Matematika I (KMI/PMATE)

Podobné dokumenty
0.1 Úvod do matematické analýzy

Matematika (KMI/PMATE)

0.1 Funkce a její vlastnosti

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13

Bakalářská matematika I

Kapitola 1: Reálné funkce 1/20

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti

Matematická analýza pro informatiky I.

FUNKCE POJEM, VLASTNOSTI, GRAF

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

FUNKCE A JEJICH VLASTNOSTI

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

Funkce základní pojmy a vlastnosti

Matematika 1 pro PEF PaE

Základy matematiky pro FEK

7. Funkce jedné reálné proměnné, základní pojmy

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

FUNKCE, ZÁKLADNÍ POJMY

P ˇ REDNÁŠKA 3 FUNKCE

FUNKCE, ZÁKLADNÍ POJMY

Funkce - pro třídu 1EB

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f.

1 Množiny, výroky a číselné obory

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Inovace a zkvalitnění výuky prostřednictvím ICT

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

Číselné množiny. Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, }

Přednáška 1: Reálná funkce jedné reálné proměnné

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí.

Funkce, elementární funkce.

Funkce a lineární funkce pro studijní obory

Exponenciální a logaritmická funkce

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

Diferenciální počet funkcí jedné proměnné

Úvod, základní pojmy, funkce

Matematika 1. Matematika 1

Matematická analýza ve Vesmíru. Jiří Bouchala

Funkce a základní pojmy popisující jejich chování

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy

Funkce. Limita a spojitost

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že

Matematika (KMI/PMATE)

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí:

Funkce. Vlastnosti funkcí

1 Báze a dimenze vektorového prostoru 1

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

0.1 Úvod do matematické analýzy

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

Petr Hasil. c Petr Hasil (MUNI) Množiny, číselné obory, funkce MA I (M1101) 1 / 125

Matematická analýza ve Vesmíru. Jiří Bouchala

2 Reálné funkce jedné reálné proměnné

h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Funkce. b) D =N a H je množina všech kladných celých čísel,

Funkce pro studijní obory

8. Elementární funkce. I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k k!.

PŘEDNÁŠKA 2 POSLOUPNOSTI

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y) pro x, y R;

VII. Limita a spojitost funkce

MATURITNÍ TÉMATA Z MATEMATIKY

2. FUNKCE JEDNÉ PROMĚNNÉ

Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.

7. Funkce jedné reálné proměnné, základní pojmy

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce

Úvod, základní pojmy, funkce

Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim

Obecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci

Cyklometrické funkce

Proseminář z matematiky pro fyziky

Elementární funkce. Polynomy

Funkce kotangens. cotgα = = Zopakuj všechny části předchozí kapitoly pro funkci kotangens. B a

Funkce kotangens

Exponenciální funkce. Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí. Číslo a je kladné číslo, různé od jedničky a xεr.

(Zavedení pojmu funkce, vlastnosti. Repetitorium z matematiky

a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj.

I. Úvod. I.1. Množiny. I.2. Výrokový a predikátový počet

soubor FUNKCÍ příručka pro studenty

Definice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe

Matematická analýza pro informatiky I. Spojitost funkce

KFC/SEM, KFC/SEMA Elementární funkce

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik

Transkript:

Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti

Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce (základní) elementární funkce vlastnosti funkce sudá a lichá funkce periodická funkce monotónost funkce extrémy a ohraničenost funkce prostá funkce inverzní funkce složená funkce operace s funkcemi

Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena výrobku (P) počet pracovníků potřebných k výměně žárovky (n)

Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena výrobku (P) počet pracovníků potřebných k výměně žárovky (n) Proměnná Proměnná - veličina, která může měnit svou hodnotu.

Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena výrobku (P) počet pracovníků potřebných k výměně žárovky (n) Proměnná Proměnná - veličina, která může měnit svou hodnotu.

Popisujeme vztah dvou veličin. Vyjadřujeme, jak hodnoty jedné veličiny (teploty T) závisejí na hodnotách další veličiny (času).

Popisujeme vztah dvou veličin. Vyjadřujeme, jak hodnoty jedné veličiny (teploty T) závisejí na hodnotách další veličiny (času).

Obecně, tento popis vzájemného vztahu probíhá tak, že hodnotám jedné veličiny (tzv. nezávisle proměnné) přiřazujeme hodnoty druhé veličiny (tzv. závisle proměnné).

Obecně, tento popis vzájemného vztahu probíhá tak, že hodnotám jedné veličiny (tzv. nezávisle proměnné) přiřazujeme hodnoty druhé veličiny (tzv. závisle proměnné).

Reálná funkce f jedné reálné proměnné x Zobrazení z množiny R do množiny R; pravidlo, podle kterého každému prvku z množiny D(f ) R přiřadíme právě jeden prvek z množiny H(f ) R. V matematice se funkce zpravidla označují písmeny f, g, ϕ, apod.

Reálná funkce f jedné reálné proměnné x Zobrazení z množiny R do množiny R; pravidlo, podle kterého každému prvku z množiny D(f ) R přiřadíme právě jeden prvek z množiny H(f ) R. V matematice se funkce zpravidla označují písmeny f, g, ϕ, apod. f : x y

Reálná funkce f jedné reálné proměnné x Zobrazení z množiny R do množiny R; pravidlo, podle kterého každému prvku z množiny D(f ) R přiřadíme právě jeden prvek z množiny H(f ) R. V matematice se funkce zpravidla označují písmeny f, g, ϕ, apod. f : x y f : x 2x + 3

Reálná funkce f jedné reálné proměnné x Zobrazení z množiny R do množiny R; pravidlo, podle kterého každému prvku z množiny D(f ) R přiřadíme právě jeden prvek z množiny H(f ) R. V matematice se funkce zpravidla označují písmeny f, g, ϕ, apod. f : x y f : x 2x + 3 y = f (x)

Reálná funkce f jedné reálné proměnné x Zobrazení z množiny R do množiny R; pravidlo, podle kterého každému prvku z množiny D(f ) R přiřadíme právě jeden prvek z množiny H(f ) R. V matematice se funkce zpravidla označují písmeny f, g, ϕ, apod. f : x y f : x 2x + 3 y = f (x) y = 2x + 3

Reálná funkce f jedné reálné proměnné x Zobrazení z množiny R do množiny R; pravidlo, podle kterého každému prvku z množiny D(f ) R přiřadíme právě jeden prvek z množiny H(f ) R. V matematice se funkce zpravidla označují písmeny f, g, ϕ, apod. f : x y f : x 2x + 3 y = f (x) y = 2x + 3 f (x) = 2x + 3

Reálná funkce f jedné reálné proměnné x Zobrazení z množiny R do množiny R; pravidlo, podle kterého každému prvku z množiny D(f ) R přiřadíme právě jeden prvek z množiny H(f ) R. V matematice se funkce zpravidla označují písmeny f, g, ϕ, apod. f : x y f : x 2x + 3 y = f (x) y = 2x + 3 f (x) = 2x + 3 f (5) = 2 5 + 3 = 13

Reálná funkce f jedné reálné proměnné x Zobrazení z množiny R do množiny R; pravidlo, podle kterého každému prvku z množiny D(f ) R přiřadíme právě jeden prvek z množiny H(f ) R. V matematice se funkce zpravidla označují písmeny f, g, ϕ, apod. f : x y f : x 2x + 3 y = f (x) y = 2x + 3 f (x) = 2x + 3 f (5) = 2 5 + 3 = 13 Některé často používané funkce mají speciální označení (např. log, sin, cos, apod.)

Reálná funkce f jedné reálné proměnné x Zobrazení z množiny R do množiny R; pravidlo, podle kterého každému prvku z množiny D(f ) R přiřadíme právě jeden prvek z množiny H(f ) R. V matematice se funkce zpravidla označují písmeny f, g, ϕ, apod. f : x y f : x 2x + 3 y = f (x) y = 2x + 3 f (x) = 2x + 3 f (5) = 2 5 + 3 = 13 Některé často používané funkce mají speciální označení (např. log, sin, cos, apod.)

Definiční obor funkce Množina čísel, kterou jsme v definici funkce označili D(f ), se nazývá definiční obor funkce. Symbol x, označující libovolné číslo z množiny D(f ), se nazývá nezávisle proměnná nebo argument funkce. Obor hodnot funkce Číslo y přiřazené funkcí f k číslu x nazýváme hodnotou funkce f v bodě x; píšeme y = f (x). Množinu H(f ) všech hodnot funkce nazýváme obor hodnot funkce f.

Definiční obor funkce Množina čísel, kterou jsme v definici funkce označili D(f ), se nazývá definiční obor funkce. Symbol x, označující libovolné číslo z množiny D(f ), se nazývá nezávisle proměnná nebo argument funkce. Obor hodnot funkce Číslo y přiřazené funkcí f k číslu x nazýváme hodnotou funkce f v bodě x; píšeme y = f (x). Množinu H(f ) všech hodnot funkce nazýváme obor hodnot funkce f.

Graf funkce Grafem funkce f nazýváme množinu všech bodů o souřadnicích [x, f (x)], kde x je libovolné číslo z definičního oboru funkce f a f (x) je příslušná funkční hodnota.

K jednoznačnému určení funkce je třeba zadat: 1 definiční obor funkce, 2 funkční předpis, tj. způsob přiřazení funkčních hodnot k argumentům. Je zvykem, že není-li u funkčního předpisu zároveň uveden definiční obor funkce f, rozumí se jím množina všech čísel x, pro něž existují funkční hodnoty f (x). Funkční předpis nejčastěji mívá formu vzorce, tj. matematického zápisu, z něhož je patrné, které matematické operace je třeba provést s argumentem x, abychom dostali příslušnou funkční hodnotu. V tom případě se říká, že funkce je zadána analyticky.

Někdy je funkční předpis dán několika vzorci, např: 1 + x pro x (0, + ) f (x) = 0 pro x = 0 1 x pro x (, 0). V některých případech může být funkce zadána přímo výčtem funkčních hodnot pro všechny hodnoty argumentu x, např. tzv. Dirichletova funkce je definována následovně: { 1 pro x racionální, f (x) = 0 pro x iracionální. Přibližně lze funkci zadat též graficky, tj. nakreslením jejího grafu.

Elementární funkce Základní elementární funkce již známé ze střední školy: Konstantní funkce: y = c, c R, D(f ) = R. Lineární funkce: y = kx + q, k, q R, k 0, D(f ) = R. Mocninná funkce: y = x n, n N, D(f ) = R. n R, n 0, D(f ) = R +. Funkce sinus: y = sin x. D(f ) = R. Funkce kosinus: y = cos x. D(f ) = R. Funkce tangens: y = tg x, D(f ) = R\{ kπ Funkce kotangens: y = cotg x, D(f ) = R\{kπ Exponenciální funkce: y = a x, a > 0, D(f ) = R. Logaritmická funkce: y = log a x, a > 0, a 1, D(f ) = R +.

Elementární funkce Elementárními funkcemi budeme rozumět takové funkce, které lze vytvořit ze základních elementárních funkcí konečným počtem aritmetických operací sčítání, odčítání, násobení, dělení a operací skládání funkcí. Příklady elementárních funkcí: f (x) = x 3 5x 2 + 6x 5 ( ) g(x) = ln sin x 1+x 2 Příklady neelementárních funkcí: h(x) = x 3 5x 2 + 6x 5 1 pro x > 0, sgn x = 0 pro x = 0, 1 pro x < 0.

Vlastnosti funkce Sudá funkce Funkce f se nazývá sudá, jestliže pro všechna x D(f ) je f ( x) = f (x). Funkce f (x) = x 2 je sudá, nebot x D(f ) f ( x) = ( x) 2 = x 2 = f (x). Příklady sudých funkcí: f (x) = x n, kde n je sudé číslo, f (x) = cos x. Graf sudé funkce je osově souměrný podle osy y.

Lichá funkce Lichá funkce Funkce f se nazývá lichá, jestliže pro všechna x D(f ) je f ( x) = f (x). Funkce f (x) = x 3 je lichá, nebot x D(f ) f ( x) = ( x) 3 = x 3 = f (x). Příklady lichých funkcí: f (x) = x n, kde n je liché číslo, f (x) = sin x. Graf liché funkce je středově souměrný podle počátku souřadných os.

Periodická funkce Periodická funkce Funkce f se nazývá periodická, jestliže existuje takové p 0, že pro všechna x z jejího definičního oboru je f (x + p) = f (x). Číslo p nazýváme periodou funkce f, nejmenší kladnou periodu (pokud existuje) nazýváme základní periodou funkce f. Funkce f (x) = sin x je periodická, nebot jestliže zvoĺıme p rovno např. hodnotě 2π, tak: x R : f (x + 2π) = sin(x + 2π) = sin x = f (x).

Monotonost funkce Rostoucí funkce Funkce f se nazývá rostoucí v intervalu J D(f ), jestliže pro dva libovolné body x i, x j intervalu J pro něž platí x i < x j, zároveň platí nerovnost f (x i ) < f (x j ). Funkce y = x 2 je rostoucí v intervalu (0, ), nebot v tomto intervalu pro všechna x i < x j je x 2 i < x 2 j (např. [3 < 5] [3 2 < 5 2 ]).

Monotonost funkce Klesající funkce Funkce f se nazývá klesající v intervalu J D(f ), jestliže pro dva libovolné body x i, x j intervalu J pro něž platí x i < x j, zároveň platí nerovnost f (x i ) > f (x j ). Funkce y = x 2 je klesající v intervalu (, 0), nebot v tomto intervalu pro všechna x i < x j platí x 2 i > x 2 j (např. [( 5) < ( 3)] [( 5) 2 > ( 3) 2 ]).

Vlastnosti funkce Omezená funkce Funkce f se nazývá ohraničená (omezená) v intervalu J D(f ), jestliže existuje takové číslo C, že pro všechna x J platí f (x) C. Funkce y = f (x) je omezená v zobrazeném intervalu, nebot pro všechny zobrazené funkční hodnoty je C < f (x) < C, tedy f (x) < C.

Vlastnosti funkce Globální minimum Globálním minimem funkce f v intervalu J D(f ) nazýváme takovou funkční hodnotu f (x n ), že pro všechna x J platí f (x) f (x n ). Funkce y = f (x) má (nabývá) v bodě x n globální minimum f (x n ), nebot pro všechna x ze zobrazeného intervalu platí f (x n ) f (x).

Vlastnosti funkce Globální maximum Globálním maximem funkce f v intervalu J D(f ) nazýváme takovou funkční hodnotu f (x m ), že pro všechna x J platí f (x) f (x m ). Funkce y = f (x) má (nabývá) v bodě x m globální maximum f (x m ), nebot pro všechna x ze zobrazeného intervalu platí f (x) f (x m ).

Vlastnosti funkce Prostá funkce Funkce f se nazývá prostá, jestliže pro každé dva různé body z definičního oboru jsou různé i jejich funkční hodnoty.

Vlastnosti funkce Inverzní funkce Necht funkce y = f (x) je prostá. Potom inverzní funkcí k funkci f (značíme f 1 ) rozumíme funkci, která každému y z oboru hodnot funkce f přiřazuje takové číslo f 1 (y) = x z definičního oboru funkce f, pro které platí f (x) = y. Složená funkce Mějme funkce f a g. Je-li definiční obor funkce f roven oboru hodnot funkce g (tj. D(f ) = H(g) ), pak funkci F (x) = f (g(x)) nazýváme složená funkce. Funkce g se nazývá vnitřní funkce, funkce f se nazývá vnější funkce. Necht f (x) = sin x, g(x) = x 3. Je vidět, že D(f ) = H(g) = (, ). Potom F (x) = f (g(x)) = sin x 3.

Operace s funkcemi Rovnost funkcí Dvě funkce jsou si rovny (f = g), jestliže mají týž definiční obor [D(f ) = D(g)] a pro všechna x z této množiny platí f (x) = g(x). Součet funkcí Součtem funkcí f, g s týmž definičním oborem nazýváme takovou funkci h (píšeme h(x) = (f + g)(x)), která přiřadí ke každému číslu x D(f ) = D(g) funkční hodnotu h(x) = f (x) + g(x). Zbývající početní operace s funkcemi Obdobně se definuje rozdíl, součin a podíl funkcí f, g s týmž definičním oborem, přičemž podíl je definován pouze tehdy, je-li g(x) 0 pro každé x z definičního oboru.