Řešení přechodných jevů pomocí Laplaceovy transformace. přímá transformace f(t) F(p) obrazy F(p)

Rozměr: px
Začít zobrazení ze stránky:

Download "Řešení přechodných jevů pomocí Laplaceovy transformace. přímá transformace f(t) F(p) obrazy F(p)"

Transkript

1 Řšní řchodných jvů omocí lcovy rnsformc Anlýzu řchodných jvů j. vyšřní dynmického chování lkrického ovodu osného sousvou difrnciálních rs. inrodifrnciálních rovnic lz s výhodou rovés omocí oráorového oču, j. omocí ingrálních rnsformcí lcov, Fourirov Princi: Pro dnou funkci čsu f nzývám ji řdmě no originál nlznm římou lcovou rnsformcí jjí orz F. Míso difrnciálních rovnic ro f k dosnm lgrické rovnic ro F. Jjich řšním nlznm orzy hldných vličin oé rovdm zěnou invrzní lcovu rnsformci - viz schm římá rnsformc f F řdmě f d f, f orzy F lgrické rovnic ro F ingrodifrnciální rovnic řšní lg. rovnic ro F řšní f zěná rnsformc F f řšní f řšní v čsové olsi řšní v frkvnční olsi Zákldní ingrální rnsformc oužívné v lkrických ovodch jsou: lcov rnsformc F Fourirov rnsformc F komlxní roměnná σ jω komlxní roměnná jω Poznámk: Při řšní řchodných dějů omocí lcovy rnsformc čso nmusím formulov difrnciální rovnic ro okmžié hodnoy něí roudů, l můžm sá římo lgrické rovnic ro orzové vličiny, ssvní rovnic j k nlogické jko ři užií SKM ro nlýzu hrmonických usálných svů, míso jω všk oužívám oráor. Někdy nní nuno ni rovádě zěnou lcovu rnsformci, roož někré vlsnosi ovodu lz osoudi římo z chrkru lcových orzů.

2 Výhody oužií lcovy rnsformc: jdnodušší mmický modl lgrické rovnic názorné vyjádřní vlsnosí ovodu jho chování nlogi s modou SKM ro řšní hrmonického usálného svu Nvýhod: nunos rovádě římou zěnou lcovu rnsformci, v mnoh řídch ji lz sndno rovés omocí slovníků lcovy rnsformc, kd jsou uvdny vzorc ro ěžně oužívné funkc zěnou lcovu rnsformci lz rovés i numricky Poznámk: S rnsformcí ingrodifrnciálních rovnic n lgrické jsm s již skli ři řšní hrmonických usálných svů, omocí zorzní hrmonické funkc čsu do komlxní roviny SKM lz orci drivování ingrování nhrdi násoním či dělním komlxoru rs. fázoru činilm jω: A f sin ω ϕ A A j ω ϕ cos ω ϕ df d j ω ϕ j ω ϕ f A jω A j ω ϕ j ω ϕ jω A Ingrální rnsformc řiřzují originálu f jho orz F omocí ingrálu f F f P ro lcovu rnsformci lí: P lcov rnsformc j dfinován ro funkc sndrdního yu f f f < funkc f můž ý v čs nsojiá, k j ř zná hodnou f lcův orz funkc f j dfinován vzhm F f rč lcův orz ro funkci f o kons. F lcův orz hodnoy o kons.j / -násokm éo hodnoy

3 Zěná lcov rnsformc j dfinován ingrálm f π πj σ j [ F ] F d ω F d Dohod: řdměy funkc čsu orzy funkc komlxní roměnné σ j udm znči mlými ísmny znčím vlkými ísmny K oznční římé zěné lcovy rnsformc s oužívjí symoly - římá lcov rnsformc [ f ] F zěná lcov rnsformc [ F ] f Důlžié vlsnosi lcovy rnsformc:. j linární n k k f k n k F. orz drivc ro sojiou funkci f ro > df F f orz drivc j -násokm orzu F 3. orz ingrálu f ξ dξ k k F orz ingrálu j / násokm orzu funkc F - rč lcův orz něí n dvojólu njrv formulujm rovnici ro okmžié hodnoy u i di C i ξ dξ zvdm lcovy orzy ro něí roud: rovnici řvdm n rovnici ro orzy I I [ I i ] [ u ] [ i ] I i C I C

4 J-li i j. řším řchodný děj s nulovými očáčními odmínkmi k lí: I C Tuo rovnici můžm zs v ocném vru I Z rs. I Y kd j orzová imdnc Y j orzová dminc orzové iminc Vzhy mzi lcovými orzy něí roudů n sivních rvcích ři nulových očáčních odmínkách u i I orzová imdnc Z u u C C di I i d C ξ ξ I C i Z Z C C Orzová imdnc j formálně shodná s komlxní imdncí, nhrdím-li jω Pozor! Komlxní imdnc Z jω j oměr fázorů něí roudu Orzová imdnc j oráor Pro orzovou imdnci lí ro sriorllní sojní sjná rvidl jko ro komlxní imdnci Z jω

5 rč orzovou imdnci dvojólu C C Z linriy lcovy rsnsformc vylývá, ž m i ± I i ± i Posu ři nlýz řchodných dějů omocí lcovy rnsformc ro nulové očáční odmínky, nní nuno formulov difrnciální rovnic určím lcův orz udících vličin něí rs. roudu formulujm rovnic ro výoč orzů věvových vličin někrou z známých mod ro nlýzu ovodů 3 vyočm lcovy orzy hldných vličin 4 rovdm zěnou lcovu rnsformci okud chcm zná čsové růěhy hldných vličin Poznámk: Pro lcovy orzy něí roudů lí Kirchhoffovy zákony ři řšní řchodného děj s nnulovými očáčními odmínkmi formulujm njrv ingrodifrnciální rovnic ro čsové funkc y k omocí římé lcovy rnsformc řvdm n lgrické rovnic ro. orzy nuné ro srávné rskování očáčních odmínk jinou možnosí, jk rskov nnulové očáční odmínky, j náhrd indukoru rs. kcioru sriovým no rllním sojním ěcho rvků řízného zdroj něí rs. roudu závisjícího n očáční odmínc viz říkld dál ro vyšřní někrých vlsnosí lkrického ovodu jho dynmického chování sčí nlyzov ouz lcovy orzy nř. řnosové funkc, kmiočové chrkrisiky., k nmusím rovádě krok 4 zěnou lcovu rnsformci n i Snov čsový růěh roudu v ovodu Jlikož lí i, určím římo. orzy [ ] I

6 Pro zěnou rnsformci oužijm slovník lcovy rnsformc, nlznm vzorc [ ] * v nšm řídě j, Okmžié hodnoy něí roudu jsou i di u vidím, ž čsová konsn růěhu roudu něí závisí n kořnu jmnovl lcov orzu, oho využívám ři osuzování chrkru řchodného děj, k omu j nuno urči kořny olynomu v jmnovli zv. óly funkc F Odvozní vzhu * ro zěnou rnsformci v slovníku.r. nlznm, ž lí výrz / rozložím n rciální zlomky vyočm konsny A B B A B A Porovnání výrzů dosnm B A B A B B A B A oud održím

7 rč roudovou odzvu v ovodu C osuď chrkr řchodného děj v čs j ovod řiojn k zdroji sjnosměrného něí o Přchodný děj s nulovými očáčními odmínkmi, vyočm orzovou imdnci ovodu lcův orz roudu I C C C C Polynom v jmnovli Q urvím do normovného vru vyočm jho kořny I Q C Q C vzh ro I říšm do vru I, ± C orovnáním s rov. * dosnm, ž Okmžiá hodno roudu k ud [ I ] i oznčím-li lz kořny jmnovl zs v vru β α β β α C lí Okmžiou hodnou roudu k zíšm v urvném vru i α β Diskuz řšní rov. α α kořny rálné různé, z lyn, ž i j dáno surozicí dvou xonnciál řchodný děj riodický β α α kořny komlxně sdružné α β jωv C kořny zíšm v vru kd ωv β C β j ωv β jω v

8 o doszní do rov. dosnm i β sinωv řchodný děj kmivý ω v Závěr: Póly funkc I jsou sjné jko kořny chrkrisické rovnic rs. vlsní čísl svové mic A, kré jsm určili ři řšní řchodného děj v čsové olsi, odl yu ólů funkc I lz snovi chrkr řchodného děj óly jsou rálné různé řchodný děj j riodický óly jsou násoné řchodný děj j n mzi riodiciy c óly jsou komlxně sdružné - řchodný děj j kmivý Vyšř chrkr řchodného děj v ovodu dl orázku, j-li dáno H, C, F, Ω, o 5V H, C, F, 5 Ω, o 5V Přchodný děj s nulovými očáčním odmínkmi i, uc vyočm římo lcův orz roudu omocí orzové imdnc ovodu Přvdm n solčný jmnovl vyjádřím I C C C I C C I vyočm kořny olynomu v jmnovli óly funkc I C C C C Q C C, C ± C C Výsldky, 5 ± 5, 3 8,87 řchodný děj riodický čsové konsny jsou,885 s τ τ,3 s

9 Přchodné děj - shrnuí: ± 3 j, řchodný děj kmivý čsová sdružných kořnů, ± konsn j dán rálnou čásí komlxně τ s β β ± jα β ± jω Pokud zíšm, v, k lz z imginární čási kořnů snovi i riodu kmiů π α ωv 3 T, 9 s T Dynmické chování ovodu, j. chrkr řchodného děj j dán konfigurcí ovodu očm kumulčních rvků v ovodu oč C, lz ho osoudi n zákldě: hodno kořnů chrkrisické rovnic řchodný děj j osán difrnciální rovnicí n-ého řádu vlsních čísl svové mic A řchodný děj j osán svovou rovnicí sousvou n difrnciálních rovnic. řádu 3 ólů lcov orzu F hldné vličiny j. nlznm kořny olynomu v jmnovli lcov orzu F, no olynom j n-ého řádu Při vyšřování řchodných dějů s řídím násldujícími rvidly: rovnic formulujm n zákldě známých mod ro nlýzu ovodu římá likc Kirchhoffových zákonů mod smyčkových roudů mod uzlových něí Thvninov rs. Noronov vě. jko nznámé zrvidl volím svové vličiny formulujm ro ně fyzikální očáční odmínky c svové vličiny něí n kcioru roud indukorm s vždy mění sojiě d v ovodch. řádu j odzv vždy xonnciální v ovodch. vyššího řádu můž ý odzv riodická no kmivá f vličiny duální k svovým, j. roud kciorm něí n indukoru, s v okmžiku změn v ovodu zrvidl v čs mění nsojiě, dy skokm jsliž něí n kcioru vzrůsá, roud i C > jsliž něí n kcioru klsá, roud i C < jsliž roud n indukoru vzrůsá, něí u > jsliž něí n indukoru klsá, něí u <

10 Použií lcovy rnsformc ro dlší yy úloh lcov rnsformc umožňuj rlivně sndné řšní i řchodných dějů v ovodch s ocně čsově roměnnými zdroji rč růěh něí n kciě, j-li v čs ovod C řiojn k zdroji něí α u lcův orz něí n kcioru o dszní ud C C C C C C C lcův orz něí zdroj [ ] α α Zěná lcov rnsformc omocí vzorc *, v nšm řídě j C α C α C C α C u α C α, C Pro dná zojní vyšř vzh mzi vsuním něím u výsuním něím u. c d Řšní rovdm omocí lcov orzu řnosová funkc F vyočm oměr orzů výsuního vsuního něí C C F j-li C >> k F C C C čili

11 vzhldm k oráoru v jmnovli, ud vzh mzi u u vyjádřn ingrálm, ři slnění odmínky C>> lz zojní dl or. ouží k ingrci vsuního signálu u u ξ dξ ingrční čln C ro zojní j řnosová funkc dán vzhm F C C C j-li C << k F C čili C násoní oráorm odovídá drivci, čili něí u j drivcí něí u, ři slnění odmínky C<< lz zojní dl or. ouží k drirci vsuního signálu du C drivční čln u c odoně dosnm ro zojní dl or. c F j-li << k du drivční čln u F čili d ro zojní d j F j-li >> k u u ξ dξ ingrční čln F čili

12 Důlžié chrkrisiky ro osouzní dynmického chování ovodu jsou imulsní chrkrisik řchodová chrkrisik Jjich chrkr určím řšním řchodného děj s nulovými očáčními odmínkmi. Imulsní chrkrisik j roudová odzv ovodu n řiojní n jdnokový imuls vyjádřný Dircovou funkcí δ [ δ ] [ δ ] I Y [ Y ] i imulsní chrkrisik Přchodová chrkrisik j roudová odzv ovodu n jdnokový skok u ro [ u ] I Y i Y řchodová chrkrisik Z uvdného j zřjmé, ž ro vyšřní imulsní rs. řchodové chrkrisiky osčí snovi orzovou dminci vyšřovného ovodu vdné chrkrisiky čso oužívám k zjišťování odzv ovodu n liovolný vsuní signál, zrvidl k omu oužívám věu o konvoluci.

IDENTIFIKACE SYSTÉMŮ

IDENTIFIKACE SYSTÉMŮ Vysoká škol báňská Tchnická univrzi Osrv IDENTIFIKACE SYSTÉMŮ učbní x Miln Vrožin, Zor Jnčíková, Jiří Dvid Osrv Rcnz: rof. Ing. F. Němc, CSc. RNDr. Miroslv išk, CSc. Názv: IDENTIFIKACE SYSTÉMŮ Auor: Miln

Více

2. Uvete vztahy pro výpoet koeficient reálné Fourierovy ady. 2 k = T. 3. Uvete vztah pro výpoet koeficient komplexní Fourierovy ady T A.

2. Uvete vztahy pro výpoet koeficient reálné Fourierovy ady. 2 k = T. 3. Uvete vztah pro výpoet koeficient komplexní Fourierovy ady T A. Oázy:. v všchny vry Fourrovy dy, ré zná Gonorcý vr ( ( cos ϖ sn ϖ ludový (rvouhlý vr ( B B sn( ω ϕ B ; B Eonncálny vr ( jω ( jω j. v vzhy ro výo ocn rálné Fourrovy dy ( cos ω ( sn ω 3. v vzh ro výo ocn

Více

ZPĚTNÁ TRANSFORMACE RACIONÁLNĚ LOMENÉ FUNKCE

ZPĚTNÁ TRANSFORMACE RACIONÁLNĚ LOMENÉ FUNKCE Tor řízí I Zěá lcov rformc TEHNIKÁ UNIVERZIT V IBERI Hálkov 6 46 7 brc Z Fkul mchroky mzoborových žýrkých udí Tor uomckého řízí I ZPĚTNÁ TRNSFORE RIONÁNĚ OENÉ FUNKE Sudjí mrály Doc Ig Ovld odrlák Sc Kdr

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

Laplaceova transformace

Laplaceova transformace Lalaceova transformace EO2 Přednáška 3 Pavel Máša ÚVODEM Víme, že Fourierova transformace díky řísným odmínkám existence neexistuje ro řadu běžných signálů dokonce i funkce sin musela být zatlumena Jak

Více

Obvykle se používá stejná transformační matice pro napětí a proud.

Obvykle se používá stejná transformační matice pro napětí a proud. Trnsformce do složkových sousv náhrd fázorů fyzikálních veličin složkmi V rojfázové sousvě plí I I I c Ic b bc b bc V rnsformovné sousvě plí o I o I I n In m omn m omn Definičně určíme pro npěí 1 bc u

Více

5. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ

5. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ Intgrální počt funkc jdné proměnné. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ V kpitolách věnovných difrnciálnímu počtu jsm poznli, ž vypočítt drivci funkc j úloh vclku jdnoduchá. Stčí znát doř drivc lmntárních

Více

1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů.

1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů. Soubor říkladů k individuálnímu rocvičení roblemaiky robírané v ředměech KKY/TŘ a KKY/AŘ Uozornění: Následující říklady však neokrývají veškerou roblemaiku robíranou v uvedených ředměech. Doazy, náměy,

Více

2. Frekvenční a přechodové charakteristiky

2. Frekvenční a přechodové charakteristiky rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy

Více

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu.

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu. Mtmtik II.. Mtod pr prts pro určité intgrály.. Mtod pr prts pro určité intgrály Cíl Sznámít s s použitím mtody pr prts při výpočtu určitých intgrálů. Zákldní typy intgrálů, ktré lz touto mtodou vypočítt

Více

Laplaceova transformace.

Laplaceova transformace. Lalaceova transformace - studijní text ro cvičení v ředmětu Matematika -. Studijní materiál byl řiraven racovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za odory grantu IG ČVUT č. 300043 a v rámci

Více

Cvičení č. 9 Lineární zobrazení. Jádro a obor hodnot. Matice lineárního zobrazení.

Cvičení č. 9 Lineární zobrazení. Jádro a obor hodnot. Matice lineárního zobrazení. Ciční z linání lg 4 Ví Vonák Ciční č 9 Linání zozní Jáo oo hono Mi lináního zozní Linání zozní ini Zozní V U k U V jso kooé oso s nzýá linání jsliž U U Množin šh lináníh zozní U o V znčím V L U říkl ozhoně

Více

0.1 reseny priklad 4. z

0.1 reseny priklad 4. z Uvadim dva rsn priklad, abch pokud mozno napravil zmak na cvicni. Js o okomnuju pris.. rsn priklad 4. z 9.. Najd sandardni fundamnalni maici pro Cauchho ulohu = 7 + + 5 = Prislusna maic j 7 5 a jji vlasni

Více

zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme.

zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme. Teorie řízení 004 str. / 30 PŘÍKLAD zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, naájen do kotvy, indukčnost zanedbáme. E ce ω a) Odvoďte řenosovou funkci F(): F( ) ω( )/ u( ) b)

Více

Obvodové rovnice v časové oblasti a v operátorovém (i frekvenčním) tvaru

Obvodové rovnice v časové oblasti a v operátorovém (i frekvenčním) tvaru Obvodové rovnice v časové oblasti a v oerátorovém (i frekvenčním) tvaru EO Přednáška 5 Pavel Máša - 5. řednáška ÚVODEM V ředchozím semestru jsme se seznámili s obvodovými rovnicemi v SUS a HUS Jak se liší,

Více

Nakloněná rovina II

Nakloněná rovina II 1215 Nkloněná rovin II Předokldy: 1214 Pomůcky: siloměr 2,5 N, sd n měření řecí síly Pedoická oznámk: V éo následující hodině se nerobírá žádná nová lák Přeso jde o oměrně důležié hodiny, roože žáci se

Více

Teorie řízení. Analýza vlastností spojitých lineárních systémů

Teorie řízení. Analýza vlastností spojitých lineárních systémů Teorie řízení VOŠ SPŠ KunáHor Anlýz vlsnosí sojiých lineárních sysémů Sickévlsnosi oisují chování sysému v usáleném svu nevysihují řechodový děj nejčsější meodou oisu je sická chrkerisik Příkld: chrkerisik

Více

SP2 01 Charakteristické funkce

SP2 01 Charakteristické funkce SP 0 Chararisicé func Chararisicé func pro NP Chararisicé func pro NV Náhld Náhodnou proměnnou, nbo vor, L, n lz popsa funčními chararisiami: F, p, f číslnými chararisiami: E, D, A, A 4 Co s dá z čho spočía:

Více

MECHANICKÉ KMITÁNÍ TLUMENÉ

MECHANICKÉ KMITÁNÍ TLUMENÉ MECHNICKÉ KMITÁNÍ TLUMENÉ V skučnosi s čás nrgi u všch mchanických pohybů přměňuj vlivm řní a odporu prosřdí na plo, a nní dy využia V om případě s vlikosi po sobě jdoucích ampliud zmnšují a kmiající sousava

Více

3.3. Derivace základních elementárních a elementárních funkcí

3.3. Derivace základních elementárních a elementárních funkcí Přdpokládané znalosti V násldujících úvahách budm užívat vztahy známé z střdní školy a vztahy uvdné v přdcházjících kapitolách tohoto ttu Něktré z nich připomnm Eponnciální funkc Výklad Pro odvozní vzorců

Více

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné. INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních

Více

VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA

VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA VYSOKÁ ŠKOLA BÁŇSKÁ - ECHNICKÁ UNIVERZIA OSRAVA Fkl srojní NELINEÁRNÍ SYSÉMY ANALÝZA Milš Víčková Anonín Víčk Osrv 9 Lkor: Prof. RNDr. Ing. Miloš Šd Ph.D. Coprigh : Prof. Ing. Milš Víčková CSc. Prof. Ing.

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNCKÁ UNVERZTA V LBERC Fakula mecharoniky, informaiky a mezioborových sudií Cvičení č3 k ředměu ELMO Přírava ke cvičení ng Jiří Primas, ng Michal Malík Liberec Maeriál vznikl v rámci rojeku ESF (CZ7//747)

Více

Ortogonalita ORTOGONALITA, KOEFICIENTY FOURIEROVY ŘADY, GIBBSŮV JEV X31EO2

Ortogonalita ORTOGONALITA, KOEFICIENTY FOURIEROVY ŘADY, GIBBSŮV JEV X31EO2 OROGONALIA, KOEFICIENY FOURIEROVY ŘADY, GIBBSŮV JEV Orogoni X3EO Orogonání znmená omý. Orogoni e široý poem, používá se v různých oorech, nás ude zím memi. V memice zřemě nesnáze předsviený příd e omos

Více

( ) 1.7.8 Statika I. Předpoklady: 1707

( ) 1.7.8 Statika I. Předpoklady: 1707 .7.8 Sik I Přeokly: 707 Peoická oznámk: Hoinu rozěluji n vě čási. V rvní čási (5 minu) očíáme rvní čyři říkly, ve ruhé (0 minu) zývjící ři. Př. : N koncích yče o hmonosi 0 k élce m jsou zvěšen závží o

Více

Kontrola oteplení trakčních motorů

Kontrola oteplení trakčních motorů Konrol oplní rkčníh moorů Zákldním přdpokldm výpočů při sldování oplování očivýh srojů u hníh vozidl (přdvším rkčníh moorů) j náhrd rálného ěls ělsm fikivním, kré j homognní má sjnou plnou kpiu, sjné oplujíí

Více

12.1 Úvod. Poznámka : Příklad 12.1: Funkce f(t) = e t2 nemá Laplaceův obraz. Příklad 12.2: a) L{1} = 1 p, p > 0 ; b) L{ eat } = 1, [ZMA15-P73]

12.1 Úvod. Poznámka : Příklad 12.1: Funkce f(t) = e t2 nemá Laplaceův obraz. Příklad 12.2: a) L{1} = 1 p, p > 0 ; b) L{ eat } = 1, [ZMA15-P73] KAPITOLA 2: Lalaceova transformace [ZMA5-P73] 2. Úvod Lalaceovým obrazem funkce f(t) definované na, ) nazýváme funkci F () definovanou ředisem Definičním oborem funkce F F () = f(t) e t dt. je množina

Více

Přijímací zkoušky do NMS 2013 MATEMATIKA, zadání A,

Přijímací zkoušky do NMS 2013 MATEMATIKA, zadání A, Přijímací zkoušk do NMS MATEMATIKA, zadání A, jméno: V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna správná. Zakroužkujt ji! Za každou správnou odpověď získát uvdné bod. Za nsprávnou

Více

Účinnost plynových turbín

Účinnost plynových turbín Účinnos lynovýh urbín eelná účinnos (zisk využielné ehniké ráe) se snovuje sejně jko u všeh eelnýh oběhů. ermodynmiké změny rovní láky, v -v, -s digrmu, jsou n obr.. ehniké rovedení n obr. Ideální eelná

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 11. červenec 2012 Název zpracovaného celku: LINEÁRNÍ ROVNICE S PARAMETREM

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 11. červenec 2012 Název zpracovaného celku: LINEÁRNÍ ROVNICE S PARAMETREM Předmět: Ročník: Vytvořil: Dtum: MATEMATIA DRUHÝ Mgr. Tomáš MAŇÁ 11. červenec 01 Název zrcovného celku: LINEÁRNÍ ROVNICE S PARAMETREM LINEÁRNÍ ROVNICE S PARAMETREM Rovnice s rmetrem obshuje kromě neznámých

Více

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem Trnsformce 3D Sudijní cíl Teno blok je věnován rnsformcím 3D grfik. V eu budou popsán ákldní rnsformce v prosoru posunuí oočení kosení měn měřík používné při prcování 3D modelu. Jednolivé rnsformce budou

Více

Navazující magisterské studium MATEMATIKA 2016 zadání A str.1 Z uvedených odpovědí je vždy

Navazující magisterské studium MATEMATIKA 2016 zadání A str.1 Z uvedených odpovědí je vždy Navazující magistrské studium MATEMATIKA 16 zadání A str.1 Příjmní a jméno: Z uvdných odpovědí j vžd právě jdna správná. Zakroužkujt ji! V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna

Více

Lineární systémy. Pojem černé skříňky

Lineární systémy. Pojem černé skříňky 3 inární ém Miloš Sclgl clgl@kk.zc.cz Pom črné kříňk črná kříňk Přdpokld:. Vp výp o rálná fnkc rálné proměnné.. Výp dnoznčně rčn průběm fnkc n inrvl,], nboli d o kzální ém. 3. Pozorovl nmá žádno priorní

Více

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t)

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t) čbní xy pro Elkrochnik Ing. Kindrá Alxandr Přchodové jvy Účlm éo knihy j nači sdny řši přchodové jvy v obvodch. řád yp a sznámi j s oricko problmaiko přchodových jvů v obvodch. řádů yp. Přchodové jvy v

Více

14. Soustava lineárních rovnic s parametrem

14. Soustava lineárních rovnic s parametrem @66 4. Sousava lineárních rovnic s aramerem Hned úvodem uozorňuji, že je velký rozdíl mezi sousavou rovnic řešenou aramerizováním, roože má nekonečně mnoho řešení zadaná sousava rovnic obsahuje jen číselné

Více

1 - Úvod. Michael Šebek Automatické řízení

1 - Úvod. Michael Šebek Automatické řízení 1 - Úvod Michael Šebek Auomaické řízení 2018 9-6-18 Základní názvosloví Auomaické řízení - Kyberneika a roboika Objek: konkréní auo (amo) Sysém: určiá čás objeku, kerou se zabýváme, řídíme, Moor, sojka,

Více

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308 731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost

Více

Technická kybernetika. Kvalita regulace. Obsah. Kvalita regulace. Syntéza regulačního obvodu.

Technická kybernetika. Kvalita regulace. Obsah. Kvalita regulace. Syntéza regulačního obvodu. 4..8 Admicý ro 6/7 řirvil: Rdim Frn chnicá ybrni Kvli rgulc Synéz rgulčního obvodu bh Kvli rgulc. Synéz rgulčního obvodu. Exrimnální mody. Anlyicé mody. Anlyico-xrimnální mody. Kvli rgulc Cíl rgulc můž

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

Základní planimetrické pojmy a poznatky

Základní planimetrické pojmy a poznatky teorie řešené úlohy cvičení tiy k mturitě Zákldní lnimetrické ojmy ozntky íš, že očátek geometrie se dtuje do Egyt do třetího tisíciletí ř. n. l.? název geometrie znmenl ůvodně zeměměřičství? (geo = země,

Více

INTEGRÁLNÍ POČET. Primitivní funkce. Neurčitý integrál. Pravidla a vzorce pro integrování

INTEGRÁLNÍ POČET. Primitivní funkce. Neurčitý integrál. Pravidla a vzorce pro integrování INTEGRÁLNÍ POČET Primiivní unkce. Neurčiý inegrál Deinice. Jesliže pro unkce F einovné n oevřeném inervlu J plí F pro kžé J, říkáme, že F je primiivní unkcí k unkci n J. Vě. Je-li spojiá n J, pk k ní eisuje

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb 1.1.20 Sbírk n procvičení vzhů mezi veličinmi popisujícími pohyb Máme ři veličiny popisující pohyb dv vzhy, keré je spojují nvzájem. s v = Rychlos je změn dráhy z změnu čsu (rychlos říká, jk se v čse mění

Více

Struktura a architektura počítačů

Struktura a architektura počítačů Struktur rchitektur očítčů Logické ovody - kominční Booleov lger, ormy oisu Příkldy návrhu České vysoké učení technické Fkult elektrotechnická Ver.. J. Zděnek/M. Chomát Logický kominční ovod Logický kominční

Více

princip: části: Obr. B.1: Rozdělení částí brzdového zařízení.

princip: části: Obr. B.1: Rozdělení částí brzdového zařízení. B Brdění siničníc voide Definování ákdníc ojmů oždvků n rdění siničníc voide vycáí meinárodníc ředisů, nř. EHK č. 13 H. Zde jsou definovné oždvky n void edisk rdění. B.1 Zákdní ojmy Brdové říení součási,

Více

8. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice prvního řádu separovatelná, homogenní, lineární, Bernoulliova, exaktní...

8. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice prvního řádu separovatelná, homogenní, lineární, Bernoulliova, exaktní... Sbírka úloh z mamaik 8. Občjné difrnciální rovnic 8. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE... 94 8.. Difrnciální rovnic prvního řádu sparovalná homognní linární Brnoulliova akní... 94 8... Sparovalná difrnciální

Více

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů.

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů. 7.5.7 lips Přdpokldy: 7501 lips = rozšlápnutá kružnic. Jk ji sstrojit? Zhrdnická konstrukc lipsy (tkto s vytyčují záhony): Vzmm provázk n koncích ho přidělám tk, y nyl npnutý. Klcíkm provázk npnm tk, y

Více

H - Řízení technologického procesu logickými obvody

H - Řízení technologického procesu logickými obvody H - Řízní tchnologického procsu logickými ovody (Logické řízní) Tortický úvod Součástí řízní tchnologických procsů j i zjištění správné posloupnosti úkonů tchnologických oprcí rozhodování o dlším postupu

Více

Symbolicko - komplexní metoda I Opakování komplexních čísel z matematiky

Symbolicko - komplexní metoda I Opakování komplexních čísel z matematiky Symbolicko - komplexní metod I pkování komplexních čísel z mtemtiky Použité zdroje: Blhovec,.: Elektrotechnik II, Informtorium spol.s r.o., Prh 005 Wojnr, J.: Zákldy elektrotechniky I, Tribun EU s.r.o.,

Více

č é č ř č

č é č ř č Á č ř č Á Á Ň Á č é č ř č Á Ů Ě Í Ý Ř Í Ě É Á Č Ň Í Í Š Á Í Á Ů Ž ČÁ Č ÉÚ Á Í Á Ů É Á Í Ž É Ř ý š ž ř é š ř é ř č é ř é Č é ě ý é ý ú ě š é ý ř é Á ý č ů ú č ř ě ó Á ú č ě ě ů ý ú ů š č é Á ř č ě ř ý č

Více

1 - Úvod. Michael Šebek Automatické řízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

1 - Úvod. Michael Šebek Automatické řízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 - Úvod Michael Šebek Auomaické řízení 2016 Evroský sociální fond Praha & EU: Invesujeme do vaší budoucnosi 23-2-16 Základní názvosloví Auomaické řízení - Kyberneika a roboika Objek: konkréní auo (amo)

Více

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů.

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů. Vzth mezi reg. výrzy kon. utomty Automty grmtiky(bi-aag) 7. Převody mezi reg. grm., reg. výrzy kon. utomty Jn Holu Algoritmus (okrčování): 6. Zorzení δ: () δ(, x) oshuje x i, x i Z. () δ(x i, y) oshuje

Více

Využití logaritmů při řešení exponenciálních závislostí a exponenciálních rovnic

Využití logaritmů při řešení exponenciálních závislostí a exponenciálních rovnic .9.7 Vužií logrimů ři řešení eonenciálních závislosí eonenciálních rovnic Předokld: 9 Logrim jsme objevili, roože jsme nedokázli řeši někeré úloh. Zkusíme, zd s jejich omocí roblém vřešíme. Př. : Inenzi

Více

Statistika a spolehlivost v lékařství Spolehlivost soustav

Statistika a spolehlivost v lékařství Spolehlivost soustav Sttistik solhlivost v lékřství Solhlivost soustv 1 Soustvy s ví-stvovými rvky Něktré rvky (nř. rlé, vntily) slouží jko sínč rouu/klin/lynu mohou s orouht u v otvřném no zvřném stvu. Tyto vě oruhy j vhoné

Více

hledané funkce y jedné proměnné.

hledané funkce y jedné proměnné. DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

1.3 Derivace funkce. x x x. . V každém bodě z definičního oboru má každá z těchto funkcí vlastní derivaci. Podle tabulky derivací máme:

1.3 Derivace funkce. x x x. . V každém bodě z definičního oboru má každá z těchto funkcí vlastní derivaci. Podle tabulky derivací máme: rivc unkc 9 Vpočtět drivci unkc nou unkci lz přpst v tvru součt tří unkcí Zřjmě ji můžm chápt jko kd Ihnd vidím ž V kždém bodě z diničního oboru má kždá z těchto unkcí vlstní drivci Podl tbulk drivcí mám:

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

4. Ná hodné procesy { }

4. Ná hodné procesy { } 4 Ná hodné procesy 4 NÁ HODNÉ ROCESY 4 NÁ HODNÉ ROCESY SE SOJIÝM Č ASEM ři popisu dynmických jevů náhodných dějůje potřené tento děj vyjádřit většinou jko funkci reálného čsu neo tzv operčního čsu outo

Více

1 ) 3, a 5 6 b ( 4. x+2 x, b) f(x)= sin 3x = 3 sin x 4 sin 3 x ] (užijte vzorce: sin(α + β), sin 2x a cos 2x) f 1 : y = x 1. f 1 : y = 3 + ln x 1

1 ) 3, a 5 6 b ( 4. x+2 x, b) f(x)= sin 3x = 3 sin x 4 sin 3 x ] (užijte vzorce: sin(α + β), sin 2x a cos 2x) f 1 : y = x 1. f 1 : y = 3 + ln x 1 DOMÁCÍ ÚLOHY z MATEMATIKY VT) Opakování SŠ matmatiky Pomocí intrvalů zapišt nrovnosti: a), b) + >, c), d) > a),, b), 5), + ), c),, d), + ) Zjdnodušt výraz: a) 5 a a a ), b) a 5 6 b b 5 ) a b a a) a, a

Více

6 Řešení soustav lineárních rovnic rozšiřující opakování

6 Řešení soustav lineárních rovnic rozšiřující opakování 6 Řšní soustv linárníh rovni rozšiřujíí opkování Tto kpitol j rozšiřujíí ěžné učivo. Poku uvné mtoy zvlánt, zkrátí vám to čs potřný k výpočtům. Nní to všk učivo nzytné, řšit soustvy linárníh rovni lz i

Více

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic.

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic. temtk I část I Determty mtc řádu Determty mtc řádu Cíle Cílem ktoly je zvládutí řešeí ermtů čtvercových mtc Defce Determtem (řádu ) čtvercové mtce řádu jejímž rvky j jsou reálá (oř komlexí) čísl zýváme

Více

Modely veličin spojitých v čase funkce spojité v čase Binární matematické operace konvoluce a korelace

Modely veličin spojitých v čase funkce spojité v čase Binární matematické operace konvoluce a korelace Modly vličin spojiých v čas funkc spojié v čas Binární mamaické oprac konvoluc a korlac Základní informac Na konvoluci lz nahlíž jako na nudnou mamaickou opraci mzi dvěma funkcmi s jjími vlasnosmi a zákoniosmi.

Více

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus .9.6 Přirozná ponnciální funkc, přirozný ritmus Přdpokldy: 95 Pdgogická poznámk: V klsické gymnziální sdě j přirozná ponnciální funkc 0; j funkc y = +. Asi dvkrát vyrán jko funkc, jjíž tčnou v odě [ ]

Více

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně

Více

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál) INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc

Více

IMITANČNÍ POPIS SPÍNANÝCH OBVODŮ

IMITANČNÍ POPIS SPÍNANÝCH OBVODŮ IMITANČNÍ POPIS SPÍNANÝCH OBVODŮ Doc. Ing. Dalibor Biolk, CSc. K 30 VA Brno, Kounicova 65, PS 3, 6 00 Brno tl.: 48 487, fax: 48 888, mail: biolk@ant.f.vutbr.cz Abstract: Basic idas concrning immitanc dscription

Více

Repetitorium z matematiky

Repetitorium z matematiky Rovnie, nerovnie jejih soustvy (lineární, kvdrtiké, irionální) Reetitorium z mtemtiky Podzim Ivn Vulová A) Rovnie jejih řešení Mnoho fyzikálníh, tehnikýh jinýh úloh lze mtemtiky formulovt jko úlohu tyu:

Více

4.1 Sestavte v Matlabu funkci pro stanovení výšky geoidu WGS84.

4.1 Sestavte v Matlabu funkci pro stanovení výšky geoidu WGS84. MRAR-C ZADÁNÍ Č. úlohy 4 Trnsformc goických souřnic 4.1 Ssv v Mlbu funkci ro snovní výšky goiu WGS84. 4. Ssv v Mlbu funkci ro řoč goických souřnic n kréské souřnic ro goický sysém WGS84 s využiím funkc

Více

Nakloněná rovina I

Nakloněná rovina I 1.2.14 Nakloněná rovina I Předoklady: 1213 Pomůcky: kulička, sada na měření řecí síly. Až dosud jsme se u všech říkladů uvažovali ouze vodorovné lochy. Př. 1: Vysvěli, roč jsme u všech dosavadních říkladů

Více

Úloha 4 Šíření vodní páry a povrchová teplota

Úloha 4 Šíření vodní páry a povrchová teplota SF Podkldy ro cční Úloh 4 Šířní odní áry orchoá tlot Ing. Kml Stněk, 10/010 kml.stnk@fs.cut.cz 1 Vlhkost zduchu 1.1 Zákldní zthy Přhld, ysětlní oužtí zthů ro ýočt lhkostních chrktrstk zduchu jsou udny

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Ě É ÝÚ Č š Ť Á ť Í ř ů ů ú ů Ú Ž ú ů ů ů ř ř ú ů ů ř ř ř ř ř ň ú Ě Ř Ú Í Í ň ř ň ř ř ř ř Ž ř Í Í ř Ž ů ř ř ú ů ř ř ř ř ř Í ř ř ň ř ř ň ř ň ř ň ř ř ř ř ř ř ř ř ú ř ú Í ř ř ů ř ú ú ř úč ů ř ů ř ř ů ř ř ř

Více

Metody ešení. Metody ešení

Metody ešení. Metody ešení Mtod šní z hldiska kvalit dosažného výsldku ) p ř sné mtod p ř ímé ř šní difrnciálních rovnic, většinou pro jdnoduché konstrukc nap ř. ř šní ohbu prutu p ř ímou intgrací ) p ř ibližné mtod náhrada hldané

Více

Rentgenová strukturní analýza

Rentgenová strukturní analýza Rntgnová strukturní nlýz Příprvná část Objktm zájmu difrkční nlýzy jsou 3D priodicky uspořádné struktury (krystly), n ktrých dochází k rozptylu dopdjícího zářní. Díky intrfrnci rozptýlných vln vzniká difrkční

Více

L HOSPITALOVO PRAVIDLO

L HOSPITALOVO PRAVIDLO Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 10. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Hálkova 6, Liberec

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Hálkova 6, Liberec TECHNICKÁ UNIVERITA V LIBERCI Ktedr fyziky, Hálkov 6, 46 7 Liberec htt://www.f.tul.cz/kfy/bs_uf_r.html POŽADAVKY PRO PŘIJÍMACÍ KOUŠKY FYIKY Akdemický rok: 008/009 fkult edgogická Témtické okruhy. Kinemtik

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzia omáše Bai ve Zlíně Úsav elekroechniky a měření Sřídavý proud Přednáška č. 5 Milan Adámek adamek@f.ub.cz U5 A711 +4057603551 Sřídavý proud 1 Obecná charakerisika periodických funkcí zákl. vlasnosí

Více

k 1 P R 2 A t = 0 c A = c A,0 = A,0 c t Poměr rychlostí vzniku produktů P a R je konstantní a je roven poměru příslušných rychlostních konstant.

k 1 P R 2 A t = 0 c A = c A,0 = A,0 c t Poměr rychlostí vzniku produktů P a R je konstantní a je roven poměru příslušných rychlostních konstant. Ra simulánní Ra bočné (onurnční) Njjnoušší přípa - vě monomolulární ra: ro časovou změnu onnra láy plaí ( + ) + Řšním éo ifrniální rovni pro počáční pomínu R osanm závislos na čas v varu 0,0 ( ) +,0 (analogi

Více

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení. 4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme

Více

5 DISKRÉTNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI. Čas ke studiu kapitoly: 120 minut. Cíl: Po prostudování tohoto odstavce budete umět:

5 DISKRÉTNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI. Čas ke studiu kapitoly: 120 minut. Cíl: Po prostudování tohoto odstavce budete umět: 5 DISKRÉTNÍ ROZDĚLENÍ RAVDĚODOBNOSTI Čas e sudiu aioly: 0 miu Cíl: o rosudováí ohoo odsavce budee umě: charaerizova hyergeomericé rozděleí charaerizova Beroulliho ousy a z ich odvozeé jedolivé yy disréích

Více

Funkce hustoty pravděpodobnosti této veličiny je. Pro obecný počet stupňů volnosti je náhodná veličina

Funkce hustoty pravděpodobnosti této veličiny je. Pro obecný počet stupňů volnosti je náhodná veličina Přdnáša č 6 Náhodné vličiny pro analyticou statistiu Při výpočtch v analyticé statistic s používají vhodné torticé vličiny, tré popisují vlastnosti vytvořných tstovacích charatristi Mzi njpoužívanější

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

Digitální učební materiál

Digitální učební materiál Digiální učení meriál Číslo projeku CZ..7/../.8 Náev projeku Zkvlinění výuk prosřednicvím ICT Číslo náev šlon klíčové kivi III/ Inovce kvlinění výuk prosřednicvím ICT Příjemce podpor Gmnáium, Jevíčko,

Více

Zemní spojení v trojfázových soustavách

Zemní spojení v trojfázových soustavách Zemní sojení v trojfázovýh soustváh. Úvod Sítě vysokého nětí ovykle nemjí římo uzemněný uzel. Tyto sítě hustě rotínjí území venkov, městská entr i okrje měst s růmyslovými závody jsou ve znčné míře vystveny

Více

Systémové struktury - základní formy spojování systémů

Systémové struktury - základní formy spojování systémů Systémové struktury - základní formy sojování systémů Základní informace Při řešení ať již analytických nebo syntetických úloh se zravidla setkáváme s komlikovanými systémovými strukturami. Tato lekce

Více

ú Ú ň š Í Š š Š Š š ň ň Á ň ň ň ň Á ň ň ď ú ú š ň ú ú š ď Č Ě Í Í Á Í ŘÍ š Š š š š Š Ť Ú ú š ú ú š š ú Ť ú š š š š ú š š ú ň š š ú š š š š š š š š š š š š š š š š Č úď Ú š š š Š ú ú Ú Ť ú Í š š š š š

Více

6 SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI. Čas ke studiu kapitoly: 120 minut. Cíl: Po prostudování tohoto odstavce budete umět:

6 SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI. Čas ke studiu kapitoly: 120 minut. Cíl: Po prostudování tohoto odstavce budete umět: 6 SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI Čs sudiu ioly: minu Cíl: Po rosudování ohoo odsvc ud umě: chrrizov dnolivé yy soiých rozdělní: rovnoměrné, onnciální, Erlngovo, Wiullovo, normální, normovné normální,

Více

7. Integrální počet Primitivní funkce, Neurčitý integrál

7. Integrální počet Primitivní funkce, Neurčitý integrál 7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

Stojina ohýbaného nosníku vyztužená příčnými výztuhami a jednou a podélnou výztuhou

Stojina ohýbaného nosníku vyztužená příčnými výztuhami a jednou a podélnou výztuhou Pro. ng. Jose aháče DrS. Sojina ohýbaného nosníu vyzužená říčnými výzuhami a jednou a odélnou výzuhou Přílad Posuďe rosý nosní se sojinou vyzuženou říčnými i odélnými výzuhami. Rozěí nosníu L m zaížení

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

ZJIŠŤOVÁNÍ FREKVENČNÍCH VLASTNOSTÍ OTEVŘENÉHO OBVODU V UZAVŘENÉ REGULAČNÍ SMYČCE

ZJIŠŤOVÁNÍ FREKVENČNÍCH VLASTNOSTÍ OTEVŘENÉHO OBVODU V UZAVŘENÉ REGULAČNÍ SMYČCE Nové mtod a postp v olasti přístrojové tchnik, atomatického řízní a informatik Ústav přístrojové a řídicí tchnik ČVUT v Praz odorný sminář Jindřichův Hradc, 28. až 29. května 2009 ZJIŠŤOVÁNÍ FREKVENČNÍCH

Více

ž Í ú č č ě ó ě ě é ó ů Ú č Č č ý š ú ě ó š ý ě é ó ý ý ř ž ó č ť Č č ř č é ý é ě ř é é č é ý č é č č ř ě ě ř ě ž č ý ó ž ý č ý š ě é ř ý š š č é č č é ě č Í ó ó ý č ó ý Ž č č é ů ů ř ě ě š ř ě é ř ě

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

ď Í óč á ě ú óí í ť ú í ý ý Ě Í ý ě í ě í ě í ě Í Í Í ó í Í í í É ó í í á ě í í ě í ó ří č ý Ýú í í í Í ě ú Ě ě Í í Í á ý ý í É í í Í Í óí Ó ě á í Í á

ď Í óč á ě ú óí í ť ú í ý ý Ě Í ý ě í ě í ě í ě Í Í Í ó í Í í í É ó í í á ě í í ě í ó ří č ý Ýú í í í Í ě ú Ě ě Í í Í á ý ý í É í í Í Í óí Ó ě á í Í á ď Í óč á ě ú óí ť ú ý ý Ě Í ý ě ě ě ě Í Í Í ó Í É ó á ě ě ó ř č ý Ýú Í ě ú Ě ě Í Í á ý ý É Í Í óí Ó ě á Í á é ě ó É Í á Ě ř é ů ř á ú č ř ě ý á ó ď ý Ú ř ř ú ř ó Ť ó ó Íě ě ú ý ě ý é Í ě Í ů ů é á ě á

Více

02 Systémy a jejich popis v časové a frekvenční oblasti

02 Systémy a jejich popis v časové a frekvenční oblasti Modul: Analýza a modlování dynamických biologických dat Přdmět: Linární a adaptivní zpracování dat Autor: Danil Schwarz Číslo a názv výukové dnotky: Systémy a ich popis v časové a frkvnční oblasti Výstupy

Více