Vlastní čísla a vlastní vektory



Podobné dokumenty
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Vlastní číslo, vektor

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

Lineární algebra : Vlastní čísla, vektory a diagonalizace

1 Linearní prostory nad komplexními čísly

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

Vlastní čísla a vlastní vektory

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

Definice : Definice :

(2) [B] Nechť G je konečná grupa tvořena celočíselnými maticemi roměru 2 2 s operací násobení. Nalezněte všechny takové grupy až na izomorfizmus.

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

15 Maticový a vektorový počet II

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Základy maticového počtu Matice, determinant, definitnost

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

1. Jordanův kanonický tvar

Podobnost matic. Definice 8.6. Dány matice A, B M n (C). Jestliže existuje regulární matice P M n (C) tak,

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

2. Schurova věta. Petr Tichý. 3. října 2012

DEFINICE Z LINEÁRNÍ ALGEBRY

Vlastní čísla a vlastní vektory

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti

Lineární (ne)závislost

8 Matice a determinanty

Lineární algebra : Skalární součin a ortogonalita

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.

CHARAKTERISTICKÉ VEKTORY

EUKLIDOVSKÉ PROSTORY

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

VĚTY Z LINEÁRNÍ ALGEBRY

Úlohy nejmenších čtverců

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

19. Druhý rozklad lineární transformace

Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )

AVDAT Vektory a matice

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

FREDHOLMOVA ALTERNATIVA

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Lineární algebra : Báze a dimenze

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).

1 Determinanty a inverzní matice

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

2 Vektorové normy. Základy numerické matematiky - NMNM201. Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro

Kapitola 11: Vektory a matice:

1 Řešení soustav lineárních rovnic

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

11. Skalární součin a ortogonalita p. 1/16

1 Vektorové prostory a podprostory

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Soustavy linea rnı ch rovnic

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

1 Vektorové prostory.

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

7. Lineární vektorové prostory

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Kapitola 11: Vektory a matice 1/19

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

Báze a dimenze vektorových prostorů

Podobnostní transformace

Matematika B101MA1, B101MA2

12. Determinanty. 12. Determinanty p. 1/25

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.

Vlastní čísla a vlastní vektory

Lineární algebra : Lineární zobrazení

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

0.1 Úvod do lineární algebry

NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny

Několik aplikací. Kapitola 12

2.6. Vlastní čísla a vlastní vektory matice

Symetrické a kvadratické formy

9 Kolmost vektorových podprostorů

1 Báze a dimenze vektorového prostoru 1

(Cramerovo pravidlo, determinanty, inverzní matice)

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Lineární algebra. Matice, operace s maticemi

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

K2 7 E=. 2 1 Snadno zjistíme, že všechny nenulové násobky vektoru( 2, 1) jsou vlastními vektorymatice[ϕ]

1 Polynomiální interpolace

Lineární algebra Operace s vektory a maticemi

1 Soustavy lineárních rovnic

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Lineární algebra : Skalární součin a ortogonalita

Operace s maticemi. 19. února 2018

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

P 1 = P 1 1 = P 1, P 1 2 =

Program SMP pro kombinované studium

0.1 Úvod do lineární algebry

Vlastní čísla a vlastní vektory

ALGEBRA. Téma 5: Vektorové prostory

18. První rozklad lineární transformace

Transkript:

Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální rovnice u = λu, kde u(t) je neznámá reálná funkce reálné proměnné t, je tvaru u(t) = αe λt, kde α je reálné číslo Podobně soustava lineárních diferenciálních rovnic má řešení ve tvaru u 1 = 7u 1 4u 2 u 2 = 5u 1 2u 2 u 1 = α 1 e λt, u 2 = α 2 e λt pro vhodná reálná čísla α 1, α 2, λ Pokud tato vyjádření zderivujeme podle t a dosadíme do původní soustavy diferenciálních rovnic, dostaneme tj α 1 λe λt = 7α 1 e λt 4α 2 e λt α 2 λe λt = 5α 1 e λt 2α 2 e λt, α 1 λ = 7α 1 4α 2 α 2 λ = 5α 1 2α 2, neboli ( 7 4 5 2 ) ( α1 α 2 1 ) = λ ( α1 α 2 )

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 2 V maticovém tvaru můžeme tuto soustavu vyjádřit jako ( ) 7 4 Ax = λx, kde A = a x = 5 2 ( α1 α 2 ) Tato soustava má triviální řešení x = 0, které pro libovolné λ vede k nulovým funkcím u 1, u 2 To není příliš zajímavé řešení Zajímají nás spíš ty hodnoty skaláru λ, pro které existuje nenulové řešení soustavy Ax = λx, tj soustavy (A λi)x = 0 Nenulové řešení existuje právě když je matice A λi singulární, tj právě když det(a λi) = 0 Nenulové řešení proto existuje pouze pro hodnoty λ vyhovující kvadratické rovnici tj (7 λ)( 2 λ) + 20 = 0, λ 2 5λ + 6 = 0 Tato kvadratická rovnice má řešení λ = 2 a λ = 3 Pro λ = 2 hledáme řešení homogenní soustavy s maticí ( ) 5 4 A 2I =, 5 4 která má řešení tvaru x = a(4/5, 1) T Hodnota λ = 2 tak vede k následujícímu řešení původní soustavy diferfenciálních rovnic ( ) ( ) u1 u 1 = = e 2t 4/5 1 u 2 Druhé řešení kvadratické rovnice λ = 3 vede k homogenní soustavě s maticí ( ) 4 4 A 3I =, 5 5 která má řešení x = b(1, 1) T Hodnota λ = 3 pak vede k řešení u 2 = ( u1 u 2 ) = e 3t ( 1 1 Lze dokázat, že každé řešení původní soustavy diferenciálních rovnic u = Au je lineární kombinací těchto dvou řešení u 1 a u 2 Uvedená úloha vede k následující definici )

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 3 Definice 111 Pro čtvercovou matici A řádu n s reálnými (komplexními) prvky definujeme vlastní číslo matice A jako komplexní číslo λ, pro které platí Ax = λx pro nějaký nenulový vektor x R n 1 (C n 1 ) Je-li λ vlastní číslo matice A, pak každé řešení soustavy lineárních rovnic (A λi n )x = 0 nazýváme vlastní vektor matice A příslušný vlastnímu číslu λ Množinu všech vlastních čísel matice A nazýváme spektrum matice A a označujeme ji σ(a) Z definice tak přímo plyne, že pro komplexní matici A řádu n a komplexní číslo λ platí λ σ(a) právě když matice A λi n je singulární, což je právě když det(a λi n ) = 0 Poslední podmínka říká, jak najít vlastní čísla nějaké matice, pokud existují Definice 112 Je-li A čtvercová matice řádu n s reálnými (komplexními) prvky, pak pro každé reálné (komplexní) číslo λ definujeme hodnotu p(λ) = det(a λi n ) Funkci p(λ) nazýváme charakteristický polynom matice A Rovnici p(λ) = 0 nazýváme charakteristická rovnice matice A Pro důkaz Tvrzení 114 budeme potřebovat následující obecnou větu, které se říká základní věta algebry Její důkaz je hodně obtížný a překračuje rámec úvodního kurzu lineární algebry Uvedeme si ji proto bez důkazu Věta 113 Je-li f(x) = b n x n + b n 1 x n 1 + + b 1 x + b 0 polynom stupně n 1 s komplexními koeficienty, pak jej lze vyjádřit ve tvaru f(x) = b n (x β 1 ) l 1 (x β 2 ) l2 (x β k ) l k, pro nějaká komplexní čísla β 1,, β k a kladná celá čísla l 1,, l k, pro která platí l 1 + l 2 + + l k = n Čísla β 1,, β k se nazývají kořeny polynomu f, číslo l i se nazývá násobnost kořenu β i Tvrzení 114 Pro komplexní čtvercovou matici A = (a ij ) řádu n platí charakteristický polynom matice A řádu n je polynom stupně n s vedoucím koeficientem rovným ( 1) n, komplexní číslo λ je vlastním čísla matice A právě když je kořenem charakteristického polynomu p(λ) matice A, matice A má n vlastních komplexních čísel, počítáme-li každé tolikrát, kolik je jeho násobnost jako kořene charakteristického polynomu,

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 4 pokud je A reálná matice, pak λ σ(a) právě když λ σ(a) Důkaz První tvrzení vyplývá z definice determinantu Platí a 11 λ a 12 a 1n a 21 a 22 λ a 2n A λi n = a n1 a n2 a nn λ Vyjdeme-li z definice determinantu, je především je zřejmé, že determinant matice A λi n je polynom v proměnné λ V součinu diagonálních prvků (odpovídajícímu identické permutaci) (a 11 λ)(a 22 λ) (a nn λ) dostaneme po roznásobení, že koeficient u λ n je ( 1) n a koeficient u λ n 1 je ( 1) n 1 n i=1 a ii V jakémkoliv jiném součinu odpovídajícím neidentické permutaci p S n se musí objevit dva prvky mimo hlavní diagonálu, po případném roznásobení se tak může objevit neznámá λ s koeficientem nejvýše n 2 Proto je koeficient u λ n v charakteristickém polynomu matice A roven ( 1) n a koeficient u λ n 1 se rovná ( 1) n 1 n i=1 a ii Podobně můžete najít koeficienty u každé mocniny λ n k pro k = 2, 3,, n Druhé tvrzení plyne přímo z definice vlastního čísla a charakteristického polynomu Třetí tvrzení plyne zase ze základní věty algebry Čtvrté tvrzení plyne z toho, že je-li p(λ) = b n λ n +b n 1 λ n 1 + +b 1 λ 1 + b 0 = 0 a koeficienty b 0, b 1,, b n polynomu p jsou reálná čísla, pak rovněž p(λ) = b n λ n + b n 1 λ n 1 + + b 1 λ + b 0 = 0 Je-li tedy λ vlastní číslo reálné matice, pak také λ je vlastní číslo této matice Každé vlastní číslo λ matice A je kořenem charakteristického polynomu p(λ) matice A a má tedy nějakou násobnost coby kořen polynomu p(λ) Tuto násobnost budeme rovněž nazývat algebraická násobnost charakteristického čísla λ, případně algebraická dimenze charakteristického čísla λ Reálná matice nemusí mít žádné reálné vlastní číslo Pokud je ale navíc symetrická, pak je každé vlastní číslo této matice reálné Podobné tvrzení platí i pro hermitovské matice, tj pro matice s komplexními prvky, pro které platí B = B

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 5 Tvrzení 115 Je-li A reálná symetrická matice, pak každé vlastní číslo matice A je reálné Podobně, je-li B hermitovská matice, pak každé vlastní číslo matice B je reálné Důkaz Důkaz stačí provést pro hermitovské matice, neboť každá symetrická matice je hermitovská Je-li λ σ(b) a x 0 vlastní vektor příslušný vlastnímu číslu λ, pak platí x x 0 a λx = Bx Z poslední rovnosti vyplývá pomocí přechodu ke komplexně konjugovaným maticím také rovnost λx = x B, a tedy také x x(λ λ) = x (λ λ)x = x Bx x B x = 0, neboť B = B Proto λ = λ Cvičení 111 Dokažte, že každé vlastní číslo kososymetrické matice nebo kosohermitovské matice je ryze imaginární Tvrzení 116 Je-li A čtvercová reálná (komplexní) matice řádu n, P reálná (komplexní) regulární matice stejného řádu a B = P 1 AP, pak obě matice A a B mají stejný charakteristický polynom, a proto rovněž σ(a) = σ(b), tj obě mají také stejné spektrum Důkaz Podle Věty 1015 o součinu determinantů platí pro každý reálné (komplexní) číslo λ det(a λi n ) = det I n det(a λi n ) = det(p 1 P) det(a λi n ) = = det P 1 det(a λi n ) det P = det(p 1 (A λi n )P) = = det(p 1 AP P 1 λi n P) = = det(b λi n ) Důsledek 117 Předpokládáme, že V je vektorový prostor nad reálnými (komplexními) čísly a F : V V je lineární zobrazení Dále předpokládáme, že A a B jsou dvě báze prostoru V Označíme A matici [F ] A lineárního zobrazení F vzhledem k bázi A a B matici [F ] B zobrazení F vzhledem k bázi B Potom jsou charakteristické polynomy obou matic A a B stejné a platí rovnost σ(a) = σ(b)

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 6 Důkaz Podle Tvrzení 713 platí [F ] B = P 1 [F ] A P, kde P = [I] BA je matice přechodu od báze A k bázi B Protože matice přechodu [I] BA je regulární, plynou všechna tvrzení bezprostředně z předchozího Tvrzení 116 Tento důsledek ukazuje, že vlastní čísla a spektrum jsou spíše vlastnosti lineárních zobrazení než pouze vlastnosti matic Každá reálná (komplexní) matice A řádu n určuje lineární zobrazení F : R n R n (F : C n C n ) předpisem F (x) = Ax Matice A má vlastní číslo λ právě když existuje nenulový vektor x R n (C n ), pro který platí Ax = λx Pro lineární zobrazení F určené maticí A pak platí F (x) = Ax = λx Tyto úvahy vedou k následující definici Definice 118 Je-li F : V V lineární operátor na reálném (komplexním) vektorovém prostoru V, pak skalár λ nazýváme vlastní číslo lineárního operátoru A pokud existuje nenulový vektor x U, pro který platí F (x) = λx Je-li λ vlastní číslo operátoru F, pak každý vektor x V, pro který platí F (x) = λx, nazýváme vlastní vektor lineárního operátoru F příslušný vlastnímu číslu λ Množinu všech vlastních čísel operátoru F označujeme σ(f ) a nazýváme spektrum operátoru F Bezprostřením důsledkem Tvrzení 114 je následující tvrzení Tvrzení 119 Je-li F : U U lineární operátor na komplexním vektorovém prostoru U, pak existuje vlastní číslo λ operátoru F Pokusíme se vyjasnit, do jaké míry lze matici lineárního operátoru F : V V zjednodušit vhodnou volbou báze B prostoru V Definice 1110 Lineární operátor F : V V na reálném (komplexním) vektorovém prostoru V se nazývá diagonalizovatelný, pokud existuje báze B prostoru V, pro kterou platí, že matice [F ] B operátoru F vzhledem k bázi B je diagonální Reálná (komplexní) matice A řádu n se nazývá diagonalizovatelná, pokud existuje regulární reálná (komplexní) matice P řádu n, pro kterou platí, že součin P 1 AP je diagonální matice Platí tedy, že lineární operátor F : V V je diagonalizovatelný právě když je diagonalizovatelná matice [F ] A tohoto operátoru vzhledem k libovolné bázi A prostoru V Ne každá matice je ale diagonalizovatelná

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 7 Úloha 111 Dokažte, že matice není diagonalizovatelná A = ( 0 1 0 0 Řešení Pro matici A platí A 2 = 0 Pokud by byla diagonalizovatelná, existovaly by regulární matice P a diagonální matice D takové, že P 1 AP = D Potom by platilo D 2 = P 1 APP 1 AP = P 1 A 2 P = 0, proto rovněž D = 0, a tedy A = PDP 1 = 0, což je spor Matice A proto není diagonalizovatelná Následující tvrzení udává nutnou a postačující podmínku pro diagonalizovatelnost Tvrzení 1111 Lineární operátor F : V V na reálném (komplexním) vektorovém prostoru V je diagonalizovatelný právě když existuje báze prostoru V složená z vlastních vektorů operátoru F Čtvercová (komplexní) matice A řádu n je diagonalizovatelná právě když existuje báze prostoru R n (C n ), která je složená z vlastních vektorů matice A Důkaz Nejdříve dokážeme druhou část týkající se matic Pokud je matice A diagonalizovatelná, existuje regulární matice P a diagonální matice D, pro které platí P 1 AP = D, neboli AP = PD Označme λ 1 0 0 0 λ 2 0 D = 0 0 λ n ) Potom platí A[P 1 P 2 P n ] = [P 1 P 2 P n ] λ 1 0 0 0 λ 2 0 0 0 λ n

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 8 Pro každé k = 1, 2,, n tak platí AP k = λ k P k Každý sloupcový vektor P k je tak vlastním vektorem matice A příslušným vlastnímu číslu λ k Matice P je regulární, její sloupcové vektory jsou proto lineárně nezávislé a tvoří tak bázi prostoru R n (C n ) Pokud naopak existuje báze u 1,, u n prostoru R n (C n ) složená ze samých vlastních vektorů matice A, platí pro každé k = 1, 2,, n, že Au k = λ k u k pro nějaké skaláry λ k Označíme P = [u 1 u 2 u n ], tato matice je regulární, protože sloupce jsou lineárně nezávislé Dále označíme λ 1 0 0 0 λ 2 0 D = 0 0 λ n Stejně jako v předchozí části důkazu ukážeme, že potom AP = PD, neboli P 1 AP = D, matice A je proto diagonalizovatelná Nyní dokážeme první část tvrzení Zvolíme bázi A : v 1, v 2,, v n prostoru V libovolně Označíme A = [F ] A matici lineárního operátoru F vzhledem k bázi A Podle předchozí části důkazu existuje reálná (komplexní) regulární matice P = (c ij ) řádu n taková, že P 1 AP = D pro nějakou diagonální matici D Označíme n u j = c ij v i i=1 pro i = 1, 2,, n Protože je matice P regulární, je posloupnost vektorů B : u 1,, u n lineárně nezávislá a tedy báze prostoru V Matice P se potom rovná matici [I] BA identického zobrazení vzhledem k bázím B a A a je tedy maticí přechodu od báze A k bázi B Matice [F ] B lineárního zobrazení F : V V vzhledem k bázi B se potom rovná podle Tvrzení 713 rovná matici [I] AB [F ] A [I] BA = P 1 AP = D V první části posledního důkazu jsme dokázali rovněž následující jednoduchý důsledek Důsledek 1112 Je-li A čtvercová matice řádu n a P regulární matice taková, že P 1 AP = D, kde D je digonální matice, pak na hlavní diagonále matice D jsou všechna vlastní čísla matice A Následující tvrzení ukazuje postačující podmínku, kdy jsou nějaká matice nebo lineární operátor diagonalizovatelné

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 9 Tvrzení 1113 Jsou-li λ 1,, λ m navzájem různá vlastní čísla matice A řádu n a u i 0 je vlastní vektor matice A příslušný vlastnímu číslu λ i pro libovolné i = 1,, m, pak je posloupnost vektorů u 1,, u m lineárně nezávislá Má-li matice A řádu n celkem n navzájem různých vlastních čísel, pak je diagonalizovatelná Má-li lineární operátor F : V V celkem n navzájem různých vlastních čísel, pak je diagonalizovatelný Důkaz K důkazu první části stačí dokázat, že pro každé k = 1,, m, jsou vektory u 1,, u k lineárně nezávislé Toto tvrzení zřejmě platí pro k = 1, protože vektor u 1 0 Pokud je k = 2,, m, tak budeme předpokládat, že posloupnost u 1,, u k 1 je lineárně nezávislá a dokážeme, že také posloupnost u 1,, u k je lineárně nezávislá Nechť tedy platí a 1 u 1 + a 2 u 2 + + a k u k = 0 pro nějaké skaláry a 1,, a k Potom také A(a 1 u 1 + a 2 u 2 + + a k u k ) = a 1 λ 1 u 1 + a 2 λ 2 u 2 + + a k λ k u k = 0 Rovněž platí λ k a 1 u 1 + λ k a 2 u 2 + + λ k a k u k = 0 Odečtením posledních dvou rovností dostaneme tj (λ 1 λ k )a 1 u 1 + (λ 2 λ k )a 2 u 2 + + (λ k λ k )a k u k = 0, (λ 1 λ k )a 1 u 1 + (λ 2 λ k )a 2 u 2 + + (λ k 1 λ k )a k 1 u k 1 = 0 Z lineární nezávislosti vektorů u 1,, u k 1 a vzájemné různosti skalárů λ 1,, λ k plyne a 1 = a 2 = = a k 1 = 0, a proto musí platit a k u k = 0 Protože u k 0, dostáváme také a k = 0 Pokud má matice A celkem n navzájem různých vlastních čísel a jsou-li u i 0 vlastní vektory příslušné vlastním číslům λ i pro i = 1, 2,, n, pak je posloupnost vektorů u 1,, u n lineárně nezávislá podle první části důkazu a tedy bází prostoru R n (C n ) Matice A je proto diagonalizovatelná podle Tvrzení 1111

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 10 Tvrzení 1114 Čtvercová reálná (komplexní) matice A řádu n je diagonalizovatelná právě když pro každé vlastní číslo λ matice A platí, že algebraická násobnost λ se rovná dimenzi nulového prostoru matice A λi n, tj číslu dim N (A λi n ) Důkaz Je-li matice A diagonalizovatelná, existuje regulární matice P, pro kterou platí P 1 AP = D, kde D je diagonální matice Na hlavní diagonále matice D jsou vlastní čísla λ 1, λ 2,, λ n matice A podle Důsledku 1112 Budeme předpokládat, že přesně k z těchto vlastních čísel se rovná nějakému reálnému (komplexnímu) číslu λ, tj že algebraická násobnost vlastního čísla λ se rovná k Diagonální matice D λi n má potom právě k nul na hlavní diagonále, její hodnost je proto n k Protože A λi n = P(D λi n )P 1, má matice A λi n také hodnost n k Její nulový prostor má proto dimenzi k K důkazu obrácené implikace budeme předpokládat, že λ 1,, λ t jsou všechna navzájem různá vlastní čísla matice A Algebraickou násobnost vlastního čísla λ i označíme m i pro i = 1,, t Podle Základní věty algebry 113 platí m 1 + m 2 + + m t = n a podle předpokladu o matici A dostáváme m i = dim N (A λ i I n ) pro i = 1, 2,, t V každém z podprsotorů N (A λ i I n ) zvolíme bázi Dokážeme, že posloupnost vektorů x i1, x i2,, x imi x 11, x 12,, x 1m1, x 21, x 22,, x 2m2,, x t1, x t2,, x tmt je lineárně nezávislá Pokud pro nějaké skaláry a ij, označíme m i a ij x ij = 0 i=1 j=1 m i y i = a ij x ij j=1

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 11 pro i = 1,, t Potom y i N (A λ i I n ), tj y i je vlastní vektor matice A odpovídající vlastnímu číslu λ i, pro každé i = 1,, t Kromě toho y 1 + y 2 + + y t = 0 Pokud by byl některý z vektorů y i 0, označili bychom symbolem J množinu {i = 1, 2,, t : y i 0} = Z poslední rovnosti bychom pak dostali y i = 0, i J tj vektory y i pro i J by byly lineárně závislé Protože jsou to vlastní vektory odpovídající různým vlastním číslům matice A, dostali bychom spor s Tvrzením 1113 Proto y i = 0 pro každé i = 1, 2,, t Protože m i 0 = y i = a ij x ij a vektory x i1,, x imi tvoří bázi podprostoru N (A λ i I n ), platí a i1 = a i2 = = a imi = 0 pro každé i = 1,, t Posloupnost vektorů j=1 x 11, x 12,, x 1m1, x 21, x 22,, x 2m2,, x t1, x t2,, x tmt je proto skutečně lineárně nezávislá, a protože obsahuje n prvků, tvoří bázi prostoru R n 1 (C n 1 ) Prostor R n 1 (C n 1 ) tak má bázi složenou z vlastních vektorů matice A, matice A je proto diagonalizovatelná podle Tvrzení 1111 Následující věta je často nazývána spektrální věta pro diagonalizovatelné matice Věta 1115 Čtvercová matice A řádu n se spektrem σ(a) = {λ 1,, λ t } je diagonalizovatelná právě když existují matice E 1,, E t řádu n, pro které platí 1 A = λ 1 E 1 + λ 2 E 2 + + λ t E t, 2 E 2 i = E i pro každé i = 1, 2,, t, 3 E i E j = 0 pro libovolné dva různé indexy i, j = 1, 2,, t, 4 E 1 + E 2 + + E t = I n Dále pro diagonalizovatelnou matici A platí, že

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 12 5 matice E i jsou jednoznačně určené maticí A a vlastnostmi 1, 2, 3, 4, 6 hodnost každé z matic E i se rovná algebraické násobnosti charkteristického čísla λ i, 7 je-li f(x) = c 0 + c 1 x + c k x k libovolný polynom s komplexními koeficienty, pak platí f(a) = c 0 I n + c 1 A + + c k A k = f(λ 1 )E 1 + f(λ 2 )E 2 + + f(λ k )E k, 8 nějaká matice B komutuje s maticí A právě tehdy, když komutuje s každou z matic E i pro i = 1, 2,, t Důkaz Označíme m i algebraickou násobnost vlastního čísla λ i pro i = 1, 2,, t Z diagonalizovatelnosti matice A pak vyplývá existence regulární matice P řádu n, pro kterou platí λ 1 I m1 0 0 P 1 0 λ 2 I m2 0 AP = 0 0 λ t I mt Označíme pro i = 1, 2,, t symbolem D i matici, kterou dostaneme z blokové matice na pravé straně poslední rovnosti tak, že nahradíme všechny výskyty vlastního čísla λ i číslem 1 a výskyty ostatních vlastních čísel λ j pro j i číslem 0 Například 0 0 0 0 I m2 0 D 2 = 0 0 0 Potom platí I n = D 1 + D 2 + + D t, P 1 AP = λ 1 D 1 + λ 2 D 2 + + λ t D t, A = λ 1 PD 1 P 1 + λ 2 PD 2 P 1 + + λ t PD t P 1 Položíme E i = PD i P 1 pro i = 1, 2,, t a dostaneme tak ze třetí rovnosti vlastnost 1 Protože D 2 i = D i a D i D j = 0 pro libovolné různé

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 13 indexy i, j = 1, 2,, t, dostáváme E 2 i = PD i P 1 PD i P 1 = PD i P 1 = E i, E i E j = PD i P 1 PD j P 1 = PD i D j P 1 = 0, E 1 + + E t = P(D 1 + + D t )P 1 = PI n P 1 = I n, což dokazuje vlastnosti 2, 3, 4 Abychom dokázali opačnou implikaci, budeme předpokládat, že pro matici A existují matice E 1,, E t splňující podmínky 1, 2, 3, 4 Jako první krok dokážeme, že platí S(E 1 + + E j ) = S(E 1 ) + + S(E j ) pro každé j = 1,, t Je-li x S(E 1 + + E j ), existuje vektor y C n 1 takový, že x = (E 1 + E 2 + + E j )y = E 1 y + + E j y Jelikož E i y S(E i ) pro každé i = 1,, j, platí x = E 1 y + + E j y S(E 1 ) + + S(E j ), proto S(E 1 + + E j ) S(E 1 ) + + S(E j ) K důkazu opačné inkluze předpokládejme, že x S(E 1 ) + + S(E j ) Existují tedy vektory x i S(E i ) pro i = 1,, j takové, že x = x 1 + +x j Z x i S(E i ) plyne existence vektoru y i C n 1, pro který platí x i = E i y i Potom platí j j j j j j j ( E i )x = ( E i )( x i ) = E i x k = E i E k y k = i=1 i=1 k=1 i=1 k=1 i=1 k=1 j j = E i y i = x i = x i=1 i=1 Tím je dokázána opačná inkluze S(E 1 + + E j ) S(E 1 ) + + S(E j ) Dále dokážeme, že pro každé j = 1, t 1 platí S(E 1 + + E j ) S(E j+1 ) = {0}

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 14 Pokud x S(E 1 + + E j ) S(E j+1 ), existují vektory y, y j+1 C n 1 takové, že x = (E 1 + + E j )y = E j+1 y j+1 Z této rovnosti a z podmínek 2, 3 dostáváme j x = E j+1 y j+1 = E j+1 E j+1 y j+1 = E j+1 (E 1 + +E j )y = E j+1 E i y = 0, i=1 čímž je rovnost S(E 1 + + E j ) S(E j+1 ) = {0} dokázána Z této rovnosti, z dříve dokázané rovnosti S(E 1 + + E t ) = S(E 1 ) + + S(E t ), a opakovaným použitím Tvrzení 622 pak dostaneme n = dim I n = dim S(E 1 + + E t 1 + E t ) = = dim(s(e 1 ) + + S(E t 1 ) + S(E t )) = = dim(s(e 1 + + E t 1 ) + S(E t )) = = dim S(E 1 + + E t 1 ) + dim S(E t ) dim(s(e 1 + + E j ) S(E j+1 )) = = dim S(E 1 + + E t 2 + E t 1 ) + dim S(E t ) = = dim S(E 1 ) + + dim S(E t 1 ) + dim S(E t ) Označíme n i = dim S(E i ) pro i = 1,, t V každém z podprostorů S(E i ) zvolíme bázi x i1,, x ini Posloupnost vektorů x 11,, x 1n1, x 21,, x 2n2,, x t1,, x tnt generuje podprostor C n 1, který obsahuje každý z podprostorů S(E i ) pro i = 1, 2,, t, a tedy také jejich součet S(E 1 )+ +S(E t ) = S(E 1 + +E t ) = S(I n ) = C n 1 V posloupnosti je celkem n 1 + + n t = dim S(E 1 ) + + dim S(E t ) = n prvků, a protože generuje prostor C n 1, který má dimenzi n, musí být rovněž lineárně nezávislá podle Tvrzení 69, a tedy báze prostoru C n 1 Sloupcový prostor matice Q = [x 11 x 1n1 x 21 x 2n2 x t1 x tnt ] má proto dimenzi n a matice Q je tak regulární Protože I n = Q 1 Q, platí podle druhé části Tvrzení 37 e k = I k = Q 1 Q k

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 15 pro každé k = 1,, n Připomeňme, že e k označuje k-tý vektor standardní báze prostoru C n 1 Protože x il S(E i ), existuje vektor y il C n 1, pro který platí x il = E i y il Potom platí E i x il = E i E i y il = E i y il = x il, zatímco pro každé j i, j {1, 2,, t}, platí podle podmínky 3 E j x il = E j E i x il = 0x il = 0 Dokážeme nyní, že součin Q 1 AQ je diagonální matice Rovná-li se k-tý sloupcový vektor matice Q vektoru x il, dostáváme s využitím podmínky 1, že (Q 1 AQ) k = Q 1 AQ k = Q 1 ( λ j E j )x il = Q 1 λ j E j x il = j=1 j=1 = Q 1 λ i E i x il = Q 1 λ i x il = λ i Q 1 Q k = λ i e k Pro každé k = 1,, n tak platí, že v k-tém sloupci součinu Q 1 AQ je jediný případně nenulový prvek na hlavní diagonále (a rovná se jednomu z vlastních čísel λ i, i = 1,, t) Matice Q 1 AQ je proto diagonální a matice A je diagonalizovatelná Zbývá dokázat, že pro každou diagonalizovatelnou matici A platí vlastnosti 5, 6, 7, 8 Protože matice D i má hodnost m i, má tutéž hodnost i matice E i = PD i P 1, což dokazuje 6 S použitím vlastností 2, 3, 4 můžeme spočítat A 2 = (λ 1 E 1 + λ 2 E 2 + + λ t E t )(λ 1 E 1 + λ 2 E 2 + + λ t E t ) = = λ i E i λ j E j = λ 2 i E 2 i = λ 2 i E i i,j=1 i=1 Jestliže nyní předpokládáme, že pro nějaké l 2, pak dostáváme, že i=1 A l = λ l ie i i=1 A l+1 = (λ 1 E 1 + λ 2 E 2 + + λ t E t )(λ l 1E 1 + λ l 2E 2 + + λ l te t ) = = λ i E i λ l je j = λ l+1 i E 2 i = λ l+1 i E i i=1 j=1 i=1 i=1

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 16 Protože rovněž A 0 = I n = E 1 + + E t = λ 0 1E 1 + + λ 0 t E t, rovnost A l = λ l ie i i=1 platí pro každé nezáporné celé číslo l Pro každé číslo j = 0,, k tak dostáváme c j A j = c j λ j i E i i=1 a tedy k k k f(a) = c j A j = c j ( λ j i E i) = ( c j λ j i )E i = f(λ i )E i j=0 j=0 i=1 i=1 j=0 i=1 Abychom dokázali jednoznačnost matic E 1,, E t splňujících podmínky 1, 2, 3, 4, budeme předpokládat, že A = λ 1 F 1 + λ 2 F 2 + + λ t F t, kde F 1 + + F t = I n, F i F i = F i a F i F j = 0 pro libovolné i j, i, j {1, 2,, t} Potom Proto pro i j dostáváme E i A = AE i = λ i E i, F j A = AF j = λ j F j λ j E i F j = E i (AF j ) = (E i A)F j = λ i E i F j, proto (λ i λ j )E i F j = 0, neboli E i F j = 0 Můžeme tak spočítat, že platí E i = E i I n = E i ( F j ) = E i F i = ( E j )F i = I n F i = F i j=1 j=1 pro každé i = 1,, t Tím je dokázána jednoznačnost matic E i, tj podmínka 5 Zbývá dokázat podmínku 8 Z podmínky 1 okamžitě vyplývá, že pokud matice B komutuje se všemi maticemi E i pro i = 1,, t, komutuje rovněž s maticí A Abychom dokázali opačnou implikaci, vyjádříme každou matici E i jako polynom v matici A Označme g(x) = (x λ 1 )(x λ 2 ) (x λ t )

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 17 a g i (x) = g(x) x λ i pro i = 1,, t Polynom p i (x) má stupeň t 1 a kořeny λ j pro j i Podle vlastnosti 7 platí g i (A) = g i (λ 1 )E 1 + + g i (λ t )E t = g i (λ i )E i Označíme-li c i = g i (λ i ) 0, dostaneme že E i = c 1 i g i (A) Pokud tedy matice B komutuje s maticí A, komutuje také s každou maticí g i (A) = E i pro i = 1,, t c 1 i Cvičení 112 Zjistěte pro několik matic A, jsou-li diagonalizovatelné, pokud ano, najděte regulární matici P, pro kterou platí, že P 1 AP je diagonální matice, a najděte spektrální rozklad matice A Unitární podobnost Dále se budeme zabývat otázkou, kdy pro diagonalizovatelnou matici A řádu n existuje ortogonální matice P, pro kterou platí, že P 1 AP je diagonální matice Nebo jinak řečeno, kdy existuje ortonormální báze prostoru C n 1 tvořená vlastními vektory matice A Definice 1116 Říkáme, že komplexní čtvercová matice A řádu n je unitárně diagonalizovatelná, pokud existují unitární matice P a diagonální matice D, pro které platí P 1 AP = D Připomeňme si, že čtvercová matice P je unitární právě když P 1 = P Tvrzení 1117 Je-li komplexní matice A řádu n unitárně diagonalizovatelná, pak platí AA = A A Důkaz Jestliže existují unitární matice P a diagonální matice D, pro které platí P AP = D, pak přechodem ke komplexně konjugovaným maticím dostaneme rovněž P A P = D Protože pro diagonální matici D platí D D = DD, dostáváme postupně P AP P A P = DD = D D = P A P P AP P AA P = P A AP AA = A A

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 18 Definice 1118 Komplexní čtvercová matice A se nazývá normální, pokud platí A A = AA Třída normálních matic je velmi široká, jak se můžete přesvědčit v následujícícm cvičení Cvičení 113 Dokažte, že všechny matice následujících typů jsou normální: hermitovské matice, kosohermitovské matice, reálné symetrické matice, reálné kososymetrické matice, unitární matice, ortogonální matice, diagonální matice, všechny matice tvaru P AP, kde A je normální matice a P je unitární matice Lemma 1119 Je-li A normální matice a x vlastní vektor matice A příslušný vlastnímu číslu λ, pak je x také vlastní vektor matice A příslušný vlastnímu číslu λ Důkaz Především si všimněme, že je-li A normální matice, pak pro každé komplexní číslo λ platí (A λi n ) (A λi n ) = (A λi n)(a λi n ) = = A A λa λa + λλi n = = AA λa λa + λλi n = = (A λi n )(A λi n ) Matice A λi n je proto také normální Je-li nyní x 0 vlastní vektor matice A odpovídající vlastnímu číslu λ, pak označíme B = A λi n Platí tedy B B = BB a Bx = 0 Označíme dále y = B x Potom platí 0 = (Bx) (Bx) = x B Bx = x BB x = y y Odtud plyne, že y = 0, tj 0 = B x = (A λi n )x, tj A x = λx Vektor x je tak vlastní číslem matice A odpovídajícím vlastnímu číslu λ této matice Tvrzení 1120 Je-li A normální matice, pak pak vlastní vektory odpovídající různým vlastním číslům matice A jsou ortogonální Důkaz Předpokládejme nyní, že λ 1, λ 2 jsou dvě různá vlastní čísla matice A a x 1, x 2 jsou jim odpovídající vlastní vektory Právě jsme dokázali, že pak rovněž A x 1 = λ 1 x 1 Spočítáme dále, že λ 1 x 1x 2 = (λ 1 x 1 ) x 2 = (A x 1 ) x 2 = (x 1A)x 2 = x 1(Ax 2 ) = λ 2 x 1x 2

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 19 Protože λ 1 λ 2, plyne odtud x 1 x 2 = 0, tj vektory x 1 a x 2 jsou ortogonální Věta 1121 Komplexní matice A řádu n je unitárně diagonalizovatelná právě když je normální Důkaz Každá unitárně diagonalizovatelná matice A je normální podle Tvrzení 1117 Je-li naopak matice A normální, pak každý vlastní vektor x matice A je současně vlastním vektorem matice A Zvolíme tedy vlastní vektor x 1 jednotkové délky matice A příslušný vlastnímu číslu λ σ(a) Podle Lemma 1119 je x 1 rovněž vlastní vektor matice A příslušný vlastnímu číslu λ Označíme U 1 = L(x 1 ) = {y C n 1 : y x 1 = 0}, ortogonální doplněk vektoru x 1 v prostoru C n 1 Dokážeme, že pro každý vektor y U 1 platí, že také Ay U 1 Skutečně, (Ay) x 1 = (y A )x 1 = y (A x 1 ) = y λx 1 = 0 Podobně dokážeme, že také A y U 1 Lineární zobrazení F (y) = Ay je tedy lineární operátor na prostoru U 1 Podle Tvrzení 119 existuje (jednotkový) vlastní vektor x 2 lineárního operátoru F, tj λ 2 x 2 = F (x 2 ) = Ax 2 Vektor x 2 je tak vlastním vektorem matice A a tedy i matice A Označíme U 2 = L(x 1, x 2 ) Stejně jako v případě prostoru U 1 dokážeme, že pro každý vektor y U 2 platí jak Ay U 2 tak i A y U 2 Prostor U 2 je tak invariantním podprostorem operátoru F, existuje tedy jednotkový vlastní vektor x 3 U 2 operátoru F odpovídající vlastnímu číslu λ 3, atd Takto postupně sestrojíme ortonormální posloupnost x 1, x 2,, x n tvořenou vlastními vektory matice A Pro unitární matici P = [x 1 x 2 x n ] pak platí AP = PD, kde D je diagonální matice obsahující na hlavní diagonále postupně vlastní čísla λ 1, λ 2,, λ n Matice A je proto unitárně diagonalizovatelná Důsledek 1122 Je-li A normální matice a A = λ 1 E 1 + λ 2 E 2 + + λ t E t spektrální rozklad matice A podle Věty 1115, pak všechny matice E i jsou

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 20 hermitovské pro i = 1,, t Obráceně, je-li A diagonalizovatelná komplexní matice a všechny matice E i ve spektrálním rozkladu A = λ 1 E 1 + + λ t E t jsou hermitovské, pak je matice A normální Důkaz Je-li A normální, pak A = PDP 1 pro nějakou unitární matici P a diagonální matici D podle Věty 1121, pak matice E i = PD i P 1 = PDP sestrojené v důkazu Věty 1115 jsou hermitovské Obráceně, jsou-li všechny matice E i ve spektrálním rozkladu A = λ 1 E 1 + + λ t E t hermitovské, pak rovněž je spektrální rozklad matice A Pak což dokazuje, že A je normální A = λ 1 E 1 + + λ 1 λ t E t AA = λ 1 λ 1 E 1 + + λ t λ t E t = A A, Závěrem části o vlastních číslech a vlastních vektorech si ještě ukážeme, jak lze zesílit Větu 925 o URV-faktorizaci Tvrzení 1123 Je-li A C m n (R m n ) komplexní (reálná) matice, pak každé vlastní číslo matice A A (A T A) je nezáporné reálné číslo Důkaz Je-li A komplexní matice, pak součin A A je hermitovská matice řádu n Je-li to reálná matice, pak součin A T A je symetrická matice řádu n V obou případech jsou všechna vlastní čísla matice A A (A T A) reálná podle Tvrzení 115 Je-li λ nějaké vlastní číslo matice A A a x 0 vlastní vektor odpovídající λ, pak platí A Ax = λx Vynásobíme tuto rovnost zleva vektorem x a dostaneme Ax 2 = x A Ax = λx x = λ x 2, odkud vyplývá λ = Ax 2 x 2 0 V případě reálné matice A platí A = A T, proto rovněž λ 0 pro každé vlastní číslo λ matice A T A Dále si ještě ukážeme následující tvrzení Tvrzení 1124 Pro každou reálnou (komplexní) matici A tvaru m n platí r(a T A) = r(a) = r(aa T ), (r(a A) = r(a) = r(aa )),

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 21 S(A T A) = S(A T ), (S(A A) = S(A )), S(AA T ) = S(A), (S(AA ) = S(A)), N (A T A) = N (A), (N (A A) = N (A)), N (AA T ) = N (A T ), (N (AA ) = N (A )) Důkaz Dokážeme pouze reálnou část tvrzení, komplexní část se dokáže analogicky, pouze všude nahradíme transponovanou matici A T maticí A Nejdříve dokážeme, že N (A T ) S(A) = {0} Je-li x N (A T ) S(A), pak platí A T x = 0 a současně x = Ay pro nějaký vektor y R n 1 Odtud plyne x T x = y T A T x = 0 a proto x = 0 Z Tvrzení 619 pak plyne r(a T A) = r(a) dim N (A T S(A)) = r(a) Zaměníme-li role A T a A, dostaneme rovněž r(aa T ) = r(a T ) = r(a) K důkazu druhé části tvrzení si napřed všimněme, že S(A T A) S(A T ) Protože dále dim S(A T A) = r(a T A) = r(a) = r(a T ) = dim S(A T ), vyplývá odtud rovnost S(A T A) = S(A T ) Třetí část tvrzení ihned vyplývá z druhé, zaměníme-li role A a A T K důkazu čtvrté části opět stačí uvědomit si, že N (A) N (A T A), a dále dim N (A) = n r(a) = n r(a T A) = dim N (A T A) Proto N (A) = N (A T A) Poslední část tvrzení opět ihned vyplývá z předchozí, pokud zaměníme role A a A T Nyní můžeme dokázat slíbené zesílení Věty 925 Věta 1125 Předpokládáme, že A je reálná (komplexní) matice tvaru m n a hodnosti r Potom existují reálná diagonální matice D r r řádu r a ortogonální (unitární) matice U řádu n a V řádu m takové, že platí A = U ( Dr r 0 0 0 ) V T, (A = U ( Dr r 0 0 0 ) V ) Důkaz Dokážeme pouze část týkající se komplexních matic Pro reálné matice se věta dokáže analogicky

KAPITOLA 11 VLASTNÍ ČÍSLA A VLASTNÍ VEKTORY 22 Matice A A je normální, neboť (A A) A A = A AA A = A A(A A) Podle Věty 1121 je matice A A unitárně diagonalizovatelná, existuje tedy podle Věty 1121 unitární matice V řádu n taková, že V A AV = D, kde D je diagonální matice s nezápornými reálnými čísly λ i (vlastní čísla matice A A) na hlavní diagonále Protože r(a A) = r(a) = r, můžeme předpokládat, že λ i > 0 pro i = 1,, r a λ i = 0 pro i = r + 1,, n Označíme σ i = λ i pro i = 1,, n a u i = Av i σ i pro i = 1,, k Potom platí pro každé dva indexy i, j {1, 2,, r} u ju i = v j A σ i Av i σ i = v j A Av i λ i = λ iv j v i λ i = v j v i = δ ij Posloupnost vektorů u 1,, u k je tak ortonormální, protože ortonormální je posloupnost vektorů v 1,, v n Můžeme ji proto doplnit do ortonormální báze u 1,, u k, u k+1,, u n prostoru C n 1 Označíme U = [u 1 u n ] Potom pro i-tý sloupec součinu U AV platí [U AV] i = U Av i = U σ i u i Prvek na místě (j, i) v součinu U AV se proto rovná [U AV] ji = [U ] j σu i = u jσ i u i = σ i δ ji Součin U AV je proto diagonální matice D, prvky na hlavní diagonále D se rovnají σ i = λ i, kde λ i jsou vlastní čísla součinu A A Odtud hned dostaneme (protože matice U a V jsou unitární), že A = UDV Číslům σ i > 0 se říká singulární hodnoty matice A Jsou určené jednoznačně maticí A, neboť z rovnosti A = UDV plyne V A AV = V A UU AV = D D = D 2 Druhé mocniny singulárních hodnot σi 2 jsou proto vlastní hodnoty součinu A A Geometrický význam singulárních hodnot si ukážeme v kapitole o kvadratických formách