obraz obrázek 3.7 vlevo ahoře). Zpracováím série pořízeých símků je postupou iterací zvýrazě obraz do podoby velmi blízké předpokládaé teoretické hodotě. Na símcích dole jsou již velmi dobře patré difrakčí kroužky, které azačují velmi vysokou účiost tohoto algoritmu.

Obrázek 3.7: Výsledek zpracováí obrazu bodového zdroje Richardso-Lucy algoritmem. ahoře zleva po 0 ezprac.), 8, 16, 32 a dole zleva po 64, 128, 256, 512, 1024 a 2048 iterací 1.00 0.95 R 0.90 M S 0.85 0.80 0.75 0 200 400 600 800 1000 1200 1400 1600 1800 2000 počet iterací [-] Obrázek 3.8: Středě kvadratická chyba rekostruovaého obrazu algoritmem Richardso- Lucy Algoritmus Richadso-Lucy je schope velmi účiě potlačit statické a omezeě i dyamické vlivy atmosféry. Mimo ěj existuje přirozeě celá řada algoritmů, které vykazují i vyšší odolost proti chybám šumu). Za všechy uveďme alespoň Mezi ejprogresivější patří algoritmus S.M.A.R.T. Základí předpis pro iteraci tohoto algoritmu má tvar: 31

f q 1 f exp H l. H f 3.6) Teto algoritmus je odvoze z řady algebraických rekostrukčích techik, které a obrazovou iformaci a celý přeosový řetězec pohlíží coby soustavu lieárích rovic. Cílem algoritmu pak je alézt takové řešeí soustavy, která bude mít miimalizovaou chybu. Algoritmus S.M.A.R.T pak řeší při každé iterakci celou soustavu rovic ajedou. I přes to koverguje algoritmus velmi pomalu. Jeho řešeí je však velmi stabilí. Pro úplé potlačeí dyamických jevů je ale vhodější použít metodu plovoucího bodu uvedeou v kap. 2.2.1. 3.2.3. Restaurace dyamických vlivů a optický sigál Výchozím pro určeí vlivu turbulece a obraz, resp. jí vyvolaého optického proudu, je sekvece símků. Tato sekvece apř. videosigál) představuje souhrě dvourozměrou projekci třírozměrého předmětového prostoru pozorovaé scéy ve čtvrté časové) daé časovou posloupostí jedotlivých símků sekvece. Výpočet vycházející z diferecí sekvece símků může být použit eje pro určeí optického proudu, ale i v budoucu apř. pro detekci pohybujících se objektů. Základí idea určeí optického proudu je v lokalizaci jedotlivých fragmetů obrazu, určeí jejich výzačých bodů poloha geometrického těžiště, hraice fragmetu) a idetifikace korespodujících bodů v ásledém símku. Z pozatků uvedeých v kapitole 2.2.2 vyplývá, že měřítko časové změy itezity obrazového fragmetu v obraze je zejméa závislé a prostorovém měřítku této změy vyásobeé rychlostí s íž se fragmet v obraze pohybuje. Popis vlivu turbulece se tímto postupem podařilo trasformovat a úlohu alezeí operátoru prostorového gradietu itezity a vektoru rychlosti fragmetu v. 32

33 K jejich alezeí existuje celá řada algoritmů. Ve fukci prostorového gradietu lze využít apř. Sobelův operátor gradietu *5+. Jeho staoveí je však spjato s četými problémy a poskytuté řešeí eí vždy dostatečě robustí. Vlastí pohyb bodu x, y) pak lze vyjádřit prostředictvím vektoru ) : 0 ) ) ) t y y x x v v, 3.7) kde v i velikost vektoru v v souřadici i, ) operátor defiovaý vztahem: 1, t y x t y x Y Y Y. 3.8) Pohyb sledovaého bodu je možé přirozeě vyjádřit i zpětě, tj. v obráceé poslouposti símků #+1, #, #-1, ). Sledovaý pohyb má stejou velikost a opačý směr. Rovice výše pak bude vyjádřea vztahem: 0 1) 1) 1) t y y x x v v. 3.9) Kombiací vztahu 3.8) a 3.9) pak obdržíme: 0 1) ) 1) ) 1) ) t t y y y x x x v v. 3.10) a ekvivaletě platí: 0 1) ) 1) ) t t v. 3.11) Toto vyjádřeí popisuje optický proud jehož velikost je dvojásobá oproti reálé hodotě. Teto přístup umožňuje řešeí, které je oproti jedoduchému přístupu stabilí *5+. Na základě tohoto vztahu již lze přímo provádět odhad driftu sledovaého bodu. K tomu lze využít apř. prediktor využívající metodu ejmeších čtverců. Vlastí prediktor pak má tvar: 1) ) T 1) ) 1 1) ) T 1) ) 1) ) 1) ) T 1) ) 1) ) 2 2 1) ) 1) ) mi arg mi arg ˆ t t t t t t t t v v v v v. 3.12)

Primárím požadavkem je, mimo jeho stabilitu řešeí, jeho výpočetí áročost a spolehlivost určeí. Současě algoritmus esmí vyžadovat mimo vlastí sérii vyhodocovaých símků žádou další dodatečou iformaci. Výchozím předpokladem je, že scéu mezi jedotlivými símky lze považovat za přibližě statickou eí v í žádý rychle se pohybující objekt). Obrázek 3.9: Příklad ukázka časové sekvece driftu fragmetů v obraze turbulecí Obrázek 3.10: Vizualizace vlivu turbulece 34

4. ZÁVĚR Na základě výše uvedeého popisu vlivu atmosféry a optický sigál lze usuzovat a její vliv a výsledé zobrazeí a ovlivěí techických parametrů daého optoelektroické přístroje. Rověž je možo predikovat předpokládaou kvalitu zobrazeí v závislosti a tedecích vývoje stěžejích meteorologických parametrů, popř. tedece ve vývoji chyb během zjišťováí dálek. Z aalýzy v práci uvedeých modelů je patré, že vliv poruch atmosféry a kvalitu zobrazeí klesá s rostoucí vlovou délkou. To platí jak pro vliv útlumu, tak i pro vliv turbulece. Turbulece se avíc výrazě projevuje v čase kolem polede a to hlavě v letích měsících. Za těchto podmíek je turbulece určující a obvykle ěkolikaásobě převáží vliv útlumu. V práci dále uvedeé zpracováí obrazu degradovaého průchodem atmosférou umožňuje další zvýšeí kvality pozorovaých obrazů. Je zřejmé, že vhodou volbou šířky a polohy pracovího pásma je možé výrazě potlačit zejméa vliv útlumu optického zářeí. Vhodým zpracováím pak lze omezit i vliv turbulece vzduchu. Při klasickém zpracováí optického sigálu je možé dosáhout výrazého zlepšeí kvality obrazu. Mimo zvýšeí celkové kvality obrazu tj. jeho kotrastu i jasových a geometrických vlastostí) je možé dosáhou i určitého zvýšeí rozlišeí símku. Ještě lepších výsledků při rekostrukci zobrazeí lze dosáhout s využitím pokročilého adaptivího algoritmu, apř. Richardso-Lucy, popř. jiým ekvivaletím adaptivím algoritmem. 35

SEZNAM POUŽITÉ LITERATURY [1] Řehoř Z.: Charakteristiky atmosféry, které mohou ovlivit přesost měřeí pasivích systémů lokalizace objektu; Výzkumá zpráva projektu CILEPAS, 120 stra, Bro, 2002. [2] R. C. Gozalez ad R. E. Woods, Digital Image Processig. Upper Saddle River, N.J.:Pretice Hall, 2002. [3] Sadot, D.- Dvir, A.- Bergel, I.- Kopeika, N.S.: Restoratio of thermal images distorted by the atmosphere, based o measured ad theoretical atmospheric modulatio trasfer fuctio; Optical Egieerig, roč. 33, č.1, str. 44-53, 1994. [4] M. J. Black ad P. Aada, The robust estimatio of multiple motios: Parametric ad piecewise-smooth flow fileds, Computer Visio ad Image Uderstadig, vol. 63, o. 1, pp. 75 104, Jauary 1996. [5] DOSKOČIL, Radek, BALAŽ, Teodor, MACKO, Marti, et al. Real-Time Software Restoratio of Optic Image Degraded by the Atmosphere. Mathematics ad Computers i Sciece ad Egieerig, World Scietific ad Egieerig Academy ad Society, WSEAS Press, Athes, s.79-84. ISBN 978-960-474-027-7, Greece, 2008. 36

37

Cetrum pro rozvoj výzkumu pokročilých řídicích a sezorických techologií CZ.1.07/2.3.00/09.0031 Ústav automatizace a měřicí techiky VUT v Brě Kolejí 2906/4 612 00 Bro Česká Republika http://www.crr.vutbr.cz ifo@crr.vutbtr.cz