Molekula vodíku. ez E. tak její tvar můžeme zjednodušit zavedením tzv. Bohrova poloměru vztahem: a celou rovlici (0.1) vynásobíme výrazem

Rozměr: px
Začít zobrazení ze stránky:

Download "Molekula vodíku. ez E. tak její tvar můžeme zjednodušit zavedením tzv. Bohrova poloměru vztahem: a celou rovlici (0.1) vynásobíme výrazem"

Transkript

1 Molkul vodíku Přípvná část tomové jdnotky Vzmm-li si npř. Schodingovu ovnici: Z, (0.) m tk jjí tv můžm zjdnodušit zvdním tzv. ohov poloměu vzthm: (0.) m Pokud v těchto jdnotkách udm měřit vzdálnosti, noli x nhdím nhdím x clou ovlici (0.) vynásoím výzm m, dostnm tv: x stjně x Z, (0.) kd j v jdnotkách ohov poloměu ngi v jdnotkách Ht, přičmž: Výsldkm j Schodingov ovnic v tomových jdnotkách. Ht (0.4) Iont molkuly vodíku V souldu s on-oppnhimovou poximcí přdpokládám, ž s lkton pohyuj v poli pvných jd. Dál přdpokládjm, ž vzdálnost jd j ž jád lží n os z v odch z. Vzdálnost lktonu od jd oznčím jko. Odpovídjící nltivistický zspinový hmiltonián j ovn: H, (0.5) m kd j náoj lktonu v soustvě CGS (náoj lktonu vydělný 4 0 ). Přiližnou vlnovou funkci zákldního stvu Schodingovy ovnic:

2 H (0.6) udm hldt v tvu linání kominc tománích vlnových funkcí: c c (0.7) Z volím nomlizovné vlnové funkc zákldního stvu tomu vodíku loklizovné v místch jd :, xp, (0.8) Dál využijm toho, ž jsou vlnové funkc zákldního stvu tomu vodíku, noli po ně pltí: m,,,, (0.9) kd Ht j ngi zákldního stvu tomu vodíku. 0,5 Pokud ovnici (0.6), v kté z H dosdím (0.5) z dosdím (0.7), vynásoím komplxně sdužnými vlnovými funkcmi (jdnou zlv poduhé ) násldně oě ovnic vyintgujm přs posto, tk s využitím (0.9) dostnm soutvu ovnic: y y, (0.0) C kd C, S S c y. Pvky mtic jsou pk intgály: c d (0.) C d (0.) S d (0.) Vynásoním (0.0) invzní mticí k mtici zlv přvdm clý polém n hldání vlstních čísl vktoů mtic: C S CS S CS C S (0.4)

3 C Po vlstní číslo dostnm symtické řšní ( c c ) s ngií: S S C (0.5) S C S vlstním číslm dostnm ntisymtické řšní ( c c ) s ngií: S C (0.6) S Z poždvku nomování ( d ) učím koficinty vlnových funkcí symtického ntisymtického řšní: S S S (0.7) (0.8) Intgály, C S, tdy i clková ngi závisí n vzdálnosti jd. ychom získli tyto závislosti j tř dné intgály vypočítt. Zvdm si nové intgály K L: K L d (0.9) d (0.0) pomocí nichž (spolu s intgálm S) můžm vyjádřit intgály C jko: S L Intgály lz vypočítt nlyticky v liptických souřdnicích:,,,, C (0.) K (0.)

4 0. (0.) Jkoián této tnsfomc j, noli d j: dd d.výsldkm K, (0.4) L, (0.5) S, (0.6) kd j vzdálnost jd v tomových jdnotkách. Clková ngi jko funkc vzdálnosti jd pk vypdá tkto: S, Po symtické řšní má ngi minimum po hodnotu 0,5. (0.7) Hustot pvděpodonosti výskytu lktonu po symtické ntisymtické řšní j: S S S S S (0.8) (0.9) Pokud s změřím n střd spojnic jd, kd pltí, zjistím, ž po ntisymtické řšní j hodnot hustoty pvděpodonosti nulová, tudíž v tomto stvu s nvytváří chmická vz. Nopk po symtické řšní j hodnot hustoty pvděpodonosti dokonc vyšší nž součt hustot pvděpodoností po dv nintgující tomy v stjné gomtické konfiguci. Clková vlnová funkc lktonu v zákldním stvu iontu H j zřjmě ovn: kd j spinová vlnová funkc lktonu. S

5 Zpět k polému molkuly vodíku Hitlov-Londonov mtod Přdpokládám npohylivá jád. Njpv nlznm postoovou část spinové funkc, ktou pk vynásoím příslušnou spinovou částí (noť dný Hmiltonián npůsoí n spinovou část). H, (0.0) m kd čísly, oznčujm lktony písmny, jád. j vzdálnost jd. Indxy u oznčují částic, mzi ktými měřím dnou vzdálnost. Dál vyjděm z vlnových funkcí popisujících dv vzdálné nintgující tomy vodíku: Pvní funkc. odpovídá pvnímu lktonu v zákldním stvu tomu vodíku s jádm duhému lktonu v zákldním stvu tomu vodíku s jádm. U duhé funkc j ol lktonů pohozn. Oě funkc odpovídjí ngii, kd j ngi zákldního stvu tomu vodíku. Po vyhovuj ovnici: m (0.) nlogicky: m (0.) Dlší postup j zcl nlogický výpočtu iontu vodíku s tím, ž nhdím: dostnm: S S (0.)

6 S (0.4) S C (0.5) S C (0.6) S kd S j přkyvový intgál:,, S d d (0.7) C j coulomovský intgál: j výměnný intgál: C d d (0.8) d d (0.9) Přkyvový intgál po molkulu vodíku j po stjnou vzdálnost jd ovn kvdátu přkyvového intgálu po iont molkuly vodíku. Coulomovský intgál j střdní hodnot coulomovské intkc mzi dvěm náoji s hustotou náoj. Výměnný čln nmá žádnou klsickou nlogii j důsldkm konstukc vlnové funkc podl pvidl kvntové mchniky. Ukzuj s, ž 0, C 0 ž pltí S. Z vznik vzy v molkul vděčím výměnnému intgálu. Pokud y yl nulový, ndošlo y k vzniku stilního stvu s minimm clkové ngi při končné vzdálnosti jd. Výsldná vlnová funkc s skládá z části postoové spinové. Jlikož výsldná funkc musí ýt ntisymtická, j tř vynásoit symtickou postoovou část ntisymtickou spinovou nopk. Výsldkm j vlnová funkc: S, ktá odpovídá singltnímu stvu. Podoně j xcitovný tipltní stv popsán vlnovými funkcmi:,,

7 . Vylpšní výpočtu molkuly vodíku Náoj jád jko pmt V této mtodě j do tomových oitlů zvdn náoj jád z viční pmt: Z ', ktý j povžován xp ' Z xp ' Z (0.40) (0.4) Tkto získám lpší souhls s xpimntálně zjištěnou hodnotou 0, všk chy disociční ngi j stál vlká. Ukzuj s, ž hustot pvděpodonosti nlézt lkton v molkul vodíku při vzdlování od jd klsá ychlji nž u tomu vodíku ( Z ' ). Zhnutí iontových stvů Zd do vlnové funkc zhnm ovněž iontové stvy (pvděpodonost nlézt o lktony u jdnoho jád). S (0.4) kd j nomlizční fkto viční pmt. Lpší uční disociční ngi, l chy stál vlká. Vzájmná polizc tomů vodíku Doposud yly uvžovány pouz sféicky symtické tomové oitly vzhldm k jádům tomů vodíku. Z toho důvodu uvžujm funkc tvu:, (0.4) s p kd p-funkc míří podél spojnic jd. Tkto získám lpší odhd ovnovážné vzdálnosti jd, všk ni zd nní dosžno uspokojivého souhlsu s xpimntm po uční disociční ngi.

8 Hundov-Mulliknov mtod V této mtodě njpv konstuujm molkulové oitly jdnotlivých lktonů z nich tpv sstvím dvoulktonovou vlnovou funkci: (0.44) Pokud jd o disociční ngi, tk dostávám hoší výsldk nž u původní H-L mtody. Příspěvk iontových stvů j zd nlisticky přcněn ( ). Kolc pohyu lktonů Doposud zndávným fktm j kolc pohyu lktonů. ozznávám dv stupně kolc pohyu lktonů. Pvním j sttická kolc, ktá znmná spktování ntisymti úplné mnoholktonové vlnové funkc. To všk ocně nstčí. Díky coulomovské intkci lktonů funkc musí ocně závist n (dynmická kolc). j vzájmný pohy lktonů kolován vlnová Výpočt Jms Coolidg Zvdli liptické souřdnic:,, pmt umožňující xplicitně uvžovt lktonovou kolci:. Úhly oznčují pootoční podél spojnic jd. Část vlnové funkc nzávislá n yl přdpokládán v tvu ozvoj: m n j k p n m k j p cmnjkp, (0.45) m, n, j, k, p kd koficinty c mnjkp jsou viční pmty.

9 Přsný výpočt molkuly vodíku musí zhnovt: Kolci lktonů ltivistické fkty (závislost hmotnosti n ychlosti, tdc coulomovské intkc, spin-oitální vzu, Dwinův čln spin-spinovou intkci) Nditické kokc Kolci n končný ozmě jád diční kokc (souvisjící s nutností zpočítt kvntování lktomgntického pol)

Rentgenová strukturní analýza

Rentgenová strukturní analýza Rntgnová strukturní nlýz Příprvná část Objktm zájmu difrkční nlýzy jsou 3D priodicky uspořádné struktury (krystly), n ktrých dochází k rozptylu dopdjícího zářní. Díky intrfrnci rozptýlných vln vzniká difrkční

Více

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů.

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů. 7.5.7 lips Přdpokldy: 7501 lips = rozšlápnutá kružnic. Jk ji sstrojit? Zhrdnická konstrukc lipsy (tkto s vytyčují záhony): Vzmm provázk n koncích ho přidělám tk, y nyl npnutý. Klcíkm provázk npnm tk, y

Více

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 )

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 ) Stvbní mchnik A1 K132 SMA1 Přdnášk č. 3 Příhrdové konstrukc Co nás čká v čtvrté přdnášc? Příhrdové konstrukc Zákldní přdpokldy Sttická určitost/nurčitost Mtody výpočtu Obcná mtod styčných bodů Nulové pruty

Více

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu.

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu. Mtmtik II.. Mtod pr prts pro určité intgrály.. Mtod pr prts pro určité intgrály Cíl Sznámít s s použitím mtody pr prts při výpočtu určitých intgrálů. Zákldní typy intgrálů, ktré lz touto mtodou vypočítt

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází

Více

H - Řízení technologického procesu logickými obvody

H - Řízení technologického procesu logickými obvody H - Řízní tchnologického procsu logickými ovody (Logické řízní) Tortický úvod Součástí řízní tchnologických procsů j i zjištění správné posloupnosti úkonů tchnologických oprcí rozhodování o dlším postupu

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

Kuličková ložiska s kosoúhlým stykem

Kuličková ložiska s kosoúhlým stykem Kuličková ložisk s kosoúhlým stykm JEDNOŘADÁ A PÁROVANÁ KULIČKOVÁ LOŽISKA S KOSOÚHLÝM STYKEM DVOUŘADÁ KULIČKOVÁ LOŽISKA S KOSOÚHLÝM STYKEM ČTYŘODOVÁ KULIČKOVÁ LOŽISKA KONSTRUKCE, TYPY A VLASTNOSTI Půmě

Více

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus .9.6 Přirozná ponnciální funkc, přirozný ritmus Přdpokldy: 95 Pdgogická poznámk: V klsické gymnziální sdě j přirozná ponnciální funkc 0; j funkc y = +. Asi dvkrát vyrán jko funkc, jjíž tčnou v odě [ ]

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

2 PŘEDNÁŠKA 2: ZÁKLADNÍ (MATEMATICKÝ, FYZIKÁLNÍ) APARÁT A POJMY

2 PŘEDNÁŠKA 2: ZÁKLADNÍ (MATEMATICKÝ, FYZIKÁLNÍ) APARÁT A POJMY PŘEDNÁŠKA : ZÁKLADNÍ (MATEMATICKÝ, FYZIKÁLNÍ) APARÁT A POJMY Klsická fyzik: částic vs. vlny Hmot zářní jsou v klsické fyzic popsány zcl odlišným způsobm. Hmotné objkty: loklizovné řídí s Nwtonovými pohybovými

Více

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami Tplo skrz okna pracovní poznámky Jana Hollana Přnos okny s skládá z přnosu zářním, vdním a prouděním. Zářivý přnos Zářivý výkon E plochy S j dl Stfanova-Boltzmannova vyzařovacího zákona kd j misivita plochy

Více

část 8. (rough draft version)

část 8. (rough draft version) Gntika v šlchtění zvířat TGU 006 9 Odhad PH BLUP M část 8. (rough draft vrsion V animal modlu (M s hodnotí každé zvíř samostatně a současně v závislosti na užitkovosti příbuzných jdinců hodnocné populac.

Více

Dráhy planet. 28. července 2015

Dráhy planet. 28. července 2015 Dáhy plnet Pet Šlecht 28. čevence 205 Výpočet N střední škole se zpvidl učí, že dáhy plnet jsou elipsy se Sluncem v ohnisku. Tké se učí, že tento fkt je možné dokázt z Newtonov gvitčního zákon. Příslušný

Více

poznámky ke 3. přednášce volitelného předmětu PG na FCHI VŠCHT Martina Mudrová březen 2005

poznámky ke 3. přednášce volitelného předmětu PG na FCHI VŠCHT Martina Mudrová březen 2005 Úvod do gomtického modlování v G ponámk k. přdnášc volitlného přdmětu G n FCHI VŠCHT Mtin Mudová břn 5 Osnov přdnášk I. Zákldní pojm modlování tp modlů postup II. III. Zákldní pojm gomtického modlování

Více

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

ELEKTŘINA A MAGNETISMUS ZAJÍMAVÉ PROBLÉMY

ELEKTŘINA A MAGNETISMUS ZAJÍMAVÉ PROBLÉMY LKTŘINA A MAGNTISMUS ZAJÍMAVÉ PROLÉMY Pt Kulhánk KONDNZÁTOR - NRGI, SÍLA NA DSKY ngi kondnátou C U kpcit kondnátou Při dodání náboj s ngi výší o: dw U d d C W CU C Síl působící n dsk Posuňm dsku o obcněnou

Více

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení. 4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie 9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu

Více

6 Řešení soustav lineárních rovnic rozšiřující opakování

6 Řešení soustav lineárních rovnic rozšiřující opakování 6 Řšní soustv linárníh rovni rozšiřujíí opkování Tto kpitol j rozšiřujíí ěžné učivo. Poku uvné mtoy zvlánt, zkrátí vám to čs potřný k výpočtům. Nní to všk učivo nzytné, řšit soustvy linárníh rovni lz i

Více

SPOLUPRÁCE SBĚRAČE S TRAKČNÍM VEDENÍM

SPOLUPRÁCE SBĚRAČE S TRAKČNÍM VEDENÍM SPOLUPRÁCE SBĚRAČE S TRAKČNÍM VEDENÍM Josf KONVIČNÝ Ing. Josf KONVIČNÝ, Čské dráhy, a. s., Tchnická ústřdna dopravní csty, skc lktrotchniky a nrgtiky, oddělní diagnostiky a provozních měřní, nám. Mickiwicz

Více

Odraz na kulové ploše

Odraz na kulové ploše Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. tojúhelníků

Více

5. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ

5. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ Intgrální počt funkc jdné proměnné. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ V kpitolách věnovných difrnciálnímu počtu jsm poznli, ž vypočítt drivci funkc j úloh vclku jdnoduchá. Stčí znát doř drivc lmntárních

Více

SBÍRKA PŘÍKLADŮ Z FYZIKY II

SBÍRKA PŘÍKLADŮ Z FYZIKY II VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE FAKULTA CHEMICKO-INŽENÝRSKÁ SBÍRKA PŘÍKLADŮ Z FYZIKY II Doc. Ing. Joslv Hofmnn, CSc. RND. D. Pt Al z z L z + L 6 m + L z + m + L z m L L z L z m y L z m L y

Více

1.3 Derivace funkce. x x x. . V každém bodě z definičního oboru má každá z těchto funkcí vlastní derivaci. Podle tabulky derivací máme:

1.3 Derivace funkce. x x x. . V každém bodě z definičního oboru má každá z těchto funkcí vlastní derivaci. Podle tabulky derivací máme: rivc unkc 9 Vpočtět drivci unkc nou unkci lz přpst v tvru součt tří unkcí Zřjmě ji můžm chápt jko kd Ihnd vidím ž V kždém bodě z diničního oboru má kždá z těchto unkcí vlstní drivci Podl tbulk drivcí mám:

Více

KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD

KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD 40 KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD POD TLAKEM míč, hmotnost, rovnováha, pumpička, tlak, idální plyn, pružná srážka, koficint rstituc

Více

Difúze. 0 m n pu p m n pu kbt n. n u D n n m. Fickův zákon Po dosazení do rovnice kontinuity

Difúze. 0 m n pu p m n pu kbt n. n u D n n m. Fickův zákon Po dosazení do rovnice kontinuity Dfúz Fckův zákon dfúz v plynu Přdpokládjm dální plyn s konstantní tplotou T a konstantním tlakm p v kldu, v ktrém j nízká nhomognní hmotnostní koncntrac příměs Pak v staconárním stavu musí být clková síla

Více

Měrný náboj elektronu

Měrný náboj elektronu Fyzikální praktikum FJFI ČVUT v Praz Úloha č. 12 : Měřní měrného náboj lktronu Jméno: Ondřj Ticháčk Pracovní skupina: 7 Kruh: ZS 7 Datum měřní: 8.4.2013 Klasifikac: Měrný náboj lktronu 1 Zadání 1. Sstavt

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

= = Řešení: Pro příspěvek k magnetické indukci v bodě A platí podle Biot-Savartova zákona. d 1

= = Řešení: Pro příspěvek k magnetické indukci v bodě A platí podle Biot-Savartova zákona. d 1 Mgntiké pol 8 Vypočtět mgntikou inuki B kuhové smyčky o poloměu 5 m n jjí os symti v válnosti 1 m o oviny smyčky, jstliž smyčkou potéká lktiký pou 1 A Řšní: Po příspěvk k mgntiké inuki v boě A pltí pol

Více

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný.

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný. 4. přednášk Geometické zikální plikce učitého integálu Geometické plikce. Osh ovinného útvu A. Pokud se jedná o ovinný útv omezený osou přímkmi gem spojité nezáponé unkce pk je jeho osh dán učitým integálem

Více

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál) INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc

Více

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5) pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

OBJEMY A POVRCHY TĚLES

OBJEMY A POVRCHY TĚLES OBJEMY A POVRCHY TĚLES Metodický mteiál do semináře MA SDM Růžen Blžkoá, Ien Budínoá KOMOLÝ JEHLAN Ojem komolého jehlnu Po zjednodušení ododíme zthy po komolý jehln, jehož podstmi jsou čtece. Oznčení:

Více

Téma 5 Spojitý nosník

Téma 5 Spojitý nosník Stvení mechnik.očník kářského studi AST Tém 5 Spojitý nosník Zákdní vstnosti spojitého nosníku Řešení spojitého nosníku siovou metodou yužití symetie spojitého nosníku Kted stvení mechniky Fkut stvení

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

L HOSPITALOVO PRAVIDLO

L HOSPITALOVO PRAVIDLO Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o

Více

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt

Více

igubal Kloubové hlavy Produktová řada

igubal Kloubové hlavy Produktová řada igul - igul Produktová řd Úhlový klou pro rotční kývvé pohyy: WGRM WGLM Spojní pro rotční kývvé pohyy Nízká hmotnost roustní provdní Jdnoduchá rychlá montáž Pohlcují virc Odolné špíně nčistotám Plstový

Více

Napětí horninového masivu

Napětí horninového masivu Npětí honinového msivu pimání npjtostí sekundání npjtostí účinky n stbilitu podzemního díl Dále můžeme uvžovt * bobtnání honiny * teplotní stv honiny J. Pušk MH 6. přednášk 1 Pimání npjtost gvitční (vyvolán

Více

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Dfinic plazmatu (typická) Úvod do fyziky plazmatu Plazma j kvazinutrální systém nabitých (a případně i nutrálních) částic, ktrý vykazuj kolktivní chování. Pozn. Kolktivní chování j tdy podstatné, nicméně

Více

I. MECHANIKA 8. Pružnost

I. MECHANIKA 8. Pružnost . MECHANKA 8. Pružnost Obsah Zobcněný Hookův zákon. ntrprtac invariantů. Rozklad tnzorů na izotropní část a dviátor. Křivka dformac. Základní úloha tori pružnosti. Elmntární Hookův zákon pro jdnoosý tah.

Více

Jednokapalinové přiblížení (MHD-magnetohydrodynamika)

Jednokapalinové přiblížení (MHD-magnetohydrodynamika) Jdnokapalinové přiblížní (MHD-magntohydrodynamika) Zákon zachování hmoty zákony zachování počtu lktronů a iontů násobny hmotnostmi a sčtny n t div nu ni divnu i i t div u M M (1) t i m n M n u u M i i

Více

Konstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).

Konstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině). . íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha této kapitol: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjí části) budm idaliovat

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

Jihočeská univerzita v Českých Budějovicích. Katedra fyziky. Modely atomu. Vypracovala: Berounová Zuzana M-F/SŠ

Jihočeská univerzita v Českých Budějovicích. Katedra fyziky. Modely atomu. Vypracovala: Berounová Zuzana M-F/SŠ Jihočská univrzita v Čských Budějovicích Katdra fyziky Modly atomu Vypracovala: Brounová Zuzana M-F/SŠ Datum: 3. 5. 3 Modly atomu První kvalitativně správnou přdstavu o struktuř hmoty si vytvořili již

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

INOVACE PŘEDNÁŠEK KURZU Fyzikální chemie, KCH/P401

INOVACE PŘEDNÁŠEK KURZU Fyzikální chemie, KCH/P401 Fakulta životního prostřdí v Ústí nad Labm INOVACE PŘEDNÁŠEK KURZU Fyzikální chmi, KCH/P401 - ZAVEDENÍ EXPERIMENTU DO PŘEDNÁŠEK Vypracovala Z. Kolská (prozatímní učbní txt, srpn 2012) K několika kapitolám

Více

VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE FAKULTA CHEMICKO-INŽENÝRSKÁ FYZIKA II

VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE FAKULTA CHEMICKO-INŽENÝRSKÁ FYZIKA II A-PDF MRGR DMO VYSOKÁ ŠKOLA CHMICKO-TCHNOLOGICKÁ V PRAZ FAKULTA CHMICKO-INŽNÝRSKÁ FYZIKA II Doc. RND. Mai Ubanová, CSc. Doc. Ing. Jaoslav Hofmann, CSc. RND. D. Pt Ala p k ngi 3 3 7 ω n 3 5 ω n 3 ω n ω

Více

Funkce. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce Mg. Jmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Eponenciální ovnice VY INOVACE_05 M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Eponenciální ovnice = ovnice, ve kteých se neznámá vyskytuje v eponentu

Více

DERIVACE A INTEGRÁLY VE FYZICE

DERIVACE A INTEGRÁLY VE FYZICE DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická

Více

( ) { }{} ( ) { }{} ( ) n (

( ) { }{} ( ) { }{} ( ) n ( Mtody optické spktoskopi v biofyzic Toi absopčníc přcodů / TEORIE ABSORPČNÍCH PŘECHODŮ. Obcné vztay Jdná s nám o ční lktickéo dipólovéo momnt přcod { } ( ) ( ) { } ( ) d = Ψ R d R Ψ R ˆ,,, n n momnt lz

Více

Konstrukci (jejíčásti) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).

Konstrukci (jejíčásti) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině). . íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjíčásti) budm idaliovat jako tuhá (ndfomovatlná)

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS VI. Odpor a lktrický proud Obsah 6 ODPOR A ELEKTRICKÝ PROUD 6.1 ELEKTRICKÝ PROUD 6.1.1 HUSTOTA PROUDU 3 6. OHMŮV ZÁKON 4 6.3 ELEKTRICKÁ ENERGIE A VÝKON 6 6.4 SHRNUTÍ 7 6.5 ŘEŠENÉ

Více

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE ELEKTRICKÝ NÁBOJ A JEHO VLASTNOSTI Pokud budm třít sklněnou tyč o vlněnou látku a poté ji přiblížím k malým tělískům bud j přitahovat. Co j příčinou tohoto jvu Obdobně

Více

Statistika a spolehlivost v lékařství Spolehlivost soustav

Statistika a spolehlivost v lékařství Spolehlivost soustav Sttistik solhlivost v lékřství Solhlivost soustv 1 Soustvy s ví-stvovými rvky Něktré rvky (nř. rlé, vntily) slouží jko sínč rouu/klin/lynu mohou s orouht u v otvřném no zvřném stvu. Tyto vě oruhy j vhoné

Více

= b a. V případě, že funkce f(x) je v intervalu <a,b> záporná, je integrál rovněž záporný.

= b a. V případě, že funkce f(x) je v intervalu <a,b> záporná, je integrál rovněž záporný. 5. přednášk APLIKAE URČITÉHO INTERÁLU Pomocí integálního počtu je možné vpočítt osh ovinných útvů ojem otčních těles délk ovinných křivek. Velké upltnění má učitý integál tké ve zice chemii. eometické

Více

PENOS ENERGIE ELEKTROMAGNETICKÝM VLNNÍM

PENOS ENERGIE ELEKTROMAGNETICKÝM VLNNÍM PNO NRG LKTROMAGNTCKÝM VLNNÍM lktromagntické vlnní, stjn jako mchanické vlnní, j schopno pnášt nrgii Tuto nrgii popisujm pomocí tzv radiomtrických, rsp fotomtrických vliin Rozdlní vyplývá z jdnoduché úvahy:

Více

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné 1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

URČITÝ INTEGRÁL. Motivace:

URČITÝ INTEGRÁL. Motivace: Motivce: URČITÝ INTEGRÁL Pomocí učitého integálu můžeme vpočítt: Osh ovinného ozce. Ojem otčního těles. Délku ovinné křivk. Dlší vužití učitého integálu: ve zice, chemii, ekonomii Histoická poznámk: Deinici

Více

Další genetické parametry

Další genetické parametry 18. 4. 11 Další ntické paamt - koficnt opakovatlnosti - ntické kolac doc. In. Tomáš Uban,.D. uban@mndlu.cz Koficint opakovatlnosti Opakované měřní stjné vlastnosti na stjném jdinci v půběu jo života (njlép

Více

Aplikace VAR ocenění tržních rizik

Aplikace VAR ocenění tržních rizik Aplkac VAR ocnění tržních rzk Obsah: Zdroj rzka :... 2 Řízní tržního rzka... 2 Měřní tržního rzka... 3 Modly... 4 Postup výpočtu... 7 Nastavní modlu a gnrování Mont-Carlo scénářů... 7 Vlčny vyjadřující

Více

hledané funkce y jedné proměnné.

hledané funkce y jedné proměnné. DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální

Více

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné. INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních

Více

Lineární nerovnice a jejich soustavy

Lineární nerovnice a jejich soustavy teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice

Více

Inovace a zkvalitnění výuky prostřednictvím ICT Součásti točivého a přímočarého pohybu. Ing. Magdalena Svobodová Číslo: VY_32_INOVACE_ Anotace:

Inovace a zkvalitnění výuky prostřednictvím ICT Součásti točivého a přímočarého pohybu. Ing. Magdalena Svobodová Číslo: VY_32_INOVACE_ Anotace: třdní průmyslová škol Vyšší odorná škol tchnická rno, okolská Šlon: Názv: Tém: Autor: Inovc zkvlitnění výuky prostřdnictvím ICT oučásti točivého přímočrého pohyu Pásové rzdy Ing. gdln voodová Číslo: VY_3_INOVACE_

Více

{ } ( ) ( ) ( ) ( ) r 6.42 Urč ete mohutnost a energii impulsu

{ } ( ) ( ) ( ) ( ) r 6.42 Urč ete mohutnost a energii impulsu Systé my, procsy a signály I - sbírka příkladů Ř EŠENÉPŘ ÍKLADY r 64 Urč t mohutnost a nrgii impulsu s(k 8 k ( ( s k Ab k, A, b, 6 4 4 6 8 k Obr6 Analyzovaný diskrétní signál Mohutnost impulsu k A M s(

Více

7.5.8 Středová rovnice elipsy

7.5.8 Středová rovnice elipsy 758 Středová rovnice elips Předpokld: 750, 7507 Př : Vrchol elips leží v odech A[ ;], B [ 3;], [ ;5], [ ; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH RÁMOVÝCH KONSTRUKCÍCH

VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH RÁMOVÝCH KONSTRUKCÍCH Miloš Hüttnr SMR2 nilové účink viční 04 VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH RÁMOVÝCH KONSTRUKCÍCH Zdání Příkld č. 1 Vpočítjt prů v odě, noníku zorznéo ztížnéo dl Or. 1. Způo řšní Or. 1: Sé zdání příkldu

Více

Zjednodušená styčníková metoda

Zjednodušená styčníková metoda Stvní sttik, 1.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Zjnoušná styčníková mto Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového

Více

Polarizací v podstatě rozumíme skutečnost, že plně respektujeme vektorový charakter veličin E, H, D, B. Rovinnou vlnu šířící se ve směru z

Polarizací v podstatě rozumíme skutečnost, že plně respektujeme vektorový charakter veličin E, H, D, B. Rovinnou vlnu šířící se ve směru z 7. Polarizované světlo 7.. Polarizac 7.. Linárně polarizované světlo 7.3. Kruhově polarizované světlo 7.4. liptick polarizované světlo (spc.případ) 7.5. liptick polarizované světlo (obcně) 7.6. Npolarizované

Více

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění Vlv prostupů tpla mz byty na spravdlvost rozúčtování nákladů na vytápění Anotac Fnanční částky úhrady za vytápění mz srovnatlným byty rozpočítané frmam používajícím poměrové ndkátory crtfkované podl norm

Více

8 Mongeovo promítání

8 Mongeovo promítání 8 Mongeovo promítání Pomocí metod uvedených v kpitolách 3. 4., 3. 6. bychom mohli promítnout do roviny 3 libovolný útvr U E. V prxi všk většinou nestčí sestrojit jeden průmět. Z průmětu útvru U je většinou

Více

Zjednodušený výpočet tranzistorového zesilovače

Zjednodušený výpočet tranzistorového zesilovače Přsný výpočt tranzistorového zsilovač vychází z urční dvojbranových paramtrů tranzistoru a pokračuj sstavním matic obvodu a řšním této matic. Při použití vybraných rovnic z matmatických modlů pro programy

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti F8 KEPLEOVY ZÁKONY Evopský sociální fond Paha & EU: Investujeme do vaší udoucnosti F8 KEPLEOVY ZÁKONY Kepleovy zákony po planetání pohy zfomuloval Johannes Keple (1571 1630) na základě měření Tychona Baheho

Více

Electron Density. One-el. Functions. Traditional Ab initio. Model of independent electrons. Electron correlation neglected

Electron Density. One-el. Functions. Traditional Ab initio. Model of independent electrons. Electron correlation neglected CCSD(T) Stationary Schrödingr quation H Ψ = EΨ MP Elctron corrlation Expansion ovr Slatr dt. Φ= C0Ψ 0 + CSΨ S + CDΨ D + Non-rlativistic Hamiltonian Born-Oppnhimr approximaion occ Elctron Dnsity ρ( r) ϕ

Více

Axiální ložiska. Průměr díry Strana. S rovinnou nebo kulovou dosedací plochou, nebo s podložkou AXIÁLNÍ VÁLEČKOVÁ LOŽISKA

Axiální ložiska. Průměr díry Strana. S rovinnou nebo kulovou dosedací plochou, nebo s podložkou AXIÁLNÍ VÁLEČKOVÁ LOŽISKA xiální ložisk JEDNOSMĚNÁ XIÁLNÍ KULIČKOVÁ LOŽISK Půmě díy Stn neo kulovou, neo s podložkou 0 00 mm... B242 0 60 mm... B246 OBOUSMĚNÁ XIÁLNÍ KULIČKOVÁ LOŽISK neo kulovou, neo s podložkou XIÁLNÍ VÁLEČKOVÁ

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Relativiatická fyzika a astrofyzika I. Geometrie

Relativiatická fyzika a astrofyzika I. Geometrie Reltivitická fyzik strofyzik I Geometrie Definice: Nechť g je metrický tenzor jeho komponenty vůči souřdnicové zi jsou g.dále nechť je g -1 inverzní mtice k g její komponenty k příslušné zi jsou g. zvedání

Více

ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN

ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN pevné látky jsou chrkterizovány omezeným pohybem zákldních stvebních částic (tomů, iontů, molekul) kolem rovnovážných poloh PEVNÉ LÁTKY krystlické morfní KRYSTAL pevné

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa Tplotní zářní a Plankův vyzařovaí zákon Intnzita vyzařování (misivita) v daném místě na povrhu zdroj j dfinována jako podíl zářivého toku

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

Ověření Stefanova-Boltzmannova zákona. Ověřte platnost Stefanova-Boltzmannova zákona a určete pohltivost α zářícího tělesa.

Ověření Stefanova-Boltzmannova zákona. Ověřte platnost Stefanova-Boltzmannova zákona a určete pohltivost α zářícího tělesa. 26 Zářní těls Ověřní Stfanova-Boltzmannova zákona ÚKOL Ověřt platnost Stfanova-Boltzmannova zákona a určt pohltivost α zářícího tělsa. TEORIE Tplo j druh nrgi. Vyjadřuj, jak s změní vnitřní nrgi systému

Více

II. kolo kategorie Z5

II. kolo kategorie Z5 II. kolo ktegorie Z5 Z5 II 1 Z prvé kpsy klhot jsem přendl 4 pětikoruny do levé kpsy z levé kpsy jsem přendl 16 dvoukorun do prvé kpsy. Teď mám v levé kpse o 13 korun méně než v prvé. Ve které kpse jsem

Více

KONSTRUKTIVNÍ GEOMETRIE. Mgr. Petra Pirklová, Ph.D. kmd.fp.tul.cz Budova G, 4. patro

KONSTRUKTIVNÍ GEOMETRIE. Mgr. Petra Pirklová, Ph.D. kmd.fp.tul.cz Budova G, 4. patro KONSTRUKTIVNÍ GEOMETRIE Mg. Pet Piklová, Ph.D. kmd.fp.tul.cz Budov G, 4. pto SYLBUS. Mongeovo pomítání.. nltická geometie v E 3. 3. Vektoová funkce jedné eálné poměnné. Křivk. 4. Šoubovice - konstuktivní

Více

14. cvičení z Matematické analýzy 2

14. cvičení z Matematické analýzy 2 4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 1

10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 1 10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA slid 1 Přdmětm přdnášky jsou tři modly agrgátní nabídky, v ktrých v krátkém období výstup pozitivně závisí na cnové hladině. Krátkodobý invrzní vztah mzi inflací

Více

Gravitaˇcní pˇritahování a sráˇzka dvou tˇeles

Gravitaˇcní pˇritahování a sráˇzka dvou tˇeles Vzoový pojekt do MF Gvitˇcní pˇithování sáˇzk dvou tˇeles Alois Ntvdlý, OFMF. oˇcník, lois.ntvdly@upol.cz. dubn 206. Fomulce poblému Dvˇe tˇeles o hmotnostech m = kg se ncházejí ve vzdálenosti = km od

Více

10 Smíšené modely v genetických analýzách

10 Smíšené modely v genetických analýzách ntik v šlchtění zvířt TU 6 část 9. (rough drft vrsion) Smíšné modly v gntických nlýzách Aplikc smíšných modlů j v součsné době rozšířný nástroj pro ohodnoání zvířt v šlchtitlských progrmch šlchtitlských

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více