Základy počítačové grafiky

Rozměr: px
Začít zobrazení ze stránky:

Download "Základy počítačové grafiky"

Transkript

1 Základy počítačové gafky Pezentace přednášek Ústav počítačové gafky a multmédí Téma přednášky Radozta Motto Světlo se šíří podle fyzkálních zákonů! Př ealstcké zobazení vtuálních počítačových scén e poto hodné tyto zákony espektovat! Obsah: Radozta. Zobazovací ovnce. Rovnce adozty. Řešení adozty. Konfguační faktoy. Nusseltova analoge. Pomítání na polokychl. Matcové řešení adozty. Postupuící adozta. Adaptvní dělení ploch. Heachcká metoda řešení. Zobazení scény. Ray-tacng a Radozta. Poovnání adozty a ealty. Základy počítačové gafky / Radozta 3 Základy počítačové gafky / Radozta 4

2 Radozta Zobazovací ovnce Potřeba zobazovací metody, kteá espektue fyzkální pncpy šíření světla. Radozta - Goalová, Toance, Geenbeg (~ 984). Metoda globální lumnace scény, šíření světelné enege. Vychází z výpočtů tepelného záření po výpočet světla. Předpoklady: Zákon zachování enege. Enegetcky uzavřená scéna. Bez vlvu postředí (vakuum). Nepůhledné obekty. Čstě dfúzní obazy. Polygonální epezentace. Vychází z dvousměové dstbuční funkce BRDF Plochy neen odážeí světlo, ale mohou mít vlastní zářvost. L = L + f ω, ) L ) G ) dx e S S L zářvost v bodě x ve směu ω Le vlastní zářvost v bodě x do směu ω f ω, ) osvětlovací funkce L ) dopadaící světlo do bodu x ve směu ω GS ) geomete, vazby bodů x a S plochy scény Základy počítačové gafky / Radozta 5 Základy počítačové gafky / Radozta 6 Rovnce adozty Řešení adozty Pouze dfúzní odaz světla. B( x) = E( x) + ρ( x) B( ) G ) d S B( x) = π L( x) adozta v bodě x B( ) adozta v bodě L( x) = L dfuzní ρ( x) = π f ( x) dfúzní odazvost E( x) = π Le vlastní zářvost v bodě x f ( x) osvětlovací funkce,směově nezávslá G ) = GS ) π geomete, vazby S plochy scény zářvost v x,směově nezávslá bodů x a Schéma řešení adozty Vstup: Geomete scény plochy. Dfúzní odazvost ploch. Vlastní zářvost zdoů světla. Analytcké řešení ovnce adozty e paktcky nemožné. Poto numecké řešení: Rozdělení ploch scény na sítě plošek s konstantní adoztou. Integál nahazen součtem. Radozta se počítá po středy apoxmačních plošek. B = E + ρ B F B adozta té plošky F konfguační fakto plošek, n = Základy počítačové gafky / Radozta 7 Základy počítačové gafky / Radozta 8

3 Řešení adozty Konfguační faktoy Geometcký člen G(x,x ) ovnce adozty e př numeckém řešení nahazen konfguačním faktoem F. F říká kolk enege plošky e přímo přato ploškou. F e teoetcky defnován ako plošný půmět všech bodů obou plošek. Konfguační fakto F závsí na: F = G( x x ) dx dx A, A A Velkost plošek. Vzáemné poloze plošek. Vzáemné vdtelnost plošek. Analytcké řešení konfguačního faktou e náočné, poto: Nusseltova analoge. Pomítání na polokychl. Použtí ay-tacngu (stínové papsky). Základy počítačové gafky / Radozta 9 Základy počítačové gafky / Radozta 0 Nusseltova analoge Konfguační fakto F dfeencální plošky da odpovídá ploše půmětu plošky A vznklého eí poekcí do ovny da přes ednotkovou polokoul okolo da. Výpočetně náočné. Platí po dostatečně vzdálené plošky. Platí en po vzáemně vdtelné plošky doplnění o řešení vdtelnost. Pomítání na polokychl Nahazení polokoule z Nusseltovy analoge polokychlí. Polokycle pokyta sítí plošek (pxelů). Každý pxel polokychle má předpočítaný F. Výsledný F e dán součtem F pxelů obsazených půmětem. Platí po dostatečně vzdálené plošky. Platí en po vzáemně vdtelné plošky doplnění o řešení vdtelnost. Vznk alasu. Růst chyby po malé plošky. Základy počítačové gafky / Radozta Základy počítačové gafky / Radozta 2

4 Matcové řešení adozty Postupuící adozta (pogessve) B = E + ρ B ρ n = n = B F B F = E K B = E Dskétní ovnce po výpočet adozty -té plošky tvoří soustavu lneáních ovnc. Řešení soustavy ovnc Gauss- Sedelovou nebo Jakobho teační metodou. Shomažďování (akumulace) adozt na ploškách scény. Velká náočnost na paměť po řešení soustavy. Je k dspozc až konečný výsledek, není půběžně. Vystřelování adozty z plošek, kteé maí nevíce enege. Ozářené plošky se stávaí sekundáním zdo světla. Rekuzvní opakování, dokud se enege neutlumí. Odpovídá faktu, že nevětší vlv ve scéně maí plošky, kteé sou osvětleny neslněším zdo. Výsledný obaz vznká postupně, půběžný výstup. Základy počítačové gafky / Radozta 3 Základy počítačové gafky / Radozta 4 Postupuící adozta příklad Postupuící adozta příklad 2 Základy počítačové gafky / Radozta 5 Základy počítačové gafky / Radozta 6

5 Adaptvní dělení ploch Adaptvní dělení ploch - příklad Kvalta zobazení e funkcí velkost ploch scény. Mnoho malých ploch zpomalue výpočet. Dělení má vlv pouze na místa s ostým světelným přechody. Adaptvní dělení ploch: Povedeme výpočet adozty celé scény. Rozdělt plochy, kteé maí vůč sousedním plochám přílš velký ozdíl osvětlení. Přepočíst adoztu po ozdělené plochy. Opakovat dělení, dokud exstuí plochy po dělení. Základy počítačové gafky / Radozta 7 Základy počítačové gafky / Radozta 8 Heachcká metoda řešení Zednodušení výpočtu konfguačních faktoů ploch. Vytvoření úovňové heache po adaptvně dělené plochy. Malé plošky maí zanedbatelný vlv na vzdálené plochy. Malé plošky sou po přenos na větší vzdálenost nahazeny skupnovým faktoem. Zavedení ednosměných vazeb mez plocham: Po vzdálené a velké plochy použtí vyššího stupně heache (ednosměně). Po malé vzdálenost vazby mez ozděleným plocham. Zobazení scény VRML příklad Hodnoty adozty ploch scény se nemění př změně kamey. Mapování hodnot adozty (nemá omezení) na baevný ozsah (přes ntenzty baev). Zobazení scény s využtím algotmů řešení vdtelnost. Plynulé přechody - Goaudova stínování. Intenzty ve vcholech ako půmě ntenzt z okolí. Základy počítačové gafky / Radozta 9 Základy počítačové gafky / Radozta 20

6 Ray-tacng a Radozta Poovnání adozty a ealty Poovnání obou metod > tab. Klady adozty doplňuí nevýhody Ray-tacng a naopak. Po zobazení výsledků adozty může být použta metoda Ray-tacng. Tím se přdaí zcadlové odazy obektů a vlastnost povchů. Ray-tacng Radozta Obekty Lbovolné Rovnné plochy Zdoe světla Hance stínů Zcadlové odazy Bodové Osté Ano Plošné Osté měkké Ne Skutečná scéna Geneovaná scéna Dfúzní odazy Od přímých zdoů Ano Základy počítačové gafky / Radozta 2 Základy počítačové gafky / Radozta 22 Scéna továny - příklad Základy počítačové gafky / Radozta 23

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

ZÁKLADY GEOMETRIE KŘIVEK A PLOCH

ZÁKLADY GEOMETRIE KŘIVEK A PLOCH ZÁKLADY GEOMETRIE KŘIVEK A PLOCH Povzoní studní mateál - - Křvky v toozměném postou Úvod E - toozměný eukldovský posto s pevně zvolenou katézskou soustavou P e e V - eho zaměření D Nechť J R Zobazení X

Více

B1. Výpočetní geometrie a počítačová grafika 9. Promítání., světlo.

B1. Výpočetní geometrie a počítačová grafika 9. Promítání., světlo. B. Výpočetní geometie a počítačová gafika 9. Pomítání., světlo. Pomítání Převedení 3D objektu do 2D podoby je ealizováno pomítáním, při kteém dochází ke ztátě infomace. Pomítání (nebo též pojekce) je tedy

Více

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY . přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a

Více

Výslednice, rovnováha silové soustavy.

Výslednice, rovnováha silové soustavy. Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

Geometrická optika. Aberace (vady) optických soustav

Geometrická optika. Aberace (vady) optických soustav Geometická optika Abeace (vady) optických soustav abeace (vady) optických soustav jsou odchylky zobazení eálné optické soustavy od zobazení ideální optické soustavy v důsledku abeací není obazem bodu bod,

Více

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech

Více

1 Elektrotechnika 1. 9:00 hod. G 0, 25

1 Elektrotechnika 1. 9:00 hod. G 0, 25 A 9: hod. Elektrotechnka a) Napětí stejnosměrného zdroje naprázdno je = 5 V. Př proudu A je svorkové napětí V. Vytvořte napěťový a proudový model tohoto reálného zdroje. b) Pomocí přepočtu napěťových zdrojů

Více

Staré mapy TEMAP - elearning

Staré mapy TEMAP - elearning Staré mapy TEMAP - elearnng Modul 4 Kartometrcké analýzy Ing. Markéta Potůčková, Ph.D., 2013 Přírodovědecká fakulta UK v Praze Katedra aplkované geonformatky a kartografe Kartometre a kartometrcké vlastnost

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

Statistická energetická analýza (SEA)

Statistická energetická analýza (SEA) Hladna akustckého tlaku buzení harmonckou slou [db] Statstcká energetcká analýza (SA) V současné době exstue řada způsobů, ak řešt vbroakustcké problémy. odobně ako v ných odvětvích nženýrství, také ve

Více

Konstrukční a technologické koncentrátory napětí

Konstrukční a technologické koncentrátory napětí Obsah: 6 lekce Konstukční a technologické koncentátoy napětí 61 Úvod 6 Účinek lokálních konstukčních koncentací napětí 63 Vliv kuhového otvou na ozložení napjatosti v dlouhém tenkém pásu zatíženém tahem

Více

( ) = H zásobitel = 1. H i = 1+ +...

( ) = H zásobitel = 1. H i = 1+ +... sou fnance důležté? nanční management Základní pojmy e NPV důležté? Základy úrokového počtu reálná aktva fnanční aktva hmotná aktva nehmotná aktva sou fnance důležté? Kolk a do jakých aktv má frma nvestovat?

Více

Matematické modelování turbulence

Matematické modelování turbulence Matematcé modelování turbulence 1. Reynolds Averaged Naver Stoes (RANS) Řeší se Reynoldsovy rovnce Výsledem ustálené řešení, střední velčny Musí se použít fyzální model pro modelování Reynoldsových napětí

Více

I. Statické elektrické pole ve vakuu

I. Statické elektrické pole ve vakuu I. Statické elektické pole ve vakuu Osnova:. Náboj a jeho vlastnosti 2. Coulombův zákon 3. Intenzita elektostatického pole 4. Gaussova věta elektostatiky 5. Potenciál elektického pole 6. Pole vodiče ve

Více

- 1 - Obvodová síla působící na element lopatky větrné turbíny

- 1 - Obvodová síla působící na element lopatky větrné turbíny - - Tato Příloha 898 je sočástí článk č.. Větrné trbíny a ventlátory, http://www.transformacntechnologe.cz/vetrne-trbny-a-ventlatory.html. Odvození základních rovnc aerodynamckého výpočt větrné trbíny

Více

do strukturní rentgenografie e I

do strukturní rentgenografie e I Úvod do stuktuní entgenogafie e I Difakce tg záření na kystalu Metody chaakteizace nanomateiálů I RND. Věa Vodičková, PhD. Studium kystalové stavby Difakce elektonů, neutonů, tg fotonů Kystal ideální mřížka

Více

LectureV. April 18, celou historii vývoje škálovacího faktoru a Hubleovy konstanty. Otázkou je, jak určit množství hmoty ve vesmíru.

LectureV. April 18, celou historii vývoje škálovacího faktoru a Hubleovy konstanty. Otázkou je, jak určit množství hmoty ve vesmíru. LectureV Aprl 18, 2016 1 Temná hmota V předchozích lekcích sme ukázal, že pokud známe celkové množství hmoty ve vesmíru a eí složení, známe celou hstor vývoe škálovacího faktoru a Hubleovy konstanty. Otázkou

Více

Jízdní odpory. Téma 4 KVM. Teorie vozidel 1

Jízdní odpory. Téma 4 KVM. Teorie vozidel 1 Jízdní odpoy Téa 4 KVM Teoe vozdel Jízdní odpoy Jízda = překonávání odpoů Velkost jízdních odpoů podňuje paaety jízdy a její hospodánost Jízdní odpoy závsí na: Konstukčních vlastnostech vozdla Na okažté

Více

kde U výst je napětí na jezdci potenciometru, R P2 je odpor jezdce potenciometru, R P celkový odpor potenciometru a U je napětí přivedené

kde U výst je napětí na jezdci potenciometru, R P2 je odpor jezdce potenciometru, R P celkový odpor potenciometru a U je napětí přivedené EDL 3.EB 2 /7.ZADÁÍ a) Změřte průběh výstupního napětí potenciometru v závislosti na poloze jezdce při různém zatížení, které je dáno různými hodnotami poměru / Z, například 0; 0,5; ; 5; 0 b) Změřenou

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI PEDAGOGICKÁ FAKULTA KATEDRA OBECNÉ FYZIKY DIPLOMOVÁ PRÁCE. Jakub SCHWARZMEIER Fy-VT, učitelství pro SŠ

ZÁPADOČESKÁ UNIVERZITA V PLZNI PEDAGOGICKÁ FAKULTA KATEDRA OBECNÉ FYZIKY DIPLOMOVÁ PRÁCE. Jakub SCHWARZMEIER Fy-VT, učitelství pro SŠ ZÁPADOČESKÁ UNIVERZITA V PLZNI PEDAGOGICKÁ FAKULTA KATEDRA OBECNÉ FYZIKY DIPLOMOVÁ PRÁCE Jakub SCHWARZMEIER Fy-VT, učtelství po SŠ Plzeň, březen 004 ZÁPADOČESKÁ UNIVERZITA V PLZNI PEDAGOGICKÁ FAKULTA KATEDRA

Více

rdr r 1 r 2 Spojky třecí lamelové Lamela Přítlačný kotouč Setrvačník

rdr r 1 r 2 Spojky třecí lamelové Lamela Přítlačný kotouč Setrvačník oment přenášený spojkou Lamela Přítlačný kotouč pojky třecí lamelové etvačník F d i - výpočtový (účinný) polomě spojky - počet třecích ploch - moment přenášený spojkou Základní ovnice : F t F. f třecí

Více

Cvičení 5 (Potrubní systémy)

Cvičení 5 (Potrubní systémy) VŠ Techncá unvezta Ostava aulta stoní Kateda pužnost a pevnost (9) Pužnost a pevnost v enegetce (Návody do cvčení) Cvčení (Potubní systémy) uto: aoslav oíče Veze: Ostava 9 PP Cvčení Potubní systémy: Ob

Více

Příklady elektrostatických jevů - náboj

Příklady elektrostatických jevů - náboj lektostatika Hlavní body Příklady elektostatických jevů. lektický náboj, elementání a jednotkový náboj Silové působení náboje - Coulombův zákon lektické pole a elektická intenzita, Páce v elektostatickém

Více

4/3.3. bodem v rovině (tvoří rovinný svazek sil), jsou vždy. rovnice z-ová. Pro rovnováhu takové soustavy

4/3.3. bodem v rovině (tvoří rovinný svazek sil), jsou vždy. rovnice z-ová. Pro rovnováhu takové soustavy STROJNICKÁ PŘÍRUČKA čá s t 4, d íl 3, k a p to la 3, str. 1 díl 3, Statka 4/3.3 ROVNOVÁHA TĚLESA Procházejí-l po uvolnění tělesa všechny síly jedním bodem v rovně (tvoří rovnný svazek sl), jsou vždy splněny

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů

Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů Mechanka dynaka Hlavní body Úvod do dynaky. Dynaka tanslačních pohybů Dynaka otačních pohybů Úvod do dynaky Mechanka by byla neúplná, kdyby se nezabývala, důvody poč se tělesa dávají do pohybu, zychlují,

Více

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika, cvičení č.1: Větrání stájových objektů vypracoval: Adamovský Daniel

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika, cvičení č.1: Větrání stájových objektů vypracoval: Adamovský Daniel Základy větrání stájových objektů Stájové objekty: objekty otevřené skot, ovce, kozy apod. - přístřešky chránící ustájená zvířata pouze před přímým náporem větru, před dešťovým a sněhovým srážkam, v létě

Více

BH059 Tepelná technika budov

BH059 Tepelná technika budov BH059 Tepelná technika budov Stavebně energetické vlastnosti budovy - Průměrný součinitel prostupu tepla Energetická náročnost budovy Prostup tepla obálkou budovy vyadřue základní vliv stavebního řešení

Více

LINEÁRNÍ PROGRAMOVÁNÍ

LINEÁRNÍ PROGRAMOVÁNÍ LINEÁRNÍ PROGRAMOVÁNÍ Lneární programování e druh matematckého programování. Matematcký model se skládá z:. účelové funkce. omezuících podmínek (vlastní omezení a podmínk nezápornost) Účelová funkce omezuící

Více

5. Elektromagnetické kmitání a vlnění

5. Elektromagnetické kmitání a vlnění 5. Elektomagnetické kmitání a vlnění 5.1 Oscilační obvod Altenáto vyábí střídavý poud o fekvenci 50 Hz. V paxi potřebujeme napětí ůzných fekvencí. Místo fekvence používáme pojem kmitočet. Různé fekvence

Více

4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal

4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal 4. konfeence o matematice a fyzice na VŠT Bno, 15. 9. 25 Faktály ve fyzice Oldřich Zmeškal Ústav fyzikální a spotřební chemie, Fakulta chemická, Vysoké učení technické, Pukyňova 118, 612 Bno, Česká epublika

Více

METODA HLAVNÍCH KOMPONENT V LABORATORNÍ PRAXI

METODA HLAVNÍCH KOMPONENT V LABORATORNÍ PRAXI MEODA HLANÍH KOMPONEN LABORAORNÍ PRAXI JIŘÍ MILIKÝ, Kateda tetlních ateálů, echncká unvesta v Lbec, Hálkova 6 46 7 Lbeec, e- al:.lky@vslb.cz Motto: ednoduchost e síla MILAN MELOUN, Kateda analytcké chee,

Více

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2 ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB Vladmír Hanta 1 Ivan Gros 2 Vysoká škola chemcko-technologcká Praha 1 Ústav počítačové a řídcí technky 2 Ústav

Více

VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1

VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1 VÝVOJ SOFWARU NA PLÁNOVÁNÍ PŘESNOSI PROSOROVÝCH SÍÍ PRECISPLANNER 3D DEVELOPMEN OF HE MEASUREMEN ACCURACY PLANNING OF HE 3D GEODEIC NES PRECISPLANNER 3D Martn Štroner 1 Abstract A software for modellng

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE. 2013 Radka Luštincová

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE. 2013 Radka Luštincová VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE 2013 Radka Luštncová VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Název bakalářské práce: Aplkace řezných

Více

Řešené příklady ze stavební fyziky

Řešené příklady ze stavební fyziky ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Řešené příklady ze stavební fyzky Šíření tepla konstrukcí, tepelná blance prostoru a vlhkostní blance vzduchu v ustáleném stavu doc. Dr. Ing. Zbyněk

Více

A) Dvouvodičové vedení

A) Dvouvodičové vedení A) Dvouvodičové vedení vedení symetické (shodné impednce vodičů vůči zemi) vede vění od MHz do mx. stovek MHz, dominntní vid TEM běžné hodnoty vové impednce: 3 Ω, 6 Ω impednce se zvětší, pokud se zmenší

Více

eská zem d lská univerzita v Praze, Technická fakulta

eská zem d lská univerzita v Praze, Technická fakulta eská zemdlská unvezta v Paze, Techncká fakulta 9. lektcké pole 9. lektcký náboj Každá látka je vytvoena z tzv. elementáních ástc, kteé vytváejí složtjší stuktuy. ástce na sebe vzájemn psobí slam, kteé

Více

5. Světlo jako elektromagnetické vlnění

5. Světlo jako elektromagnetické vlnění Tivium z optiky 9 5 Světlo jako elektomagnetické vlnění Ve třetí kapitole jsme se dozvěděli že na světlo můžeme nahlížet jako na elektomagnetické vlnění Dříve než tak učiníme si ale musíme alespoň v základech

Více

Modelování rizikových stavů v rodinných domech

Modelování rizikových stavů v rodinných domech 26. 28. června 2012, Mkulov Modelování rzkových stavů v rodnných domech Mlada Kozubková 1, Marán Bojko 2, Jaroslav Krutl 3 1 2 3 Vysoká škola báňská techncká unverzta Ostrava, Fakulta strojní, Katedra

Více

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého

Více

REDUKCE DIMENSIONALITY PRAVDĚPODOBNOSTNÍCH MODELŮ PRO FDI

REDUKCE DIMENSIONALITY PRAVDĚPODOBNOSTNÍCH MODELŮ PRO FDI REDUKCE DIMENSIONALITY PRAVDĚPODOBNOSTNÍCH MODELŮ PRO FDI J. Jkovský 1, M. Hofete 2 1 Humusoft s..o., Paha 2 Ústav Přístojové a řídcí technky, Fakulta stojní, ČVUT v Paze Abstakt Příspěvek se věnuje poblematce

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. 1 Komplexní úloha FAKULTA STAVEBNÍ - OBOR STAVEBNÍ INŽENÝRSTVÍ KATEDRA SPECIÁLNÍ GEODÉZIE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. 1 Komplexní úloha FAKULTA STAVEBNÍ - OBOR STAVEBNÍ INŽENÝRSTVÍ KATEDRA SPECIÁLNÍ GEODÉZIE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ - OBOR STAVEBNÍ INŽENÝRSTVÍ KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu STAVEBNÍ GEODÉZIE číslo úlohy název úlohy 1 Komplexní úloha školní rok den výuky

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

Elektrické světlo příklady

Elektrické světlo příklady Elektrické světlo příklady ZÁKLADNÍ POJMY SVĚTELNÉ TECHNIKY. Rovinný úhel (rad) = arc = a/r = a'/l (pro malé, zorné, úhly) a a' a arc / π = /36 (malým se rozumí r/a >3 až 5) r l. Prostorový úhel Ω = S/r

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

1.3. Transport iontů v elektrickém poli

1.3. Transport iontů v elektrickém poli .3. Transport ontů v elektrckém pol Ionty se v roztoku vystaveném působení elektrckého pole pohybují katonty směrem ke katodě, anonty k anodě. Tento pohyb ontů se označuje jako mgrace. VODIVOST Vodvost

Více

Simulační metody hromadné obsluhy

Simulační metody hromadné obsluhy Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro

Více

Metoda hlavních komponent

Metoda hlavních komponent d d Víceozměná data Metoda hlavních komonent Václav Adamec vadamec@mendelucz Extenze unvaetních dat na více oměnných () Datová matce: n x Hodnot oměnných získán z jednoho subjektu () Předoklad závslostí

Více

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1

Více

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí

Více

Fuzzy prediktor pro kinematicko silové řízení kráčejícího robota

Fuzzy prediktor pro kinematicko silové řízení kráčejícího robota Fuzzy pedikto po kinematicko silové řízení káčejícího obota Ing. Jan Kaule, Ph.D. Ing. Mioslav UHER VA Bno Kateda technické kybenetiky a vojenské obotiky, Kounicova 65, 6 00 Bno, Česká epublika Abstakt:

Více

II. Statické elektrické pole v dielektriku. 2. Dielektrikum 3. Polarizace dielektrika 4. Jevy v dielektriku

II. Statické elektrické pole v dielektriku. 2. Dielektrikum 3. Polarizace dielektrika 4. Jevy v dielektriku II. Statické elektické pole v dielektiku Osnova: 1. Dipól 2. Dielektikum 3. Polaizace dielektika 4. Jevy v dielektiku 1. Dipól Konečný dipól 2 bodové náboje stejné velikosti a opačného znaménka ve vzdálenosti

Více

Cvičení z termomechaniky Cvičení 6.

Cvičení z termomechaniky Cvičení 6. Příklad 1: Pacovní látkou v poovnávacím smíšeném oběhu spalovacího motou je vzduch o hmotnosti 1 [kg]. Počáteční tlak je 0,981.10 5 [Pa] při teplotě 30 [ C]. Kompesní pomě je 7, stupeň zvýšení tlaku 2

Více

ZŠ A MŠ NUČICE PŘÍSTAVBA

ZŠ A MŠ NUČICE PŘÍSTAVBA ZŠ A MŠ NUČICE PŘÍSTAVBA Posouzení denního osvětlení Duben 2015 Mgr. Dana Klepalová, Růžičkova 32, 250 73 Radonice Tel. 606 924 638, email: d.klepalova@seznam.cz IČ 76196046 MŠ a ZŠ Nučice Duben 2015 Přístavba

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o. . Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární

Více

3D metody počítačového vidění, registrace, rekonstrukce

3D metody počítačového vidění, registrace, rekonstrukce 3D metody počítačového vidění, egistace, ekonstkce účel měření - bezkontaktní měření polohy a vzdálenosti - zjištění/měření postoových ozměů - zjištění 3D tva evezní inženýing modely existjících věcí,

Více

Elektromagnetické pole

Elektromagnetické pole Elektroagnetcké pole Časově proěnné elektrcké proudy v čase se ění velkost proudu a napětí v obvodu kvazstaconární proudy elektroagnetcký rozruch se šířívodče rychlostí světla c doba potřebná k přenosu

Více

Seminární práce z fyziky

Seminární práce z fyziky Seminání páce z fyziky školní ok 005/006 Jakub Dundálek 3.A Jiáskovo gymnázium v Náchodě Přeměny mechanické enegie Přeměna mechanické enegie na ovnoamenné houpačce Název: Přeměna mechanické enegie na ovnoamenné

Více

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí

Více

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometie RND. Yvetta Batáková Gymnázium, OŠ a VOŠ Ledeč nad ázavou Objemy a povchy těles otační válec a kužel VY_3_INOVACE_05_3_17_M Gymnázium, OŠ a VOŠ Ledeč nad ázavou 1 Objemy a povchy těles A) Rotační

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

Osciloskopy analýza signálů

Osciloskopy analýza signálů Osciloskopy analýza signálů 1. Měření napětí a fekvence elektických signálů osciloskopem Naučit se manipulaci s osciloskopem a používat jej po měření napětí a fekvence střídavých elektických signálů. Potřeby

Více

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce . meznárodní konference Řízení a modelování fnančních rzk Ostrava VŠB-TU Ostrava, Ekonomcká fakulta, katedra Fnancí 8. - 9. září 200 Metody vícekrterálního hodnocení varant a ech využtí př výběru produktu

Více

Analýza nahraditelnosti aktivního systému úsekového měření rychlosti pasivním systémem P. Chmelař 1, L. Rejfek 1,2, M.

Analýza nahraditelnosti aktivního systému úsekového měření rychlosti pasivním systémem P. Chmelař 1, L. Rejfek 1,2, M. Ročník 03 Číslo II Analýza nahradtelnost aktvního systému úsekového měření rychlost pasvním systémem P. Chmelař, L. Refek,, M. Dobrovolný Katedra elektrotechnky, Fakulta elektrotechnky a nformatky, Unverzta

Více

Transport hmoty a tepla v mikrofluidních systémech

Transport hmoty a tepla v mikrofluidních systémech Transport hmoty a tepla v mkrofludních systémech Konvektvní transport v zařízeních s malým charakterstckým rozměrem Konvektvní tok vznká působením plošných, objemových, nercálních a třecích sl v objemu

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ GB02 FYZIKA II MODUL M01 ELEKTŘINA A MAGNETISMUS

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ GB02 FYZIKA II MODUL M01 ELEKTŘINA A MAGNETISMUS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ PROF. ING. BOHUMIL KOKTAVÝ, CSC., DOC. ING. PAVEL KOKTAVÝ, CSC., PH.D. GB FYZIKA II MODUL M1 ELEKTŘINA A MAGNETISMUS STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY

Více

MECHANIKA I. Jaromír Švígler

MECHANIKA I. Jaromír Švígler MECHNIK I Jaomí Švígle OBSH Pedmluva Rozdlení a základní pojm mechank 4 Statka Základní pojm a aom statk Síla Moment síl k bodu a k ose Slová dvojce Základní vta statk Páce a výkon síl a momentu 5 Slové

Více

Tržní výkonnost je vyjádřena ziskovou výnosností z tržní hodnoty podniku. kapitálového trhu, jde-li o akciovou společnost s akciemi nebo dluhopisy

Tržní výkonnost je vyjádřena ziskovou výnosností z tržní hodnoty podniku. kapitálového trhu, jde-li o akciovou společnost s akciemi nebo dluhopisy 7. přednáška Výkonnost podle tžních měřítek Tžní výkonnost je vyjádřena ziskovou výnosností z tžní hodnoty podniku. odnotí se podle údajů (ukazatelů) kapitálového thu, jde-li o akciovou společnost s akciemi

Více

Přechodné jevy v elektrizačních soustavách

Přechodné jevy v elektrizačních soustavách vičení z předmětu Přechodné jevy v elektrizačních soustavách Další doporučená literatura: 1. Beran, Mertlová, Hájek: Přenos a rozvod elektrické energie. Hájek: Přechodné jevy v elektrizačních soustavách

Více

K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze Lagrangeovy rovnice 2. druhu Leoš Dvořák, MFF UK Praha, 2014

K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze Lagrangeovy rovnice 2. druhu Leoš Dvořák, MFF UK Praha, 2014 K přednášce UFY08 Teoetcá mechana pozatímní učební text, veze 0 Lagangeovy ovnce duhu Leoš Dvořá, MFF UK Paha, 04 Lagangeovy ovnce duhého duhu V této aptole ž půde o dynamu, tedy o pohyb soustavy hmotných

Více

ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ

ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ THE TIME COORDINATION OF PUBLIC MASS TRANSPORT ON SECTIONS OF THE TRANSPORT NETWORK Petr Kozel 1 Anotace: Předložený příspěvek

Více

2. Vlnění. π T. t T. x λ. Machův vlnostroj

2. Vlnění. π T. t T. x λ. Machův vlnostroj 2. Vlnění 2.1 Vlnění zvláštní případ pohybu prostředí Vlnění je pohyb v soustavě velkého počtu částic navzájem vázaných, kdy částice kmitají kolem svých rovnovážných poloh. Druhy vlnění: vlnění příčné

Více

II Polynomy. 1. Zá kladnívlastnosti

II Polynomy. 1. Zá kladnívlastnosti II Polynomy S polynomy (mnohoč leny) se setkáváme jž na střední š kole a pozdě j pak v kuzu matematcké analýzy, kde se polynom chápe jako eálná funkce Zá kladnívlastnost II Defnce Nechť a 0, a,, a n jsou

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti F8 KEPLEOVY ZÁKONY Evopský sociální fond Paha & EU: Investujeme do vaší udoucnosti F8 KEPLEOVY ZÁKONY Kepleovy zákony po planetání pohy zfomuloval Johannes Keple (1571 1630) na základě měření Tychona Baheho

Více

Úvod, optické záření. Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014

Úvod, optické záření. Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014 Úvod, optické záření Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014 Materiál je pouze grafickým podkladem k přednášce a nenahrazuje výklad na vlastní

Více

Teorie elektrických ochran

Teorie elektrických ochran Teore elektrckých ochran Elektrcká ochrana zařízení kontrolující chod část energetckého systému (G, T, V) = chráněného objektu, zajstt normální provoz Chráněný objekt fyzkální zařízení pro přenos el. energe,

Více

Newtonův gravitační zákon

Newtonův gravitační zákon Gavitační pole FyzikaII základní definice Gavitační pole je posto, ve kteém působí gavitační síly. Zdojem gavitačního pole jsou všechny hmotné objekty. Každá dvě tělesa jsou k sobě přitahována gavitační

Více

Precomputed radiance transfer

Precomputed radiance transfer Precomputed radiance transfer Martin Bulant 11. dubna 2011 Reprezentace funkce na sféře Reálnou funkci na sféře G(x) aproximujeme pomocí lineární kombinace lineárně nezávislých bázových funkcí B i (x):

Více

ÚČINNOST KOTLE. Součinitel přebytku spalovacího vzduchu z měřené koncentrace O2 Účinnost kotle nepřímou metodou Účinnost kotle přímou metodou

ÚČINNOST KOTLE. Součinitel přebytku spalovacího vzduchu z měřené koncentrace O2 Účinnost kotle nepřímou metodou Účinnost kotle přímou metodou ÚČINNOST KOTLE 1. Cíl páce: Roštový kotel o jmenovtém výkonu 100 kw, vybavený automatckým podáváním palva, je učen po spalování dřevní štěpky. Teplo z topného okuhu je předáváno do chladícího okuhu pomocí

Více

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici) Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].

Více

akustika zvuk, zdroj zvuku šíření zvuku odraz zvuku tón, výška tónu kmitočet tónu hlasitost zvuku světlo, zdroj světla přímočaré šíření světla

akustika zvuk, zdroj zvuku šíření zvuku odraz zvuku tón, výška tónu kmitočet tónu hlasitost zvuku světlo, zdroj světla přímočaré šíření světla - určí, co je v jeho okolí zdrojem zvuku, pozná, že k šíření zvuku je nezbytnou podmínkou látkové prostředí - chápe odraz zvuku jako odraz zvukového vzruchu od překážky a dovede objasnit vznik ozvěny -

Více

Návody na cvičení. Prof. Ing. Jiří Militký CSc. EUR ING Ing. Miroslava Maršálková

Návody na cvičení. Prof. Ing. Jiří Militký CSc. EUR ING Ing. Miroslava Maršálková VLASTNOSTI VLÁKEN Návody na cvčení Pro. Ing. Jří Mltký CSc. EUR ING Ing. Mroslava Maršálková TU Lberec 3 Náplň cvčení z předětu VLASTNOSTI VLÁKEN NÁPLŇ CVIČENÍ:. týden Úvod, bezpečnostní předpsy, poůcky.

Více

TECHNOLOGIE TVÁŘENÍ TENKÝCH PLECHŮ OHÝBÁNÍM

TECHNOLOGIE TVÁŘENÍ TENKÝCH PLECHŮ OHÝBÁNÍM VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV STROJÍRENSKÉ TECHNOLOGIE FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MANUFACTURING TECHNOLOGY TECHNOLOGIE

Více

Kalibrace měřiče KAP v klinické praxi. Martin Homola Jaroslav Ptáček

Kalibrace měřiče KAP v klinické praxi. Martin Homola Jaroslav Ptáček Kalibrace měřiče KAP v klinické praxi Martin Homola Jaroslav Ptáček KAP kerma - area product kerma - area produkt, je používán v dozimetrii pacienta jednotky (Gy * m 2 ) kerma - area produkt = plošný integrál

Více

Dopravní plánování a modelování (11 DOPM )

Dopravní plánování a modelování (11 DOPM ) Department of Appled Mathematcs Faculty of Transportaton cences Czech Techncal Unversty n Prague Dopravní plánování a modelování (11 DOPM ) Lekce 4: FM: Trp generaton Doc. Ing. Ondře Přbyl, Ph.D. Ing.

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé

Více

Referenční zářič s indukčním ohřevem

Referenční zářič s indukčním ohřevem Poceedings of Intenational Scientific Confeence of FME Session 4: Automation Contol and Applied Infomatics Pape 24 Refeenční zářič s indukčním ohřevem LYSENKO, Vladimí 1 1 Doc, Ing, CSc, Kateda fyziky,

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Fyzika 7. ročník Zpracovala: Ing. Irena Košťálková Rozhodne, jaký druh pohybu těleso koná vzhledem k jinému tělesu Uvede konkrétní příklady, na kterých doloží jednotlivé

Více

1. Srovnávací měření jasu monitorů pomocí Color Analyzeru a Chromametru

1. Srovnávací měření jasu monitorů pomocí Color Analyzeru a Chromametru Laboratorní úlohy ze světla a osvětlovací techniky 1/5 1. Srovnávací měření jasu monitorů pomocí Color Analyzeru a Chromametru 1.1 Úvod Jedním z úkolů světelné techniky je vytvořit osvětlovací podmínky,

Více

Měření tvaru ploch. Postup :

Měření tvaru ploch. Postup : B ěření tvau plo Úol :. Změřte tva plo pomoí souřadnovéo měříío aříení. Poveďte eonstu tvau plo na počítač. Učete polomě sféé plo pomoí sféometu Postup :. ěření tvau plo pomoí souřadnovéo měříío aříení

Více