Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny ze záporného čísl lze s pomocí určt : 9 ( ). 9. 9. Číslo nzýváme mgnární jednotk. (mgnární pomyslný ) Mocnny mgnární jednotky: ( ) -. - 4. (-).(-) 4.. 6 4. - První čtyř mocnny se dále opkují. Můžeme podle tohoto klíče určt lovolnou mocnnu mgnární jednotky. Příkld: Určete 7, 4 7 4.6-4 8. 4 - Algercký tvr komplexního čísl: je to číslo. kde, jsou reálná čísl nzýváme reálná část komplexního čísl. nzýváme mgnární část komplexního čísl Zorzení komplexních čísel: Reálná čísl zorzujeme n číselnou osu. S číselnou osou ychom v ooru komplexních čísel nevystčl - komplexní čísl zorzujeme do Gussovy rovny komplexních čísel. osu x nzýváme reálná os osu y nzýváme mgnární os Komplexní čísl zorzujeme jko ody v rovně : [, ] Někdy je výhodné zorzovt komplexní čísl tké jko vektory:
Asolutní hodnot komplexního čísl: Asolutní hodnot reálného čísl je defnován jko vzdálenost čísl od nuly (počátku) n číselné ose. Totéž pltí v ooru komplexních čísel. Asolutní hodnot komplexního čísl se defnuje jko jeho vzdálenost od počátku souřdného systému je možno j odvodt z orázku: Příkld: Určete solutní hodnotu komplexního čísl -4 9 6 Zorzte toto komplexní číslo změřte jeho vzdálenost od počátku souřdného systému. Součet komplexních čísel: Jsou-l dán dvě komplexní čísl.,. pk jejch součtem je opět komplexní číslo c. c ( ) ( ) Příkld. Sečtěte tto komplexní čísl, 6 4 ( 6) ( 4 ) 8 7 Provedeme-l grfcký součet vektorů,, zjstíme, že součet komplexních čísel má tentýž výsledek. Rozdíl komplexních čísel: Jsou-l dán dvě komplexní čísl.,. pk jejch rozdílem je opět komplexní číslo c. c ( - ) ( - ) Příkld. Odečtěte - :, 6 4 - ( - 6) ( - 4 ) -4 - Grfcky odečteme vektor od vektoru tk, že k vektoru přčteme vektor (-).
Součn komplexních čísel: Jsou-l dán dvě komplexní čísl.,. pk jejch součnem je opět komplexní číslo c. c (.). (.)...... ( ). (. - ) ( ). ( - ) c. (. - ) ( ). Příkld : Určete součn. : - 4. (..4) (.-4.) - Čísl komplexně sdružená: Číslo číslo - Příkld: K číslu 4 určete číslo komplexně sdružené. 4, - 4 Vlstnost čísel komplexně sdružených:. Orzy čísel komplexně sdružených jsou osově souměrné podle osy x. Součtem čísel komplexně sdružených je reálné číslo. Rozdílem čísel komplexně sdružených je číslo ryze mgnární 4. Součnem čísel komplexně sdružených je číslo reálné Podíl komplexních čísel: Podíl komplexních čísel : je komplexní číslo c, které musíme uprvt tk, y se dlo psát ve tvru c c c Komplexní číslo ve tvru zlomku rozšíříme tkovým zlomkem, jehož čttel jmenovtel je číslo komplexně sdružené k jmenovtel původního zlomku. c. ( ) ( ) Příkld: Vypočtěte podíl. 0 4 4 8 9 8 9
Gonometrcký tvr komplexního čísl: Komplexní číslo v gonometrckém tvru je dáno svou solutní hodnotou úhlem průvodče - vz orázek.(cos α.sn α ) Úhel α vypočteme z orázku : cos α sn α Př výpočtu hodnot funkcí sn α cos α musíme vzít v úvhu kvdrnt, ve kterém se úhel nchází. Příkld: Komplexní číslo převeďte do gonometrckého tvru. Nejprve určíme solutní hodnotu komplexního čísl Dále určíme úhel α : sn α α 4 Gonometrcký tvr : ( cos 4 sn 4 ) Příkld: Komplexní číslo - převeďte do gonometrckého tvru. Nejprve určíme solutní hodnotu komplexního čísl Orz komplexního čísl leží ve čtvrtém kvdrntu. K výpočtu velkost úhlu α použjeme pomocný úhel α. sn α α 4 α ( cos sn ) Movreov vět Slouží k výpočtu mocnny komplexního čísl. Aychom mohl komplexní číslo umocnt, potřeujeme, y ylo dáno v gonometrckém tvru. Pltí tto vět: n cosα snα cosn α sn n ( ) α 4
Příkld: Umocněte komplexní číslo 4( cos. sn ),? 4 ( cos 4.. sn 4. ) 04 ( cos 00. sn 00 ) Příkld: Umocněte ( ) Úhel leží v prvním kvdrntu 4 6 6 sn α 6 6 α 4 44 6 ( cos4 44.sn 4 44 ) 6 ( cos 4 44.sn 4 44 ) 6 ( cos6.sn 6 ) 6 6 6 Cvčení:. Zjednodušte výrz: 7 7 7 7. Zjednodušte výrz:. Zjednodušte výrz: 4 4 4 4 4. Pro které komplexní číslo pltí, že jeho součn s číslem ( ) je roven součnu čísl komplexně sdruženého k hlednému číslu s číslem (- )?. Určete hodnotu čísl: A 7 9 [ 6 ] 6 [ ] 7 6. Určete hodnotu čísl: B - 7-8 9 4 0 [ 4- ] 7. Vypočtěte: ( - - 4 ). ( - - 4 ) 8. Njděte číslo komplexně sdružené s číslem: ( ) 4( 4 ) [ - 4 ] [ 4 7 ] 9. Njděte číslo komplexně sdružené s číslem: ( ) ( ) - ( )( ) ( ) [ -4 - ] 0. Njděte číslo komplexně sdružené s číslem: ( ) ( ) ( ) ( ) (4 )(4 ) [ 49 ]. Dělte komplexní čísl: ) d) ) [ ), ), c) 0, d) - ] c)
. Vypočtěte solutní hodnotu komplexních čísel: ) ) - c) 4 d) e) f) [ ), ), c), d). Vypočtěte solutní hodnotu komplexních čísel: ) ( 4 ) ) ( ) ( ) c) ( ) ( ) ( ) d) ( ) ( ) 4. Komplexní čísl vyjádřete v gonometrckém tvru: ) z - ) z c) z - d) z e) z, e), f) ] [ ) 8, ), c) 90 d ) 0 ] [ ) z (cos70 sn70 ), ) z cos sn, c) z. ( cos 80 sn 80 ), d) z (cos 0 sn 0 ), e) z cos 90 sn 90 ]. V gonometrckém tvru vyjádřete číslo z [ z cos 70 sn 70 ] 6. Pomocí Movreovy věty vypočtěte: ( ) 8. 7. Pomocí Movreovy věty vypočtěte: ( ) 4. 8. Pomocí Movreovy věty vypočtěte: ( ) 4 [ 6 ] [ -4 ] [ ( ) ] 9. Vypočtěte kořeny rovnce ) x 0 ) x 7 0 c) x 4 0 [ ) x ±, ) x ±,, c), 0. Vypočtěte kořeny rovnce x 4x 0, x, ± ] [ x, ± ] 6