PLANETOVÉ PŘEVODY. Pomůcka do cvičení z předmětu Mobilní energetické prostředky Doc.Ing. Pavel Sedlák, CSc.
|
|
- Marcela Jarošová
- před 9 lety
- Počet zobrazení:
Transkript
1 PLANETOVÉ PŘEVODY Pomůck do cvičení předmětu Mobilní energetické prostředky Doc.Ing. Pvel Sedlák, CSc. Pro pochopení funkce plnetových převodů jejich kinemtiky je nutné se senámit se ákldy především kinemtikou jednoduchých převodů čelními, popř. kuželovými oubenými koly. 2 1 Obr. 1 Ukák dvoustupňové převodovky s čelními oubenými koly. Ření přesunem oubeného dvojkol. Pro ískání ákldních nlostí je možno doporučit středoškolské učebnice strojírenských oborů.
2 1. Jednoduchá plnetová soukolí 1.1 Členy struktur plnetového soukolí. Plnetová soukolí jsou tvořen oubenými koly unšečem. Některá tv. centrální oubená kol jsou souosá s unšečem centrální osou celého mechnimu jiná kol tv. stelity jsou otočně uložen n unšeči. Zbírjí bud' s centrálními koly, nebo nvájem mei sebou. Při rotci unšeče konjí tedy stelity pohyb složený e dvou rotcí. Unšeč (r) centrální kol nýváme centrálními členy jejich společnou osu centrální osou. Centrální kol s vnějším oubením čsto nýváme plnety (p). Centrální kol s vnitrním oubením nýváme korunová kol (koruny - k). Stelity mohou mít bud' jen jedno oubení (jeden oubeny věnec) pk je nýváme jednoduché, nebo dv věnce, pk je nýváme dvojité, přípdně mohou mít i více věnců. V nejjednodušším přípdë oubení stelitu může bírt s oubením plnety i korunového kol (Obr. 1.1). Obecně ovšem mohou stelity bírt v řdě sebou, při čemž koncové stelity této řdy bírjí s růnými centrálními oubenými koly (Obr. 1.2). Smořejmě v celém mechnimu může být tkovýchto stelitových řd (třeb i jednočlenných) vedle sebe více, i když pro uskutečnění kinemtických silových veb stčí řd jedn. Plnetová soukolí s jedním unšečem budeme nývt jednoduchá plnetová soukolí (JPS) Obr1.1 Jednoduché plnetové soukolí Obr. 1.2 Plnetové soukolí s více stelity
3 1.2 Funkční stvy jednoduchého plnetového soukolí Ze složení jednoduchých plnetových převodů vyplývjí následující možné funkce. 1) Korunové kolo stojí jedná se o jednoduchý plnetový převod s 1 o volnosti jedním rekčním členem, korunovým kolem 2) Plnetové kolo stojí - jedná se o jednoduchý plnetový převod s 1 o volnosti jedním rekčním členem, plnetovým kolem 3) Unšeč stelitů stojí - jedná se o neprvý plnetový převod s 1 o volnosti jedním rekčním členem, unšečem stelitů. Je li rekčním členem unšeč stelitů nýváme tkto vytvořený převod prostý. Nejde tu pk o soukolí plnetové, le oubené unšeč je spojen s rámem. Pro toto pojení plnetového převodu se používá ončení neprvý plnetový převod nebo neprvá plnet. 4) Diferenciál se 2 o volnosti všechny části plnetového převodu jsou pohyblivé, žádný člen není rekční. Jednotlivé funkční stvy je možno vidět po spuštění souboru plnety.exe (poklepáním n vybrvený text). Ponámk: Pokud chcete soubor spustit textu, musí být uložen ve stejném dresáři jko tento textový soubor. 2. Složené plnetové mechnimy Složené plnetové mechnimy jsou tvořeny několik jednoduchými soukolími, přípdně jinými převodovými ústrojími. Aby jednoduchá soukolí tvořil složený mechnimus, musí být mei sebou vájemně spojen. Vájemné propojení dvou nebo více členů nýváme přímou vbou. Přímou vbu mei dvěm členy mechnimu můžeme vytvořit jejich přímým spojením (tj. mohou být vytvořeny jko jeden hřídel, nebo spojeny
4 spojkou eventuelně kloubovým hřídelem) nebo tv. vebním převodem vi obr V prvém přípdě mjí ob členy stejné rychlosti, v druhém přípdě jsou jejich rychlosti určeny převodovým poměrem vebního převodu. Rekční členy u složených plnetových mechnimů mohou tedy být jednk u jednoduchých plnetových soukolí jednk u vebních převodů. Obr. 2.1 Příkld složených plnetových mechnimů Podle toho kolik větvemi se přenáší energie mechnimem dělíme složené plnetové mechnimy n: ) jednotoké energie se přenáší od vstupu k výstupu poue jednou cestou b) vícetoké energie se přenáší od vstupu k výstupu několik větvemi uspořádnými prlelně. Tyto mechnimy se nývjí diferenciální c) kombinovné jedná se o kombinci předchoích přípdů. 3. Kinemtik plnetových mechnimů Existuje řd metod kinemtického vyšetřování plnetových mechnimů. Jedn celkem jednoduchých náorných metod (ovšem jen pokud jde o jednoduché mechnimy), je metod obvodových rychlostí, někdy tké nývná Kutbchov. Tuto metodu je nutné plikovt n kždý přípd vlášť, eventuelně je třeb soukolí nkreslit v měřítku (vi přednášky MEP).
5 3.1 Willisov metod Je metod kinemtického vyšetřování plnetových mechnimů nejvhodnější ( při tom nejstrší). Principem Willisovy metody, neboli metody áměny mechnimu, je v podsttě metod superpoice. Mějme jednoduché plnetové soukolí s unšečem r, centrálními koly p, k, q stelity s (s 1, s 2..). Absolutní rychlosti těchto členů jsou r, p, k, q. Udělme celému mechnimu rychlost stejně velikou, le opčného smyslu, než je rychlost unšeče, tedy - r. Pk bude rychlost unšeče nulová ( r = 0) rychlosti jednotlivých členů se nám budou jevit jko reltivní vůči unšeči. (Místo udělení áporné rychlosti unšeče všem členům mechnimu si můžeme předstvit, že pohyby mechnimu poorujeme hledisk poorovtele n unšeči. Dospějeme ke stejnému výsledku). Zstvením unšeče obdržíme prostý převod s nehybnými osmi s 1 o volnosti. Převodový poměr mei libovolnými dvěm členy tohoto mechnimu už npř. pomoci počtu ubů umíme určit. To vyjdřuje Willisov formulk, která říká, že poměr reltivních rychlostí dvou členů plnetového soukolí vůči unšeči je převodový poměr mei těmito členy při nehybném unšeči. V symbolice pro převodový poměr budeme skutečnost, že jde o převod při stveném unšeči ončovt horním indexem r. Celkem má tedy ončení převodového poměru tři indexy s těmito výnmy: index stojícího členu i xy index výstupního členu index vstupního členu Odpovídjící symbol funkčního stvu je (x y). V tkto vedené symbolice le Willisovu poučku pst tkto: i xy = = x y = x y
6 kde veličiny s čárkou jsou reltivní otáčky vůči unšeči. Nečárkovné jsou rychlosti skutečné. Převodové poměry mei příslušnými členy soukolí při nehybném unšeči le jednoduše určit počtu ubů oubených kol soukolí. Tyto převodové poměry nýváme ákldními převodovými poměry jednoduchých plnetových soukolí. Willisovu poučku le dále vhodně uprvit do tvrů, vhodných pro určité postupy kinemtických vyšetřování. Předpokládejme, že máme soukolí jehož funkční stv je psán jko (x ) y, tj. že vstupní člen je x, výstupní stojící y. Z toho plyne, že y = 0. Podle Willisovy poučky musí pltit x x i xy = = = 1 y x i xy = 1 i (1) y x Ovšem i y x je hledný převod skutečného mechnimu. Všimněme si, že u symbolů převodových poměrů došlo k výměně indexů výstupního stveného členu. Tento tvr Willisovy formule je vlstně vorec vhodný pro úprvy převodových poměrů skutečných mechnimů při jejich vyjdřováni pomocí ákldních prmetrů plnetových soukolí. Tto formule byl odvoován původně pro centrální členy. Pltí le i pro stelity. Willisovu formuli le použít nejen pro převod (mechnimus s jedním stupněm volnosti), le tké pro diferenciál (mechnimus se dvěm stupni volnosti). V tomto přípdě je možné superpoicí stvit libovolný centrální člen pk psát : i xy = x y po úprvě ískáme vth = i + i (2) x xy y y x Tto úprv Willisovy formulky je vlstně rovnicí, níž le n ákldě nlosti rychlostí dvou členů diferenciálu určit rychlost členu třetího. (U převodu - mechnimu s jedním stupněm volnosti stčí dt jedny otáčky, prvidl vstoupní, by byl kinemtický
7 stv plně definován. U mechnimu se dvěm stupni volnosti je třeb dt dvoje otáčky, se třemi stupni volnosti troje td.) Při použití Willisovy formulky resp. jejích úprv ke kinemtickému řešeni plnetových soukolí se musíme řídit těmito prvidly: ) Pokud chceme vyjdřovt kinemtické poměry plnetových soukolí pomocí ákldních prmetrů nebo počtů ubů, jeden členů, pro který píšeme Willisovu formulku, musí být vždy unšeč. Pokud není, npř. je volným - psivním členem, musíme vyšetřovný převod rodělit n dv sériově pojené převody, u nichž je unšeč jednou členem výstupním, podruhé vstupním. i xy = i xr i ry b) Rychlosti dvou členů (jeden nich může být unšeč) musí být námy pk můžeme určit rychlost třetího. U plnetových převodů musí být dán rychlost jednoho členu, prvidl vstupního je nám rychlost rekčního členu, která je nulová. U diferenciálu musí být dány rychlosti dvou členů. Při řešení kinemtiky diferenciálních plnetových převodů je nejdříve nutné určit, jestli soukolí prcující jko diferenciál je ve směru toku výkonu n vstupu (), nebo n výstupu (b) Obr Diferenciální plnetové převody. ) s diferenciálem n vstupu, b) s diferenciálem n výstupu Ponámk: Ve schémtu nejsou kresleny stelity, které pro vlstní řešení kinemtiky nemjí výnm.
8 Diferenciální plnetový převod s diferenciálem n vstupu (obr. 3.1 ) Pro diferenciál soukolí R můžeme npst Willisovu formuli v jejím tvru vhodném pro diferenciály rovnice (2). = i f e e + i e f Po úprvě dosení (vi cvičení MEP) ískáme vth: toho celkový převod R S R = i i n + (1 i ) R S = i = i (i 1) + 1 n n f n Diferenciální plnetový převod s diferenciálem n výstupu (obr. 3.1 b) Stejný postup, jký jsme použili pro diferenciální převod s diferenciálem n vstupu, použijeme pro převod s diferenciálem n výstupu. Tentokrát ovšem tk, že Willisovou formulí budeme určovt úhlovou rychlost výstupního hřídele. Pro příkld n obr. 1.3 b bude: n = i f ne e + i e nf f Po úprvě dosení (vi cvičení MEP) ískáme vth pro celkový převodový poměr: i n = n S (1 i ) (1 i = S R 1 i i R )
9 4. Příkldy použití plnetových převodů v převodovkách MEP 4.1. Čtyřstupňový násobič Power Qud Je použit jednoduchý plnetový převod se sdruženým stelitem. Prvý plnetový převod se dvěm řdmi stelitů, spojkou V brdou Z, slouží k ření pátečky neutrálu. Z B 1 B 2 B 3 V S stupeň 2 stupeň s 1 s 2 s 3 p r s 3 p r 3 stupeň p r
10 4.2. Čtyřstupňový násobič Dynshift 1 stupeň B 1, B 2 jednoduchý plnetový převod; 2 stupeň B 1, S 2 dif. převod s diferenciálem n vstupu; 3 stupeň S 1, B 2 - dif. převod s diferenciálem n vstupu. B 1 B 2 S 1 S 2 M P 1 stupeň 2 stupeň ( r) p k r p r p l n R Q 3 stupeň k r p l n R Q
11 4.3. Automtická třístupňová hydromechnická převodovk VW Golf Poloh páky stupeň B1 B2 K1 K2 F N R R B1 F B2 K1 K2 Legend: K spojky, B brdy, F volnoběžná spojk
12 4.4. Plnetová hydromechnická převodovk ZF-Ecomt HP 500 Převodovk pro utobusy, nákldní jiná speciální voidl Použitá litertur: Svobod, J.: Plnetové převody. ČVUT Prh, 2000, 90 s. Vlk, F.: Převodová ústrojí motorových voidel. VLK Brno, 2000, 312 s. Odborné čsopisy, Firemní litertur.
3.2. LOGARITMICKÁ FUNKCE
.. LOGARITMICKÁ FUNKCE V této kpitole se dovíte: jk je definován ritmická funkce (ritmus) jké má ákldní vlstnosti; důležité vorce pro práci s ritmickou funkcí; co nmená ritmovt odritmovt výr. Klíčová slov
VíceLINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
VíceInovace a zkvalitnění výuky prostřednictvím ICT Převody a mechanizmy. Ing. Magdalena Svobodová Číslo: VY_32_INOVACE_ 15 07 Anotace:
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Náev: Téma: Autor: Inovace a kvalitnění výuky prostřednictvím ICT Převody a mechanimy Planetové převody Ing. Magdalena
VíceM - Příprava na 3. zápočtový test pro třídu 2D
M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně
VíceP2 Číselné soustavy, jejich převody a operace v čís. soustavách
P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel
VíceII. kolo kategorie Z5
II. kolo ktegorie Z5 Z5 II 1 Z prvé kpsy klhot jsem přendl 4 pětikoruny do levé kpsy z levé kpsy jsem přendl 16 dvoukorun do prvé kpsy. Teď mám v levé kpse o 13 korun méně než v prvé. Ve které kpse jsem
VíceObecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)
KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1
VíceS t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006
8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný
Více2.3. DETERMINANTY MATIC
2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní
VíceM A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)
5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete
VíceHlavní body - magnetismus
Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického
VíceJsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.
Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce
Více3. Kvadratické rovnice
CZ..07/..08/0.0009. Kvdrtické rovnice se v tetice oznčuje lgebrická rovnice druhého stupně, tzn. rovnice o jedné neznáé, ve které neznáá vystupuje ve druhé ocnině (²). V zákldní tvru vypdá následovně:
VíceAnalytická geometrie v rovině
nltická geometrie v rovině Souřdnicová soustv v rovině Zvolme v rovině dvě nvájem kolmé přímk číselné os. růsečík O těchto přímek nveme počátek souřdnic. Vodorovnou přímku ončíme osou svislou ončíme osou
Více14. cvičení z Matematické analýzy 2
4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi
VíceTéma Přetvoření nosníků namáhaných ohybem
Pružnost plsticit,.ročník bklářského studi Tém Přetvoření nosníků nmáhných ohbem Zákldní vth předpokld řešení Přetvoření nosníků od nerovnoměrného oteplení etod přímé integrce diferenciální rovnice ohbové
Více2.1 - ( ) ( ) (020201) [ ] [ ]
- FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé
Více( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?
1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno
VíceLogaritmické rovnice I
.9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme
VíceCvičení 2 (Složená namáhání)
VŠB Technická univerit Ostrv kult strojní Ktedr pružnosti pevnosti (339) Pružnost pevnost v energetice (Návod do cvičení) Cvičení (ložená nmáhání) Autor: Jroslv Rojíček Vere: Ostrv 009 ložená nmáhání princip
VíceNejdříve opis pro naladění čtenáře a uvedení do mého problému, ten, který budu za chvíli chtít diskutovat.
Problém Nvrátil ( tím, že neumí mtemtiku ) jsou : Nejdříve opis pro nldění čtenáře uvedení do mého problému, ten, který budu chvíli chtít diskutovt. Větu o áměnnosti smíšených derivcí le obdobných předpokldů
VícePružnost a plasticita II
Pružnost plsticit II. ročník klářského studi doc. In. Mrtin Krejs, Ph.D. Ktedr stvení mechnik Řešení nosných stěn pomocí Airho funkce npětí inverzní metod Stěnová rovnice ΔΔ(, ) Stěnová rovnice, nzývná
VíceHyperbola a přímka
7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B
Více( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t
7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách
VíceII. 5. Aplikace integrálního počtu
494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu
Vícex + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
Více( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306
7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu
VícePosluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.
Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce
VíceSprávné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010
právné řešení písemné koušky mtemtiky- vrint A Přijímcí říení do NMgr. studi učitelských oborů Příkld. Vyšetřete průběh funkce v jejím mimálním definičním oboru nčrtněte její grf y Určete pritu (sudá/lichá),
Více2.2.9 Grafické řešení rovnic a nerovnic
..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci
VíceR n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na
Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.
VíceZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.
VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální
VícePři výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu
Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je
Více2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman
STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr
VíceANALYTICKÁ GEOMETRIE V PROSTORU
ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici
VíceURČITÝ INTEGRÁL FUNKCE
URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()
Více2.8.5 Lineární nerovnice s parametrem
2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první
VíceZkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.
1. V oboru reálných čísel řešte soustvu rovnic x 2 xy + y 2 = 7, x 2 y + xy 2 = 2. (J. Földes) Řešení. Protože druhou rovnici můžeme uprvit n tvr xy(x + y) = 2, uprvme podobně i první rovnici: (x + y)
Více3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru
Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém
VíceIntegrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)
Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh
VíceLogické obvody. Logický obvod. Rozdělení logických obvodů - Kombinační logické obvody. - Sekvenční logické obvody
Logické ovody Cílem této kpitoly je sezn{mit se s logickými ovody, se z{kldním rozdělením logických ovodů, s jejich některými typy. Tké se nučíme nvrhovt logické ovody. Klíčové pojmy: Logický ovod,kominční
Více14.16 Zvláštní typy převodů a převodovek
Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín
VíceZavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA
Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním
VíceLogaritmická funkce, logaritmus, logaritmická rovnice
Logritmická funkce. 4 Logritmická funkce, ritmus, ritmická rovnice - získá se jko funkce inverzní k funkci eponenciální, má tvr f: = Pltí: > 0!! * * = = musí být > 0, > 0 Rozlišujeme dv zákldní tp: ) >
Více2.4.7 Shodnosti trojúhelníků II
2.4.7 Shodnosti trojúhelníků II Předpokldy: 020406 Př. 1: oplň tbulku. Zdání sss α < 180 c Zdání Náčrtek Podmínky sss sus usu b + b > c b + c > c + c > b b α < 180 c α + β < 180 c Pedgogická poznámk: Původní
Více10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem
Trnsformce 3D Sudijní cíl Teno blok je věnován rnsformcím 3D grfik. V eu budou popsán ákldní rnsformce v prosoru posunuí oočení kosení měn měřík používné při prcování 3D modelu. Jednolivé rnsformce budou
VíceMatice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra
Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel
Více+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
VíceKomplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.
7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1
VíceOhýbaný nosník - napětí
Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se
VíceNávrh základních kombinačních obvodů: dekodér, enkodér, multiplexor, demultiplexor
Předmět Ústv Úloh č. 2 BDIO - Digitální obvody Ústv mikroelektroniky Návrh zákldních kombinčních obvodů: dekodér, enkodér, multiplexor, demultiplexor Student Cíle Porozumění logickým obvodům typu dekodér,
Více4. Determinanty. Výpočet: a11. a22. a21. a12. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31. a 11 a 23 a 32 a 12 a 21 a 33
. Determinnty Determinnt, znčíme deta, je číslo přiřzené čtvercové mtici A. Je zveden tk, by pro invertibilní mtici byl nenulový pro neinvertibilní mtici byl roven nule. Výpočet: = + = + + - - - + + +
VíceHledání hyperbol
759 Hledání hyperol Předpokldy: 756, 757, 758 Pedgogická poznámk: Některé příkldy jsou zdlouhvější, pokud mám dosttek čsu proírám tuto následující hodinu ěhem tří vyučovcích hodin Př : Npiš rovnici hyperoly,
Více( a) Okolí bodu
0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,
VíceU 1, U 2 I 1, I 2. vnější napětí dvojbranu vnější proudy dvojbranu
DVOJBRAN Definice rodělení dvojbrnů Dvojbrn libovolný obvod, který je s jinými částmi obvodu spojen dvěm pár svorek (vstupní výstupní svork). K nlýe cování obvodu postčí popst dný dvojbrn poue vt mei npětími
VíceSouhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A
Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty
Více2.9.11 Logaritmus. Předpoklady: 2909
.9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).
VíceELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Kapacita a uložená energie
ELEKTŘINA A MAGNETIZMUS Řešené úlohy postupy: Kpcit uložená energie Peter Dourmshkin MIT 6, překld: Jn Pcák (7) Osh 4. KAPACITA A ULOŽENÁ ENERGIE 4.1 ÚKOLY 4. ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ ÚLOHA 1: VÁLCOVÝ
Více3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90
ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy
VíceVícebytová celočíselná aritmetika
IMTEE 7 / 8 Přednášk č. 7 Vícebytová celočíselná ritmetik = bitová šířk zprcovávných dt > než šířk slov PU npř.: 8 b PU zprcovává b dt dále teoretické příkldy: b PU zprcovává 6 b slov Uložení dt v pměti
VíceDERIVACE A INTEGRÁLY VE FYZICE
DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická
VíceSpojitost funkce v bodě, spojitost funkce v intervalu
10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí
Více( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled
řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo
Více(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a
Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:
VíceSeznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.
.. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).
VíceStudijní materiály ke 4. cvičení z předmětu IZSE
ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti
Více{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507
58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní
VíceObr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou
MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností
VíceKapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a
Kpitol Nekoečé číselé řdy Defiice. Nechť { } je posloupost reálých čísel. Symbol ebo + 2 + 3 +... zýváme ekoečou číselou řdou. s = i= i = + 2 +... + zveme -tý částečý součet řdy {s } posloupost částečých
VíceVětu o spojitosti a jejich užití
0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě
VícePříklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem
Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je
Více13. Exponenciální a logaritmická funkce
@11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze
VíceDefinice limit I
08 Definice limit I Předpokld: 006 Pedgogická poznámk: N úvod je třeb upozornit, že tto hodin je ze strn studentů snd nejvíce sbotovnou látkou z celé studium (podle rekcí 4B009) Jejich ochot brát n vědomí
VíceKřivkový integrál prvního druhu verze 1.0
Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm
VíceVIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.
Více8. cvičení z Matematiky 2
8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,
VíceOpakování ke státní maturitě didaktické testy
Číslo projektu CZ..7/../.9 Škol Autor Číslo mteriálu Název Tém hodiny Předmět Ročník/y/ Anotce Střední odborná škol Střední odborné učiliště, Hustopeče, Msrykovo nám. Mgr. Rent Kučerová VY INOVACE_MA..
VícePůjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.
4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme
VíceSeznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.
.4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli
VíceZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,
ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých
Více5.2.4 Kolmost přímek a rovin II
5..4 Kolmost přímek rovin II Předpokldy: 503 Př. 1: Zformuluj stereometrické věty nlogické k plnimetrické větě: ným bodem lze v rovině k dné přímce vést jedinou kolmici. Vět: ným bodem lze v prostoru k
Více9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie
9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu
Vícecelek jsme rozdělili na 8 dílů, ale žádný jsme si nevzali celek na nulka dílů rozdělit nelze!!!
. Dělení celku zlomek 0 zlomek zlomková čár čittel udává z kolik stejných částí se zlomek skládá ( z ) jmenovtel udává n kolik stejných částí je celek rozdělen () Vlstnosti: Je-li v čitteli zlomku nul
Více56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25
56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou
VíceÚlohy školní klauzurní části I. kola kategorie C
52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.
VíceKonzultace z předmětu MATEMATIKA pro první ročník dálkového studia
- - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin
Více1.1 Numerické integrování
1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme
VíceSYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1
SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO
VíceRegulace f v propojených soustavách
Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny
VíceINTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL
INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci
VíceRozvodovky. Konstrukčně nenahraditelná, propojuje převodovku a rozvodovku Je konstantním činitelem v celkovém převodovém poměru HÚ
TU v iberci akulta strojní atedra voidel a motorů 4 ovodovka + Diferenciál ovodovky onstrukčně nenahraditelná, propojuje převodovku a rovodovku Je konstantním činitelem v celkovém převodovém poměru HÚ
Více6. Setrvačný kmitový člen 2. řádu
6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické
Více8. Elementární funkce
Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne
Více( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:
4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové
VícePřednáška 9: Limita a spojitost
4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty
Více2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem
2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice
VíceStředová rovnice hyperboly
757 Středová rovnice hperol Předpokld: 7508, 75, 756 Př : Nkresli orázek, vpočti souřdnice vrcholů, ecentricitu urči rovnice smptot hperol se středem v počátku soustv souřdnic, pokud je její hlvní os totožná
VíceNekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }
Nekoečé řdy. Nekoečé číselé řdy.. Defiice ) Ozčme { } { } = L L ekoečou posloupost reálých čísel.,,,,, Nekoečá číselá řd je součet tvru = + + + L+ + L. Jedotlivá čísl,,, L,, L se zývjí čley řdy, čle obvykle
Více2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
Více