Državni izpitni center. Osnovna raven MATEMATIKA. Izpitna pola 1. Torek, 26. avgust 2008 / 120 minut
|
|
- Hana Marková
- před 6 lety
- Počet zobrazení:
Transkript
1 Š i f r a k a n d i d a t a : Državni izpitni center *M0840* JESENSKI IZPITNI ROK Osnovna raven MATEMATIKA Izpitna pola Torek, 6. avgust 008 / 0 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali kemični svinčnik, svinčnik, radirko, računalo brez grafičnega zaslona in možnosti računanja s simboli, šestilo in dva trikotnika, lahko tudi ravnilo. Kandidat dobi dva konceptna lista in dva ocenjevalna obrazca. SPLOŠNA MATURA NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma vpišite svojo šifro (v okvirček desno zgoraj na tej strani in na ocenjevalna obrazca). Svojo šifro vpišite tudi na konceptna lista. Izpitna pola vsebuje nalog. Število točk, ki jih lahko dosežete, je 80. Za posamezno nalogo je število točk navedeno v izpitni poli. Pri reševanju si lahko pomagate s standardno zbirko zahtevnejših formul na strani. Rešitve, ki jih pišite z nalivnim peresom ali s kemičnim svinčnikom, vpisujte v izpitno polo v za to predvideni prostor, grafe funkcij pa rišite s svinčnikom. Če se zmotite, napisano prečrtajte in rešitev zapišite na novo. Nečitljivi zapisi in nejasni popravki bodo ocenjeni z nič (0) točkami. Osnutki rešitev, ki jih lahko naredite na konceptna lista, se pri ocenjevanju ne upoštevajo. Pri reševanju nalog mora biti jasno in korektno predstavljena pot do rezultata z vsemi vmesnimi računi in sklepi. Če ste nalogo reševali na več načinov, jasno označite, katero rešitev naj ocenjevalec oceni. Zaupajte vase in v svoje zmožnosti. Želimo vam veliko uspeha. Ta pola ima 6 strani, od tega prazni. RIC 008
2 M Formule n+ n+ n n n n n n a + b = ( a + b)( a a b + a b... + a b ab + b ) Evklidov in višinski izrek v pravokotnem trikotniku: a = ca, b = cb, vc = ab Polmera trikotniku očrtanega in včrtanega kroga: R = abc 4S, r = S s, s = a + b + c Kotne funkcije polovičnih kotov: sin =± cos ; cos =± + cos ; tan = sin + cos Kotne funkcije trojnih kotov: sin 3 = 3 sin 4 sin 3, cos 3 = 4 cos3 3 cos Adicijski izrek: sin( + y) = sin cos y + cos sin y cos( + y) = cos cos y sin sin y tan + tan y tan( + y) = tan tany Faktorizacija: + y y + y y sin + sin y = sin cos, sin sin y = cos sin + y y + y y cos + cosy = cos cos, cos cos y = sin sin sin( ± y) sin( y ± ) tan ± tan y =, cot ± coty = cos cos y sin sin y Razčlenitev produkta kotnih funkcij: sin sin y = [ cos( + y) cos( y) ] cos cos y = [ cos( + y) + cos( y) ] sin cos y = [ sin ( + y) + sin ( y) ] Razdalja točke 0( 0, 0) 0 0 ( 0, p) = T y od premice a + by c = 0 : a + by c dt a + b Ploščina trikotnika z oglišči A (, y ), B(, y ), C ( 3, y 3) : S = ( )( y3 y) ( 3 )( y y) Elipsa: e = a b, ε = e a ; a > b Hiperbola: e = a + b, ε = e a, a je realna polos Parabola: p y = p, gorišče G (,0 ) Integrala: d arc tan C + a = a a +, d arc sin = + C a a
3 M Zapišite prvih deset členov aritmetičnega zaporedja s prvim členom in diferenco 3. Koliko odstotkov teh desetih števil je deljivih s 4 in koliko odstotkov je praštevil? Prvih deset členov aritmetičnega zaporedja:,,,,,,,,, (6 točk) Odstotek števil, deljivih s 4 : Odstotek praštevil:
4 4 M Narišite premici 3 y 3 = 0 in + y + 5 = 0 ter izračunajte njuno presečišče. (7 točk) y
5 M Rešite enačbo = 0 in narišite rešitvi v kompleksni ravnini. (6 točk) Im i Re
6 6 M Zapišite enačbo tangente ter enačbo normale na graf funkcije f ( ) = 3 v točki A(, y ). 0 (7 točk)
7 M Dana je racionalna funkcija f ( ) =. Zapišite njeno definicijsko območje in ničlo, enačbi + 3 navpične in vodoravne asimptote, presečišče grafa funkcije z ordinatno osjo ter narišite graf. (7 točk)
8 8 M Med petimi knjigami, tremi igračami in dvema zavitkoma bonbonov naključno izberemo tri darila. Izračunajte verjetnost dogodka, da smo izbrali eno knjigo, eno igračo in en zavitek bombonov. (6 točk)
9 M V koordinatne sisteme narišite množice točk, ki ustrezajo pogojem: a) + y = 4 b) + y = 4 (8 točk) y y c) + y = 4 d) y = 4 y y
10 0 M Rešite enačbo sin( π ) + cos =. (8 točk)
11 M Osnovna ploskev pokončne prizme je romb z diagonalama e = 8 cm in f = 4 cm. Diagonala stranske ploskve meri 39 cm. Izračunajte površino prizme. (6 točk)
12 M Točke A ( 0, 0), B ( 7, 0), C ( 3, 3) in D ( 0, 3) so oglišča trapeza. Narišite ga v dani koordinatni sistem. Izračunajte dolžino stranice b = BC, skalarni produkt AB AC in velikost kota β = ABC. Dolžino stranice in skalarni produkt izračunajte natančno, kot β pa zapišite zaokroženo na minute. y (7 točk)
13 M V koordinatnem sistemu je narisan graf logaritemske funkcije f ( ) = log a. Zapišite osnovo tega logaritma. V isti koordinatni sistem narišite še grafa funkcij g( ) = loga ( + ) in h( ) = log. Grafa nedvoumno označite. a (6 točk) y y = f ( )
14 4 M Izračunajte pozitivno realno število a tako, da bo ploščina lika, ki ga oklepa graf funkcije f ( ) = asin z osjo na intervalu 0, π 3, enaka. (6 točk)
15 M Prazna stran
16 6 M Prazna stran
MEHANIKA NAVODILA ZA OCENJEVANJE
[ifra kandidata: Dr`avni izpitni center *M474* SPOMLDNSKI ROK MEHNIK NVODIL Z OENJEVNJE Ponedeljek, 7. junij 4 SPLO[N MTUR RI 4 M4-74-- PODROČJE PREVERJNJ Okro valja s polero R in aso je navita vrv, na
SEZNAM ŠOLSKIH POTREBŠČIN ZA 1. RAZRED SOLČAVA
SEZNAM ŠOLSKIH POTREBŠČIN ZA 1. RAZRED KOLIČINA ŠOLSKI COPATI 1 ŠOLSKA TORBA, V NEJ PA 1 PERESNICA 1 SVINČNIK, TRDOTA HB 2 RADIRKA 1 ŠILČEK 1 KVALITETNE BARVICE 1 FLOMASTRI 1 ŠKARJE 1 LEPILO 1 ŠABLONA
zlatarna E.LECLERC Po ok Od 1O. januarja do 31. decembra 2O18
zlatarna E.LECLERC Po ok Od 1O. januarja do 31. decembra 2O18 KREATORJI Alice Varini 2 1 3 4 5 7 KREATORJI 9 6 8 10 Renato Bertuzzo NAŠ NAKIT IMA DVELETNO GARANCIJO ZA VSE OKVARE IN PRIKRITE NAPAKE 11
MATEMATIKA PRIPRAVA NA NACIONALNO PREVERJANJE ZNANJA. Jana Draksler in Marjana Robič
MATEMATIKA 6+ PRIPRAVA NA NACIONALNO PREVERJANJE ZNANJA Jana Draksler in Marjana Robič ZBIRKA ZNAM ZA VEČ MATEMATIKA 6+ Zbirka nalog za nacionalno preverjanje znanja Avtorici: Jana Draksler in Marjana
Po vrsti z leve proti desni so obrazi Blaž, Erik, Dane, Andrej, Andraž, Bor.
Rešitve 8. in 9. razred 1. naloga Po vrsti z leve proti desni so obrazi Blaž, Erik, Dane, Andrej, Andraž, Bor. Zadnja izjava nam pove, da sta plešasta Dane in Erik. Predzadnja pa, da imata Dane in Bor
Matematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
1. Písemka skupina A1..
1. Psemka skupina A1.. Nartněte grafy funkc (v grafu oznate všechny průseky funkce s osami) 3 y y sin( ) y y log ( 1) 1 y 1 y = arccotg - 1) Urete, jestli je funkce y = - + 1 omezená zdola nebo shora?
Intervalna ocena parametra
Psihologija UL,. st., Statistično 5.. Ocenjevanje araetrov Univerza v Ljubljani, ilozofska fakulteta, Oddelek za sihologijo Študij rve stonje Psihologija. seester, redet Statistično Izr. rof. dr. Anja
. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.
Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo
KVIZ Osnove elektrotehnike II magnetostatika
KVIZ Osnove elektrotehnike II magnetostatika 1. KVIZ : Sila med tokovodniki 1. Določite silo med dvema ravnima, tankima, vzporednima vodnikoma s tokoma 50 A na dolžini 10 m. Vodnika sta razmaknjena za
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004
PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)
MIFID_FORMS_LIST_SLV
MIFID_FORMS_LIST_SLV Obrazec: Nalog za dvig finančnih sredstev Obrazec: Nalog za prenos denarja Obrazec: Naročilo za prevod denarja v okviru družbe Obrazec: Dopolnitve in spremembe kontaktnih podatkov
Základy matematiky kombinované studium 714 0365/06
Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické
Základy matematiky pracovní listy
Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
13. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET
. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET Dovednosti: Chápat pojem limita funkce v bodě a ovládat výpočet jednoduchých limit.. Na základě daného grafu funkce umět odhadnout limity v nevlastních bodech a nevlastní
PRILOGA ŠT. 1: Gasilski znak
PRILOGA ŠT. 1: Gasilski znak STATUT GASILSKE ZVEZE SLOVENIJE Gasilski znak je gasilska elada. Za elado sta prekrižani z leve bakla, z desne gasilska sekirica. PRILOGA ŠT. 2: Gasilski grb Gasilski grb je
B-panel. C-panel. S-panel. Osnovni enobarvni paneli. Zasteklitve. strani strani strani
Zgodba vaše hiše B-panel strani 8-11 Osnovni enobarvni 3020 3021 3023 paneli 3040 3041 Zasteklitve C-panel strani 12-20 S-panel strani 26-33 1012 1010 1013 2090 2091 1022 1023 1021 2020 1040 1041 1042
Diferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 1. Elementární funkce 1.2. Přehled elementárních funkcí 2 Lineární funkce - je každá funkce na množině R, která je dána ve tvaru y = a.x + b, kde a,b R. Pokud
Cyklometrické funkce
4 Cyklometrické funkce V minulé kapitole jsme zkoumali první funkci inverzní ke funkci goniometrické (tyto funkce se nazývají cyklometrické) funkci y = arcsin x (inverzní k funkci y = sin x ) Př: Nakresli
+ n( 1)n+1 (x 7) n, poloměr konvergence 6. 3.Poloměr konvergence je vždy +. a) f(x) = x n. (x 7) n, h(x) = 7 + 7(n+1)( 1) n. ( 1)n
VÝSLEDKY I. TAYLORŮV POLYNOM. a + b + 4 4 c + 0 d e + + 4 f + + 4 g + 70 4 h 4 4. a b c d - e log a f 0 g h i j k - 4. a 7 b 4. a AK absolutně konverguje b D diverguje c D d AK e D f AK g AK II. MOCNINNÉ
Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a
Wolfram Alpha jde o výpočetní prostředí z nejrůznějších oborů (matematika, fyzika, chemie, inženýrství... ) přístupné online: http://www.wolframalpha.com/ Jaké matematické výpočty Wolfram Alpha zvládá?
Analiza naravne svetlobe
Analiza naravne svetlobe Analizirana je naravna svetloba v treh prostorih: bivalni prostor v kleti (1), bivalni prostor v pritličju (2) ter otroška soba v mansardi (3). Analize so narejene s programom
11. KŘIVKOVÝ INTEGRÁL Křivkový integrál I. druhu Úlohy k samostatnému řešení
Sbíra úloh z matematia 11 Křivový integrál 11 KŘIVKOVÝ INTEGRÁL 115 111 Křivový integrál I druhu 115 Úloh samostatnému řešení 115 11 Křivový integrál II druhu 116 Úloh samostatnému řešení 116 11 Greenova
. Opakovací kurs středoškolské matematiky podzim 2015
. Opakovací kurs středoškolské matematiky podzim 0 František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou
SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ
VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos
Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.
Test M-ZS- M-ZS-/ Příklad Najděte tečnu grafu funkce f x x 6 3 x, která je kolmá na přímku p :x y 3 0. Zřejmě D f R. Přímka p má směrnici, tečna na ní kolmá má proto směrnici. Protože směrnice tečny ke
VIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2
Přijímací zkouška na MFF UK v Praze
Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 017, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Zadání. Goniometrie a trigonometrie
GONIOMETRIE A TRIGONOMETRIE Zadání Sestrojte graf funkce. Určete definiční obor R, obor hodnot H, určete interval, v němž funkce roste, v němž klesá. Určete souřadnice průsečíků s osou x a s osou y. )
Úvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
I. TAYLORŮV POLYNOM. 2. a) x x3, b) x x3 + x5, c) 1 + 2x x2 2x 4, f (4) (0) = 48, d) x , c)
VÝSLEDKY I. TAYLORŮV POLYNOM. a) ( ) + ( ) ( 6 ), b) ( π ). a) +, b) +, c) + + 4, f (4) (0) = 48, d) + 4 4, e) + 0, f), g) ++ 6 4, h) + 70 4, i) 4 j) + 6 k) 7 8 40. + o( ), 8 4. a), b), c), d) -, e) 4
6. URČITÝ INTEGRÁL Výpočet určitého integrálu Úlohy k samostatnému řešení... 68
Sbírka úloh z matematik 6. URČITÝ INTEGRÁL... 68 6.. Výpočet určitého integrálu... 68 Úloh k samostatnému řešení... 68 6.. Geometrické aplikace... 69 6... Obsah rovinného obrazce... 69 Úloh k samostatnému
Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li
ČÉ Á ŠŤ šť š Č ř ž š ý Š Č Ú š ú š Ž š š š ř ž ž š š š š ý ř š š ů ř š š š š š ú Í ú ř š š ů š š Ž ř ž ů ý Ě É Ú Í Í Š Ě ÍÚ Í š š Ý ý š Ó Č ř ř ř š ř ý ř ž ř š Č Š ÉŽ š Ě Í š Ř Ě Š Ě Á Á ČÁ š ý ž ž š ý
x 2 +1 x 3 3x 2 4x = x 2 +3
I. Určitý integrál I.. Eistence určitých integrálů Zjistěte, zda eistují určité integrály : Příklad. + + d Řešení : Ano eistuje, protože funkce f() + + je spojitá na intervalu,. Příklad. + 4 d Řešení :
Rychlotest-internet. Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy Univerzity v Brně. 14. května 2007
Rychlotest-internet Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy Univerzity v Brně 14. května 2007 Na vyřešení testu by Vám mělo stačit 25 minut. K jeho řešení nebudete potřebovat
Kapitola 7: Neurčitý integrál. 1/14
Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní
Základy matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
II. 3. Speciální integrační metody
48 II. Integrální počet funkcí jedné proměnné II.. Speciální integrační metody Integrály typu f ( x, r x, r x,..., r k x ), tj. integrály obsahující proměnnou x pod odmocninou, kde k N a r,..., r k jsou
Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta
Matematika přehled vzorců pro maturaty (zpracoval T. Jáský) Úpravy výrazů a r. a s = a r+s a r = ar s as a r s = a r.s a. b r = a r b r a b r = ar b r a. b a b = a b = a. b ( a) m = a m m a m. = a a k.
1. Písemka skupina A...
. Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce
Příklady k přednášce 3
Příklad k přednášce 3 1. Určete, zda závislost a daná uvedeným vztahem je funkce = f(). V případě záporné odpovědi stanovte, kterými funkcemi je možné příslušnou závislost popsat. 1. =3 2, (, + ) je funkcí,
Navodila za uporabo Garmin Nüvi 1200
Navodila za uporabo Garmin Nüvi 1200 Kratek povzetek navodil in uporabniški priročnik ste dobili zraven aparata. Tukaj bomo še enkrat omenili pomembnejše postopke uporabe. 1. Predpriprava Prižgite aparat
VIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y
y (5) (x) y (4) (x) + 4y (3) (x) 12y (x) 45y (x) 27y(x) (horní indexy značí derivaci) pro 3. y(x) = x sin 3x 4. y(x) = x cos 3x 9.
Přezdívka: Jméno a příjmení: výsledek 101 Vypočtěte y x y 4 x + 4y x 12y x 4y x 27yx horní indexy značí derivaci pro 1. yx = sin x 2. yx = cos x. yx = x sin x 4. yx = x cos x. yx = e x 1 6. yx = xe x 7.
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 : 9. dubna 07 D : 830 P P P : 30 M. M. : 30 : 8,8 M. :, % S : -7,5 M. P : -,5 :,4 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a
Integrální počet - II. část (další integrační postupy pro některé typy funkcí)
Integrální počet - II. část (další integrační postupy pro některé typy funkcí) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz) 1 /
Kapitola 2: Spojitost a limita funkce 1/20
Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)
Elementární funkce. Polynomy
Elementární funkce 1 Elementární funkce Elementární funkce jsou níže uvedené funkce a jejich složenin : 1. Polnom.. Racionální funkce. 3. Mocninné funkce. 4. Eponenciální funkce. 5. Logaritmické funkce.
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
MATEMATIKA III. Program - Křivkový integrál
Matematia III MATEMATIKA III Program - Křivový integrál 1. Vypočítejte řivové integrály po rovinných řivách : a) ds, : úseča, spojující body O=(0, 0), B = (1, ), b) ( + y ) ds, : ružnice = acos t, y= a
(5) Primitivní funkce
(5) Primitivní funkce Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (5) Primitivní funkce 1 / 20 Def: Primitivní funkce Definice Necht funkce f je definována na neprázdném otevřeném intervalu (a,
MATEMATIKA rozšířená úroveň
Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MATEMATIKA rozšířená úroveň profilová část maturitní zkoušky Sešit obsahuje úloh. Na řešení úloh máte 60 minut. Odpovědi pište do záznamového archu.
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii
CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
Programski jeziki. Od problema do programa. Od problema do programa
Programski jeziki Od problema do programa Od problema do programa Problem Algoritem (postopek reševanja problema) Zapis v programskem jeziku uporaba ukazov, ki jih znamo izvesti Prevajanje v obliko, ki
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
Konvergence kuncova/
Konvergence http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Příklady.. 3. 3 + d Konverguje - u je funkce spojitá, u srovnáme s /. e d Konverguje - na intervalu [, ] je funkce spojitá, na intervalu
PŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
Limita ve vlastním bodě
Výpočty it Definice (a případné věty) jsou z knihy [] příklady z [] [] a []. Počítám u zkoušky dvacátou itu hlavu mám dávno už do čista vymytu papír se značkami skvěje z čela mi pot v proudech leje než
MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy Univerzity v Brně. 14. května 2007
Rychlotest-řešení Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy Univerzity v Brně 14. května 2007 Příklad 1 Mějme funkci y = sin x rozhodněte zda směrnice tečny k dané křivce
Priimek in ime: Vpisna številka: Letnik vaj Obkroži smer študija:
Predmet: Skupina: Rok Točke: OPISNA GEOMETRIJA A 18.3.2003 Priimek in ime: Vpisna številka: Letnik vaj Obkroži smer študija: GRA GEO UNI VSŠ VKI Ocena: Poskus: 1. (20) f 1 je gorišče elipse, AB pa ena
Repetitorium z matematiky
Goniometrické funkce a rovnice Repetitorium z matematiky Podzim 01 Ivana Medková 1 GONIOMETRICKÉ FUNKCE OSTRÉHO ÚHLU B odvěsna a C β c b přepona. α odvěsna A sin α a c b cos α c a tgαα b b cotg α a délka
1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) =
I. L'HOSPITALOVO PRAVIDLO A TAYLOR V POLYNOM. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) a) lim tg sin ( + ) / e e) lim a a i) lim a a, a > P ipome me si: 3 tg 4 2 tg b) lim 3 sin 4 2 sin
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017
Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................
Matematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.
Proseminář z matematiky pro fyziky
Proseminář z matematiky pro fyziky Mgr. Jan Říha, Ph.D. e-mail: riha@prfnw.upol.cz http://www.ictphysics.upol.cz/proseminar/inde.html Katedra eperimentální fyziky Přírodovědecká fakulta UP Olomouc Podmínky
INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE
INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE. Součin 5 4 je roven číslu: a) 4, b), c), d), e) žádná z předchozích odpovědí není správná. 5 5 5 5 + + 5 5 5 5 + + 4 9 9 4 Správná odpověď je a) Počítání
evropskega emblema v povezavi s programi EU
Uporaba evropskega emblema v povezavi s programi EU Smernice za upravičence in ostale tretje strani Oktobre 2012 Corporate Communication Uporaba evropskega emblema v povezavi s programi EU - smernice za
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS VLIV PŘESNOSTI
Kolmost rovin a přímek
Kolmost rovin a přímek 1.Napište obecnou rovnici roviny, která prochází boem A[ 7; ;3] a je kolmá k přímce s parametrickým vyjářením x = + 3 t, y = t, z = 7 t, t R. Řešení: Hleanou rovinu si označíme α:
Maturitní nácvik 2008/09
Maturitní nácvik 008/09 1. Parabola a) Načrtněte graf funkce y + 4 - ² a z grafu vypište všechny její vlastnosti. b) Určete čísla a,b,c tak, aby parabola s rovnicí y a + b + c procházela body K[1,-], L[0,-1],
LIMITA FUNKCE, SPOJITOST FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :
4. GONIOMETRICKÉ A CYKLOMETRICKÉ FUNKCE, ROVNICE A NEROVNICE 4.1. GONIOMETRICKÉ FUNKCE
GONIOMETRICKÉ A CYKLOMETRICKÉ FUNKCE, ROVNICE A NEROVNICE V této kapitole se dozvíte: GONIOMETRICKÉ FUNKCE vztah mezi stupňovou a obloukovou mírou; jak jsou definovány čtyři základní goniometrické funkce:
Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2.
Křivové integrál prvního druhu Vpočítejte dané řivové integrál prvního druhu v R. Přílad. ds x, de je úseča AB, A[, ], B[4, ]. Řešení: Pro řivový integrál prvního druhu platí: fx, ) ds β α fϕt), ψt)) ϕ
Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)
Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor
Komplexní analýza. Fourierovy řady. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Fourierovy řady Martin Bohata Katedra matematiky FEL ČVU v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Fourierovy řady 1 / 20 Úvod Často se setkáváme s periodickými
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika AA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2005 () Jsou dány matice A = AB BA. [ AB BA
DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a
DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x
Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e)
Logaritmus, logaritmická funkce, log. Rovnice a nerovnice ) Výraz log log +log není správná 0 - žádná z předchozích odpovědí ) Číslo log 8 6 je rovno číslu: ) Výraz log log +log - 0 ) Číslo log 6 6 je
Matematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. /8 3. Elementární funkce. 3. Elementární funkce. Matematická analýza ve Vesmíru.
2 ab. ), (ii) (1, 2, 3), (iii) ( 3α+8,α+12,6α 16
Řešení úloh... Hroch dostane 80 mg prvního a 80 mg druhého přípravku.. V hospodě je 0 čtyřmístných šestimístných a osmimístné stoly.. i) pro ab právě jedno řešení: x = 5b ab y = a+5 ab pro a = 5 ab = nekonečně
l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.
1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/
Avtonomni mobilni sistemi. Izr. prof. dr. Gregor Klančar Planiranje poti
Avtonomni mobilni sistemi Izr. prof. dr. Gregor Klančar gregor.klancar@fe.uni-lj.si Planiranje poti 2013/2014 Uvod Robot deluje v okolju Mobilnost zahteva: načrtovanje premika iz točka A do točke B izračun
2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:
KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku
Opakovací kurs středoškolské matematiky podzim
. Opakovací kurs středoškolské matematiky podzim František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou
je dána vzdáleností od pólu pohybu πb
7_kpta Tyč tvaru le obrázku se pohybuje v rohu svislé stěny tak, že bo A se o rohu (poloha A 0 ) vzaluje s konstantním zrychlením a A 1. m s. Počáteční rychlost bou A byla nulová. Bo B klesá svisle olů.
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o
Matematika II. (LS 2009) FS VŠB-TU Ostrava. Bud te. A = a + 1 2, B = 1. b + 1. y = x 2 + Bx 3A. a osou x.
Program 2. Aplikace určitého integrálu zadání 1. y = x 2 + Bx 3A y = ln(bx), x = 1/A a x = 3A Vypočítejte její obsah. 3. Určete obsah plochy ohraničené parametricky zadanou křivkou (tzv. cykloidou) x(t)
Kapitola 7: Integrál. 1/17
Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený
6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina
Instrukce: Příklady řešte výhradně elementárně, bez použití nástrojů z diferenciálního a integrálního počtu. Je-li součástí řešení úlohy podmnožina reálných čísel, vyjádřete ji jako disjunktní sjednocení