4.. Goniometrické rovnice I Předpoklady: 4, 4, 46, 47 Pedagogická poznámka: Úspěšnost této hodiny zcela závisí na tom, jak rychle jsou studenti schopni hledat ke známým hodnotám goniometrických funkcí odpovídající úhly (obsah hodiny 4). Doporučuji studenty upozornit a případně nemilosrdně trestat. Názvosloví: Goniometrické rovnice: rovnice, ve kterých se neznámá objevuje uvnitř goniometrických funkcí. g x = a, kde Základní goniometrická rovnice: každá rovnice zapsaná ve tvaru ( ) g ( x ) je jedna z goniometrických funkcí (sin, cos, tg, cotg), a R, x R. Základní řešení základní goniometrické rovnice: množina všech kořenů z intervalu 0;π ). Důvod: Opakování úhlů po π (trochu prázdný pojem, protože většina rovnic není základních a jejich kořeny se pak nemusejí opakovat po π ). Př. : Napiš příklad libovolné základní goniometrické rovnice a najdi její základní řešení. Například sin x =. Základním řešením je π x =. Pedagogická poznámka: Uvedená rovnice je suverénně nejčastějším návrhem. Často se vyskytují i rovnice jako sin x =, které řešení nemají. Nejčastější chybou jsou pak zápisy typu π sin = 4, které vůbec neobsahují neznámou. π Pořádně prozkoumáme řešení rovnice sin x =. Určitě platí sin =, funkce sinus je periodická s nejmenší periodou π platí také: 5 sin π =, 9 sin π =, sin π =, sin π =, 7 sin π =, sin π =, rovnice má nekonečně mnoho řešení (a zřejmě to bude pro goniometrické rovnice typické) jak je zapíšeme? K = + k π znak znamená sjednocení všech množin, které získáme tím, že do předpisu + k π dosazujeme za k celá čísla.
Př. : Vyřeš rovnici cos x =. Hledáme všechna x R, pro něž platí cos x = to už umíme (pomocí jednotkové kružnice nebo grafu odpovídající funkce). Z obrázku je vidět, že řešením jsou třetinové - x x R úhly π a 4 π. Základní řešení : π; 4 π. 4 K = π + k π ; π + k π - Dodatek: Příklad je samozřejmě možné řešit i pomocí grafu funkce. Nechávám studenty, aby používali libovolnou metodu, která jim vyhovuje. - Z grafu je vidět, že řešením jsou třetinové úhly π a 4 π. Základní řešení : π; 4 π. 4 K = π + k π ; π + k π Př. : Vyřeš rovnice: a) sin x = b) cos x =. a) sin x =
- x Základní řešení : 4 π; 5 π. 4 5 K = π + k π ; π + k π x - b) cos x = - x x π 7 Základní řešení : ; π. 4 4 7 K = + k π ; π + k π 4 4 - Př. 4: Vyřeš rovnici sin x = 0.
- x R Základní řešení : 0;π. { 0 π; π π K = + k + k - Př. 5: Vypiš hodnoty úhlů, které jsou patří do množiny řešení z předchozího příkladu K = 0 + k π; π + k π k ; ;0;;. Pokus se najít { pokud dosazujeme { úspornější způsob zápisu. Vypíšeme si hodnoty, pro každou skupinu zvlášť: 0 + k π 4π, π, 0, π, 4π π + k π π, π, π, π, 5π Zakreslíme si spočtené hodnoty na číselnou osu: Hodnoty od obou předpisů jsou na ose rovnoměrně rozmístěny a vzdáleny o π úspornější K = 0 + k π zápis: { Př. 6: Vyřeš rovnici sin x = 0,. 0, není tabulková hodnota úhel x můžeme určit pouze přibližně nebo jako hodnotu funkce arcsin. Přibližná hodnota stanovená pomocí kalkulačky je rovna arcsin ( 0,) 5 44 arcsin ( 0, ) je tedy číslo z intervalu 0;π ) a není tedy jedním základním řešením. 4
x - arcsin(0,) x - x = arcsin ( 0,) x = π arcsin ( 0,) K = { arcsin ( 0,) + k π; π arcsin ( 0,) + k π Př. 7: Vyřeš rovnici sin x = 0,6. -0,6 není tabulková hodnota úhel x můžeme určit pouze přibližně nebo jako hodnotu funkce arcsin. Přibližná hodnota stanovená pomocí kalkulačky je rovna arcsin 0, 6 6 5 arcsin 0, 6 je tedy záporné číslo, které nepatří do intervalu ( ) ( ) 0;π ) a není tedy základním řešením. - x x R arcsin(-0,6) Úhly x a x můžeme vyjádřit dvěma způsoby: - a) pomocí záporného úhlu arcsin ( 0, 6) x = π + ( ) x = π ( ) arcsin 0, 6 arcsin 0, 6 { π arcsin ( 0, 6) π; π arcsin ( 0, 6) π K = + k + + k b) pomocí kladného úhlu arcsin 0,6 x = π arcsin 0, 6 x = π + arcsin 0, 6 5
{ π arcsin 0,6 π;π arcsin 0,6 π K = + + k + k Př. 8: Urči počet základních řešení rovnice sin x = a v závislosti na hodnotě parametru a R. - x x x R - Z obrázku je zřejmé, že pro: a ( ;) má rovnice v intervalu 0;π ) dvě řešení (červená čára). a = ± má rovnice v intervalu 0;π ) jedno řešení (hnědá čára). a ( ; ) ( ; ) nemá rovnice v intervalu 0;π ) žádné řešení (zelená čára). tejný závěr dostaneme pomocí grafu: - Př. 9: (BONU) Najdi řešení rovnice sin x = a v závislosti na hodnotě parametru a R. Z předchozích příkladů je zřejmé, že pro: a ; ; K =. ( ) ( ) a = K = π + k π. 6
. a ( ;0 ) K = { π arcsin a + k π ; π + arcsin a + k π 0 =. a = K { kπ ( 0;). a K = { arcsin a + k π; π arcsin a + k π a = K = + k π. V dalších příkladech (i ve všech následujících hodinách) budeme pokládat vyřešení základní goniometrické rovnice za samozřejmost a nebudeme kreslit ani kružnice ani grafy. Př. 0: Vyřeš rovnici tg x =. Platí: tg π =, funkce y = tg x je periodická s nejmenší periodou π. K = π + k π Př. : Vyřeš rovnici tg x = 5. 5 není tabulková hodnota funkce y = tg x, funkce y = tg x je periodická s nejmenší periodou π. K = arctg 5 + k π { hrnutí: Řešení základních goniometrických rovnic v podstatě odpovídá hledání úhlů ke známých hodnotám goniometrických funkcí. 7