Matematická analýza 1b 9. Primitivní funkce
9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže pro každé x I existuje F (x) a platí F (x) = f(x).
9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže pro každé x I existuje F (x) a platí F (x) = f(x). Věta 9.1 Necht F a G jsou primitivní funkce k funkci f na otevřeném intervalu I. Pak existuje c R takové, že F(x) = G(x) + c pro každé x I.
9.1 Základní vlastnosti Věta 9.2 Necht f je spojitá funkce na otevřeném neprázdném intervalu I. Pak f má na I primitivní funkci.
9.1 Základní vlastnosti Věta 9.2 Necht f je spojitá funkce na otevřeném neprázdném intervalu I. Pak f má na I primitivní funkci. Věta 9.3 Necht f má na otevřeném intervalu I primitivní funkci F, funkce g má na I primitivní funkci G a α, β R. Potom funkce αf + βg je primitivní funkcí k αf + βg na I.
9.1 Základní vlastnosti Věta 9.4 (o substituci) (i) Necht F je primitivní funkce k f na (a, b). Necht ϕ je funkce definovaná na (α, β) s hodnotami v intervalu (a, b), která má v každém bodě t (α,β) vlastní derivaci. Pak f(ϕ(t))ϕ c (t) dt = F(ϕ(t)) na (α,β).
9.1 Základní vlastnosti (ii) Necht funkce ϕ má v každém bodě intervalu (α,β) nenulovou vlastní derivaci a ϕ((α, β)) = (a, b). Necht funkce f je definována na intervalu (a, b) a platí f(ϕ(t))ϕ c (t) dt = G(t) na (α,β). Pak f(x) dx c = G(ϕ 1 (x)) na (a, b).
9.1 Základní vlastnosti Lemma 9.5 (Darbouxova vlastnost derivace) Necht f má na neprázdném otevřeném intervalu I primitivní funkci. Potom má f na I Darbouxovu vlastnost, tj. f(j) je interval, kdykoliv J I je interval.
9.1 Základní vlastnosti Věta 9.6 (integrace per partes) Necht I je neprázdný otevřený interval a funkce f je spojitá na I. Necht F je primitivní funkce k f na I a G je primitivní funkce ke g na I. Pak platí g(x)f(x) dx = G(x)F(x) G(x)f(x) dx na I.
9.2 Integrace racionálních funkcí Definice Racionální funkcí budeme rozumět podíl dvou polynomů, kde polynom ve jmenovateli není identicky roven nule.
9.2 Integrace racionálních funkcí Věta 9.7 (o rozkladu na parciální zlomky) Necht P, Q jsou polynomy s reálnými koeficienty takové, že (i) st P < st Q,
9.2 Integrace racionálních funkcí Věta 9.7 (o rozkladu na parciální zlomky) Necht P, Q jsou polynomy s reálnými koeficienty takové, že (i) st P < st Q, (ii) Q(x) = a n (x x 1 ) p 1...(x xk ) p k (x 2 + α 1 x + β 1 ) q 1...(x 2 + α l x + β l ) q l,
9.2 Integrace racionálních funkcí Věta 9.7 (o rozkladu na parciální zlomky) Necht P, Q jsou polynomy s reálnými koeficienty takové, že (i) st P < st Q, (ii) Q(x) = a n (x x 1 ) p 1...(x xk ) p k (x 2 + α 1 x + β 1 ) q 1...(x 2 + α l x + β l ) q l, (iii) a n, x 1,...x k, α 1,...,α l, β 1,...,β l R, a n 0,
9.2 Integrace racionálních funkcí Věta 9.7 (o rozkladu na parciální zlomky) Necht P, Q jsou polynomy s reálnými koeficienty takové, že (i) st P < st Q, (ii) Q(x) = a n (x x 1 ) p 1...(x xk ) p k (x 2 + α 1 x + β 1 ) q 1...(x 2 + α l x + β l ) q l, (iii) a n, x 1,...x k, α 1,...,α l, β 1,...,β l R, a n 0, (iv) p 1,...,p k, q 1,...,q l N,
9.2 Integrace racionálních funkcí Věta 9.7 (o rozkladu na parciální zlomky) Necht P, Q jsou polynomy s reálnými koeficienty takové, že (i) st P < st Q, (ii) Q(x) = a n (x x 1 ) p 1...(x xk ) p k (x 2 + α 1 x + β 1 ) q 1...(x 2 + α l x + β l ) q l, (iii) a n, x 1,...x k, α 1,...,α l, β 1,...,β l R, a n 0, (iv) p 1,...,p k, q 1,...,q l N, (v) žádné dva z mnohočlenů x x 1, x x 2,...,x x k, x 2 +α 1 x +β 1,...,x 2 +α l x +β l nemají společný kořen,
9.2 Integrace racionálních funkcí Věta 9.7 (o rozkladu na parciální zlomky) Necht P, Q jsou polynomy s reálnými koeficienty takové, že (i) st P < st Q, (ii) Q(x) = a n (x x 1 ) p 1...(x xk ) p k (x 2 + α 1 x + β 1 ) q 1...(x 2 + α l x + β l ) q l, (iii) a n, x 1,...x k, α 1,...,α l, β 1,...,β l R, a n 0, (iv) p 1,...,p k, q 1,...,q l N, (v) žádné dva z mnohočlenů x x 1, x x 2,...,x x k, x 2 +α 1 x +β 1,...,x 2 +α l x +β l nemají společný kořen, (vi) mnohočleny x 2 + α 1 x + β 1,...,x 2 + α l x + β l nemají reálný kořen.
9.2 Integrace racionálních funkcí Pak existují jednoznačně určená čísla A 1 1,...,A1 p 1,...,A k 1,...,Ak p k, B1 1, C1 1,...,B1 q 1, Cq 1 1,...,B1 l, C1 l,...,bl q l, Cq l l taková, že platí P(x) Q(x) = A 1 1 (x x 1 ) p 1 + + A k 1 (x x k ) p k + + A1 p 1 x x 1 + + Ak p k x x k B1 1 + x + C1 1 (x 2 + α 1 x + β 1 ) q 1 + + B1 q 1 x + C 1 q 1 x 2 + α 1 x + β 1 +... B1 l + x + Cl 1 (x 2 + α l x + β l ) q l + + Bl q l x + C l q l x 2 + α l x + β l.
Typ R(sin t, cos t) dt
Typ R(sin t, cos t) dt vždy lze užít substituci tg t 2 = x
Typ R(sin t, cos t) dt vždy lze užít substituci tg t 2 = x je-li R(a, b) = R(a, b), lze užít substituci sin t = x
Typ R(sin t, cos t) dt vždy lze užít substituci tg t = x 2 je-li R(a, b) = R(a, b), lze užít substituci sin t = x je-li R( a, b) = R(a, b), lze užít substituci cos t = x
Typ R(sin t, cos t) dt vždy lze užít substituci tg t = x 2 je-li R(a, b) = R(a, b), lze užít substituci sin t = x je-li R( a, b) = R(a, b), lze užít substituci cos t = x je-li R( a, b) = R(a, b), lze užít substituci tg t = x
dt 1+sin 2 t
dt 1+sin 2 t
dt 1+sin 2 t
dt 1+sin 2 t
dt 1+sin 2 t
dt 1+sin 2 t
Typ R(t, ( at+b ct+f )1/q ) dt q N, q > 1, a, b, c, f R, af bc
Typ R(t, ( at+b ct+f )1/q ) dt q N, q > 1, a, b, c, f R, af bc substituce ( at+b ct+f )1/q = x
Typ R(t, at 2 + bt + c) dt, a 0
Typ R(t, at 2 + bt + c) dt, a 0 at 2 + bt + c má dvojnásobný kořen α R: at 2 + bt + c = a t α, pro a > 0
Typ R(t, at 2 + bt + c) dt, a 0 at 2 + bt + c má dvojnásobný kořen α R: at 2 + bt + c = a t α, pro a > 0 at 2 + bt + c má dva reálné kořeny α 1 < α 2 : at 2 + bt + c = t α 1 a t α 2 t α 1
Typ R(t, at 2 + bt + c) dt, a 0 at 2 + bt + c má dvojnásobný kořen α R: at 2 + bt + c = a t α, pro a > 0 at 2 + bt + c má dva reálné kořeny α 1 < α 2 : at 2 + bt + c = t α 1 a t α 2 t α 1 at 2 + bt + c nemá reálné kořeny: pak a > 0, c > 0, a lze užít některou z Eulerových substitucí
Typ R(t, at 2 + bt + c) dt, a 0 at 2 + bt + c má dvojnásobný kořen α R: at 2 + bt + c = a t α, pro a > 0 at 2 + bt + c má dva reálné kořeny α 1 < α 2 : at 2 + bt + c = t α 1 a t α 2 t α 1 at 2 + bt + c nemá reálné kořeny: pak a > 0, c > 0, a lze užít některou z Eulerových substitucí at 2 + bt + c = ± at + x
Typ R(t, at 2 + bt + c) dt, a 0 at 2 + bt + c má dvojnásobný kořen α R: at 2 + bt + c = a t α, pro a > 0 at 2 + bt + c má dva reálné kořeny α 1 < α 2 : at 2 + bt + c = t α 1 a t α 2 t α 1 at 2 + bt + c nemá reálné kořeny: pak a > 0, c > 0, a lze užít některou z Eulerových substitucí at 2 + bt + c = ± at + x nebo at 2 + bt + c = tx + c