PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.



Podobné dokumenty
PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

Vlastnosti posloupností

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018

Základní elementární funkce.

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2019

M - Posloupnosti VARIACE

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,

Analytická geometrie

p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků:

8.2.7 Geometrická posloupnost

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018

8. Elementární funkce

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:

8.3.1 Pojem limita posloupnosti

DUM č. 19 v sadě. 13. Ma-1 Příprava k maturitě a PZ algebra, logika, teorie množin, funkce, posloupnosti, řady, kombinatorika, pravděpodobnost

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

( ) ( ) Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor

1. Číselné obory, dělitelnost, výrazy

Posloupnosti na střední škole Bakalářská práce

Posloupnosti a řady. Obsah

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a

Opakovací test. Posloupnosti A, B

Analytická geometrie

1.2. MOCNINA A ODMOCNINA

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n

Posloupnosti. a a. 5) V aritmetické posloupnosti je dáno: a

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

1.3. POLYNOMY. V této kapitole se dozvíte:

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

2 Základní poznatky o číselných oborech

1 Trochu o kritériích dělitelnosti

8.2.6 Geometrická posloupnost

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

Jednotlivé snímky lze použít jako studijní materiál.

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

1. 1 P Ř I R O Z E N Á Č Í S L A

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Mod(x) = 2, Med(x) = = 2

právě jedna správná. Zakroužkujte ji! ax + ay bx by ax ay bx + by d) a b 4) Řešením nerovnice x 3x e) nemá řešení

a 1 = 2; a n+1 = a n + 2.

MATEMATIKA PRO EKONOMY

2.4. INVERZNÍ MATICE

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY KVĚTNA 2019

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0).

a) 1 b) 0 c) 1 d) 2 x e) 2x

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b b2 2.

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ Název zpracovaného celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ

6. FUNKCE A POSLOUPNOSTI

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

9. Racionální lomená funkce

právě jedna správná. Zakroužkujte ji! a) a b) a c)

právě jedna správná. Zakroužkujte ji! a) a b) a c) x b) 6 x c) 5) Rovnice y = je rovnicí a) elipsy b) paraboly c) přímky d) kružnice e) hyperboly

Zvyšování kvality výuky technických oborů

M - Příprava na 3. zápočtový test pro třídu 2D

KKKKKKKKKKKKKK. (i = 1,..., m; j = 1,..., n) jsou reálná čísla a x j jsou neznámé, se nazývá soustava m lineárních rovnic o

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e

11. přednáška 16. prosince Úvod do komplexní analýzy.

Komplexní čísla. Definice komplexních čísel

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

8. Základy statistiky. 8.1 Statistický soubor

8.2.4 Užití aritmetických posloupností

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Aritmetická posloupnost

8.1.3 Rekurentní zadání posloupnosti I

10.3 GEOMERTICKÝ PRŮMĚR

Univerzita Karlova v Praze Pedagogická fakulta

8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b.

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?

jsou reálná a m, n jsou čísla přirozená.

Základní pojmy: Číselné obory a vztahy mezi nimi Zákony pro počítání s číselnými množinami

Posloupnosti ( 1) ( ) 1. Různým způsobem (rekurentně i jinak) zadané posloupnosti. 2. Aritmetická posloupnost

3. ROVNICE A NEROVNICE Lineární rovnice Kvadratické rovnice Rovnice s absolutní hodnotou Iracionální rovnice 90

Sbírka úloh z matematiky pro 9.ročník Lomené výrazy ZŠ Třešť

Základní věta integrálního počtu (Newton Leibnizova) nám umožní výpočet určitých integrálů. Poznáte základní vlastnosti určitých integrálů.

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Nové symboly pro čísla

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

Transkript:

Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205 RNDr. Věr Effeberger www.zvldimtiku.cz

Příprv SMZ z MATEMATIKY olie! Toto je bous číslo k výukovému videu: Číselé obory. Než si video zpeš, tk si prcoví sešit vytiski při sledováí vide si do ěj doplňuj veškeré pozámky, slov příkldy. Udrží tě to v pozorosti budeš se moci k zpsým iformcím později vrcet. Když už tě Číselé obory uví, ebo tě přestou bvit, dej si jedoduše puzu pokrčuj později. Prcoví sešit ti bude sloužit hlvě k opkováí, je v ěm totiž úplě všecho, co k témtu Číselé obory musíš zát. Neí už tedy třeb hledt iformce v učebicích, strých sešitech ebo si pltit doučováí. Příjemé učeí s www.zvldimtiku.cz! Prohlášeí: Teto prcoví sešit je iformčím produktem, který doprovází výukové video Číselé obory. Jkékoliv šířeí ebo poskytováí vide prcovího sešitu třetím osobám bez souhlsu utorky je zkázáo! Děkuji z pochopeí respektováí tohoto sděleí. Stžeím tohoto mteriálu rozumíte, že jkékoli použití iformcí z tohoto mteriálu úspěchy či eúspěchy z toho plyoucí, jsou pouze ve Všich rukách utork z ě eese žádou zodpovědost. školí rok 204/5 RNDr. Věr Effeberger

Příprv SMZ z MATEMATIKY olie!. ČÍSELNÉ OBORY Číselé obory Moži všech určitého druhu, ve které jsou defiováy bez omezeí sčítáí ásobeí se zývá číselý obor (ebo obor čísel). R Q Z N Pro uvedeé číselé obory pltí: školí rok 204/5 RNDr. Věr Effeberger 2

Příprv SMZ z MATEMATIKY olie! Aritmetické operce Zákldí početí operce jsou: SČÍTÁNÍ b c ODČÍTÁNÍ b c NÁSOBENÍ b b c DĚLENÍ : b b c Dlší dvě početí operce jsou: UMOCŇOVÁNÍ c ODMOCŇOVÁNÍ c Jestliže v zápisu početích opercí ejsou závorky, provádí se ejprve -, pk poté!!! Jestliže v zápisu početích opercí závorky jsou, provádí se ejprve operce v. V přípdě, že je závorek více typů, provádíme ejprve operce v závorkách, které jsou uvitř osttích (v těch, které už dlší závorku eobshují, protože jsou )!!! Příkld: 2 3 33 49 5 5 2 : 4 25 2 33 49 5 3 5 5 2 : 4 2 školí rok 204/5 RNDr. Věr Effeberger 3

Příprv SMZ z MATEMATIKY olie!. PŘIROZENÁ ČÍSLA Moži všech přirozeých čísel (ebo tké obor přirozeých čísel) se zčí: Tto moži obshuje čísl:, 2, 3, 4, 5, 6, 7, 8, 9, 0,, 2, 3,! eobshuje tedy:! N 0 = Dělitelost Číslo je dělitelé číslem b (, b N ), právě tehdy když Příkld: Číslo 8 má právě šest dělitelů v oboru N:,,,,. Zky dělitelosti: Přirozeé číslo je dělitelé 2 právě tehdy, když má místě jedotek číslice:,,, ebo. příkldy čísel dělitelých 2: 3 právě tehdy, když jeho ciferý součet je dělitelý. příkldy čísel dělitelých 3: 4 právě tehdy, když má posledí dělitelé. příkldy čísel dělitelých 4: 5 právě tehdy, když má místě jedotek číslici ebo. příkldy čísel dělitelých 5: školí rok 204/5 RNDr. Věr Effeberger 4

Příprv SMZ z MATEMATIKY olie! 6 právě tehdy, když je dělitelé zároveň. příkldy čísel dělitelých 6: 8 právě tehdy, když má posledí dělitelé. příkldy čísel dělitelých 8: 9 právě tehdy, když jeho ciferý součet je dělitelý. příkldy čísel dělitelých 9: 0 právě tehdy, když má místě jedotek číslici. příkldy čísel dělitelých 0: právě tehdy, když součet cifer místech je rove součtu cifer sudých místech ebo se tyto součty liší o ásobek. příkldy čísel dělitelých : Prvočíslo Prvočíslo je kždé přirozeé číslo větší ež jed, které je dělitelé pouze číslem smo sebou. Příkldy prvočísel: Složeé číslo Složeé číslo je kždé přirozeé číslo větší ež jed, které eí prvočíslem, tj. má lespoň růzé dělitele. Příkldy složeých čísel: Rozkld přirozeého čísl prvočiitele Vyjádřeí složeého čísl ve tvru jeho dělitelů větších ež jed se říká rozkld složeého čísl. Pokud složeé číslo rozložíme souči prvočísel, zývá se toto vyjádřeí (teto souči) rozkld přirozeého čísl prvočiitele. Kde prvočiitelé jsou v rozkldu přirozeého čísl. školí rok 204/5 RNDr. Věr Effeberger 5

Příprv SMZ z MATEMATIKY olie! Příkldy rozkldu přirozeých čísel prvočiitele: 8 = 52 = 80 = 55 = Čísl soudělá Soudělá čísl jsou tková přirozeá čísl společého dělitele ež jed.,, 2, k, která mjí jedoho Příkldy soudělých čísel: Čísl esoudělá Nemjí-li přirozeá čísl,, 2, k společého dělitele většího ež jed, říká se jim esoudělá čísl. Pltí pro ě tedy:, 2,, D. k Příkldy esoudělých čísel: Největší společý dělitel Společým dělitelem přirozeých čísel,, 2, k zýváme kždé přirozeé číslo, které je kždého z ich. Te ze společých dělitelů, který je ež všichi osttí společí dělitelé, se zývá ejvětší společý dělitel čísel, 2,, k. Zčí se: Nejmeší společý ásobek Společým ásobkem přirozeých čísel, 2,, k zýváme kždé přirozeé číslo, které je ějkým kždého z ich. Te ze společých ásobků, který je ež kterýkoliv jiý společý ásobek, se zývá ejmeší společý ásobek čísel, 2,, k. Zčí se: Pro kždou dvojici přirozeých čísel, 2 pltí: školí rok 204/5 RNDr. Věr Effeberger 6

Příprv SMZ z MATEMATIKY olie! Příkld: D 65; 26 65; 26 D 495; 495; 600 600.2 CELÁ ČÍSLA Moži všech celých čísel (ebo tké obor celých čísel) se zčí: Tto moži obshuje čísl:, -0, -9, -8, -7, -6, -5, -4, -3, -2, -, 0,, 2, 3, 4, 5, 6, 7, 8, 9, 0, Aritmetické operce s celými čísly Pltí: b b b b b b 0 b b 0 0 Opčé číslo Ke kždému celému číslu existuje v oboru Z právě jedo opčé číslo tkové, že 0. Příkld: opčé číslo k číslu 4 je číslo, protože 4 4 0 opčé číslo k číslu - je číslo, protože opčé číslo k číslu 0 je číslo, protože školí rok 204/5 RNDr. Věr Effeberger 7

Příprv SMZ z MATEMATIKY olie!.3 RACIONÁLNÍ ČÍSLA Moži všech rcioálích čísel (ebo tké obor rcioálích čísel) se zčí: Tto moži obshuje: všech čísl, která se djí zpst ve tvru p, kde q p Z, q N Tvry rcioálích čísel zlomky příkldy: smíšeá čísl příkldy: desetiá čísl s ukočeým desetiým rozvojem příkldy: desetiá čísl s ekoečým periodickým desetiým rozvojem příkldy: Převody mezi jedotlivými tvry rcioálích čísel školí rok 204/5 RNDr. Věr Effeberger 8

Příprv SMZ z MATEMATIKY olie! Dekdický zápis čísl V prxi ejčstěji zpisujeme čísl v (dekdické) číselé soustvě, eboli v tzv. číselé soustvě o zákldu. Zápis čísl v desítkové číselé soustvě Kždé číslo lze zpst právě způsobem v desítkové soustvě ve zkráceém zápisu tvru: 0, mm, kde, m N te odpovídá rozviutému zápisu ve tvru 0 m m 0 0 0 0 0 0 m 0 m 0 Příkldy: 456,023 7002,35 34,000 005 40 2 50 60 0 00 20 2 30 3 K připomeutí 0 0 zákldí jedotk 0 0 desítk 0 0, deseti 0 2 00 stovk 0 0, 0 seti 0 3 000 tisícovk 0 0, 00 tisíci 0 6 000 000 milio 0 0,000 00 milioti 0 9 000000000 milird 0 0,000 000 00 milirdti Operce se zlomky SČÍTÁNÍ ZLOMKŮ p r ps rq 4 5 q s qs 7 3 NÁSOBENÍ ZLOMKŮ p r pr 7 2 q s qs 6 3 ODČÍTÁNÍ ZLOMKŮ p r ps rq 5 q s qs 4 DĚLENÍ ZLOMKŮ p r p s ps 3 5 : : q s q r qr 8 2 školí rok 204/5 RNDr. Věr Effeberger 9

Příprv SMZ z MATEMATIKY olie! UMOCŇOVÁNÍ ZLOMKŮ ODMOCŇOVÁNÍ ZLOMKŮ p q p q 3 5 3 p q p q 36 2 Příkld: 9 25 7 : 5 2 2 4 2 2 3 9 2 Porováváí zlomků Příkld: Určete, který ze zlomků je větší: 2 7 ebo 8 5.. Převedeím zlomků čísl: 2. Převedeím zlomků společého : 3. Pomocí součiů : Zokrouhlováí desetiých čísel podle řádů řád čísl = Při zokrouhlováí čísl dý řád se řídíme číslicí, která je pozici předcházejícího řádu (tedy při zokrouhlováí desítky, koukáme ; při zokrouhlováí setiy, se díváme, td.). Pokud je této pozici jed z číslic: zokrouhlujeme NAHORU,,, ebo zokrouhlujeme DOLŮ,,, ebo Příkldy: zokrouhlete dé číslo tisíce: 32506, desetiy: jedotky: 67,843 509,7 školí rok 204/5 RNDr. Věr Effeberger 0

Příprv SMZ z MATEMATIKY olie! TROJČLENKA Pomocí trojčleky řešíme příkldy přímou epřímou úměrost. Přímá úměrost Kolikrát více, tolikrát! ebo Kolikrát méě, tolikrát! Příkld: Řidič ut jel bez přestávky stejou rychlostí,5 hodiy. Z tuto dobu ujel 7 km. Kolik kilometrů ujede (při stejé rychlosti bez přestávky) z 4 hodiy? Řešeí: Nepřímá úměrost Kolikrát více, tolikrát! ebo Kolikrát méě, tolikrát! Příkld: Řidič ut má dojet do měst. Když pojede stálou rychlostí 9 km/h bude ve městě z 2 hodiy 5 miut. Jkou rychlostí musí jet, by byl ve městě o půl hodiy dříve? Řešeí: školí rok 204/5 RNDr. Věr Effeberger

Příprv SMZ z MATEMATIKY olie! PROCENTA Proceto je jiý ázev pro tedy: % 00 Zákldí pojmy procetového počtu: zákld = dý zákldí číselý celek počet procet = číslo udávjící počet zákldu procetová část = část zákldu, která odpovídá příslušému počtu procet zákldu Zákldí vzorce: % ze z je, tkže p % ze z je. Odtud plyou rovosti: č = p = z = Příkldy: Kolik je: % z 22 Kč Kolik % je: 600 ut z 3 000 ut 25 % z 2 000 obyv. 20 g z 2 kg 8,6 % z 5 405 litrů z 250 litrů Jký je zákld, jestliže: 8 % odpovídá 96 hodiám 70 % odpovídá 3,5 litrů fty 0,4 % odpovídá 6 kg jblek školí rok 204/5 RNDr. Věr Effeberger 2

Příprv SMZ z MATEMATIKY olie!.4 REÁLNÁ ČÍSLA Moži všech reálých čísel (ebo tké obor reálých čísel) se zčí: Tto moži obshuje: všech rcioálí čísl (tedy i všech čísl celá tedy i všech čísl ) dále tké tzv. čísl ircioálí Ircioálí čísl Jsou to čísl, která se edjí zpst ve tvru. Jedá se tedy o desetiá čísl s ekoečým eperiodickým rozvojem. Příkldy ircioálích čísel: Příkld: Zřďte íže uvedeá čísl do (ejmešího) oboru čísel, do kterého áleží. 2 5 0 3 45 3 2 506 9,56 0,03 R Q Z N Vlstosti reálých čísel Pro kždé, b R pltí: Sčítáí ásobeí reálých b b b b čísel je. Pro kždé, b, c R pltí: Sčítáí ásobeí reálých b c b c b c bc čísel je. školí rok 204/5 RNDr. Věr Effeberger 3

Příprv SMZ z MATEMATIKY olie! Pro kždé bc c bc, b, c R pltí: Násobeí reálých čísel je vzhledem ke sčítáí. Pro kždé R pltí: 0 0 0 Pro kždé, b R pltí: Je-li b 0, je spoň jedo z čísel, b rovo ule. Opčé číslo číslo převráceé Připomíám : Ke kždému reálému číslu existuje v oboru R právě jedo opčé číslo tkové, že:. 0 Ke kždému reálému číslu 0 existuje v oboru R právě jedo převráceé (iverzí) číslo tkové, že:. Příkld: převráceé číslo k číslu - 4 je číslo, protože 4 4 převráceé číslo k číslu 3 6 je číslo, protože převráceé číslo k číslu 2 5 je číslo, protože 3 Zobrzeí reálých čísel číselé ose Grfické zázorěí reálých čísel číselé ose (vzájemě jedozčé) zobrzeí oboru R přímku. Příkld: N číselé ose zobrzte ásledující čísl: ; 4,5 ; 2 ; 2 7 ; 4, 3 5 školí rok 204/5 RNDr. Věr Effeberger 4

Příprv SMZ z MATEMATIKY olie! Absolutí hodot reálého čísl Absolutí hodot reálého čísl se zčí je defiová tkto:, pro 0, pro 0 Příkld: 60 3 0 5, 34 4 2 Absolutí hodot kždého reálého čísl předstvuje ( číselé ose) dého čísl od počátku (bodu 0). Z toho vyplývá, že:. R : 0, protože vzdáleost je vždy. 2. R :, protože opčá čísl mjí od počátku vzdáleost. Příkld: 5 8 5 5 8 3 4 9 0, 5 Příkld: N reálé ose zázorěte možiy: x R : x 3 A, B x R : x 2 5 2 Itervly Itervly předstvují reálých čísel, které se djí zobrzit číselé ose úsečkou, polopřímkou ebo přímkou. Klsifikce itervlů Itervly omezeé eomezeé uzvřeý zprv/zlev uzvřeý polouzvřeý zprv/zlev polootevřeý otevřeý otevřeý oboustrě eomezeý školí rok 204/5 RNDr. Věr Effeberger 5

Příprv SMZ z MATEMATIKY olie! Omezeé itervly Moži Zázorěí čís. ose Itervl Název itervlu x R : x b ; b uzvřeý itervl, b b x R : x b polouzvřeý/polootevřeý ; b b itervl, b polouzvřeý/polootevřeý x R : x b ; b b itervl, b x R : x b b b ; otevřeý itervl, b Neomezeé itervly Moži Zázorěí čís. ose Itervl Název itervlu zlev uzvřeý od do x R : x ; plus ekoeč x R : x > ; zlev otevřeý od do plus ekoeč x R : x zprv uzvřeý od mius ; ekoeč do x R : x ; zprv otevřeý od mius ekoeč do oboustrě eomezeý x R ; R (moži R) Příkldy: Určete, která z ásledujících moži eí která je itervl: x Z : x 5 xr : x 2,2 ; 0 NENÍ NENÍ NENÍ JE JE JE x R : x 4 x Q : x 0,5 x R : x 2 0 NENÍ NENÍ NENÍ JE JE JE N číselé ose zobrzte dé možiy, pokud to bude možé, zpište je jko itervl: A x R :,5 x 5, x R : x 2 B, C x R : x 2, D x R : x školí rok 204/5 RNDr. Věr Effeberger 6

Příprv SMZ z MATEMATIKY olie! Sjedoceí, průik rozdíl itervlů Protože kždý itervl je, má smysl zbývt se sjedoceím, průikem ebo rozdílem itervlů. Ovšem POZOR výsledkem těchto opercí emusí být! Vše si ukážeme itervlech 4; 2,5 ; 5 SJEDNOCENÍ INTERVALŮ ; 4 ; 2,5 5 PRŮNIK INTERVALŮ ; 4 ; 2,5 5 ROZDÍL INTERVALŮ 4 ; 2,5 \ ; 5 ; 5 \ 4; 2, 5 školí rok 204/5 RNDr. Věr Effeberger 7

Příprv SMZ z MATEMATIKY olie! Příkldy: ;,5 3; 0 ; 4 2; 2 ; 5 ; 4, 5 ; 2 \ ; 3 2 ; 5 ; 4, ; \ ; 3 Mociy odmociy Připomíám : Pro kždé reálé číslo kždé přirozeé číslo je: Pro kždé reálé číslo 0 je: 0. Dále pltí: R, N : 0 0 0,, b R \ m, R : NÁSOBENÍ MOCNIN SE STEJNÝM ZÁKLADEM Příkldy:. m m DĚLENÍ MOCNIN SE STEJNÝM ZÁKLADEM Příkldy:. m : m m m m UMOCŇOVÁNÍ MOCNINY Příkldy:. školí rok 204/5 RNDr. Věr Effeberger 8

Příprv SMZ z MATEMATIKY olie! b UMOCŇOVÁNÍ SOUČINU Příkldy:. UMOCŇOVÁNÍ PODÍLU Příkldy:. b : b : b b Dlší důležitá prvidl! b b Příkldy:. m m Příkldy:. b b : b : b m m b b Příkldy: SUPER, TEORIE K ČÍSELNÝM OBORŮM JE ZA TEBOU! A JDE SE DÁL školí rok 204/5 RNDr. Věr Effeberger 9