U V W xy 2 x 2 +2z 3yz

Rozměr: px
Začít zobrazení ze stránky:

Download "U V W xy 2 x 2 +2z 3yz"

Transkript

1 E. Brožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 V.5. Gaussova-strogradského věta Má-li vektorováfunkce f (U,V,W spojitévšechn parciálníderivacevotevřenémnožině G E 3, pak skalární funkci divf(x U V W (X+ (X+ (X, X G naýváme divergencí vektorového pole f. Pole f se naývá solenoidální v G, jestliže tok vektorového pole f každou uavřenou, jednoduchou, po částech hladkou plochou G je nulový. Necht a funkce f (U,V,W má spojité všechn parciální derivace v oblasti G E 3 ; b G je uavřená, jednoduchá, po částech hladká plocha orientovaná jednotkovým vektorem vnější normál; c int G. Potom f d p + divf ddd int Ponámka: Pokud je plocha orientována áporně, tj. vektorem vnitřní normál, pak bude na pravé straně naménko mínus. Příklad674.Jsou dán skalární funkce ϕ(,, 3 a vektorová funkce f(,, (, +,3 v E 3. Spočítejte div(gradϕ a div(rotf. ( ϕ Řešení : grad ϕ ϕ, ϕ, ϕ (, 3, 3, div(gradϕ ( ϕ ϕ + 6 3, i j k i j k rotf f (3,,, U V W + 3 div(rot f ( f. Příklad675.*Určete, kde je vektorové pole f(,, solenoidální. ( +3+5, 3,+ Řešení : Pro definiční obor musí platit a. Dostaneme oblasti G i, i,,3,4 : G {[,, E 3 : <, < }, G {[,, E 3 : <, > }, G 3 {[,, E 3 : >, < }, G 4 {[,, E 3 : >, > }. V každé těchto oblastí je div f + +. K výpočtu toku daného pole f libovolnou uavřenou plochou ležící v kterékoliv těchto oblastí le použít G.. větu, jejíž předpoklad jsou splněn. Je ted 5

2 E. Brožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 f d p int divf ddd int Zadané vektorové pole je solenoidální v každé oblastí G i. ddd. Příklad676.Je dáno vektorové pole f(,, (,,. Určete definiční obor + + G E 3 funkce f a ověřte, že divf v G. Pro která následujících kladně orientovaných ploch f d p eistuje a kd le použít G.-. větu? a {[,, E 3 ; }; b je povrch kvádru :, 3,,,, ; c 3 {[,, E 3 ; }. Řešení : Definiční obor je E 3 \[,,. Snadno se přesvědčíme, že div f : divf(x ( ( + + ( ( + +. a ( ( + +, [,, Integrál neeistuje a nele použít G.-. větu. b [,, integrál eistuje, ale [,, int integrál eistuje a nele použít G.-. větu. c +( 3 + 4, [,, 3, [,, int 3. Daný integrál eistuje a le použít G.- větu. f d p divf ddd ddd. 3 int 3 int 3 Užitím G.-. vět vpočtěte tok vektorového pole f vnější stranou uavřené ploch : Příklad677. f (3+, +5,+ +, je povrch tělesa omeeného rovinami,,, +,. 5

3 E. Brožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 Řešení : f d p divf ddd int (3++ddd int 6 int trojbokého hranolu ddd 6 ( int 6. ddd se rovná objemu vnitřku ploch, což je objem Příklad678. f (,,, 3, kde {[,, E 3 ; + +, }; {[,, E 3 ; + + 9, }; 3 {[,, E 3 ; + 9, } Řešení : 3 int : < + + < 9 > π/ ( π [ sinϑ π/ ( 3 [ r 5 π 5 r r cosϑdr dϕ 3 3 rcosϕcosϑ rsinϕcosϑ rsinϑ J r cosv dϑ π/ π 5 ( π. f d p int int div f ddd ( + + ddd < r < 3 ϕ π < ϑ π + + r π cosϑdϑ dϕ 3 r 4 dr Příklad679.Určete tok vektorového pole f (,, plochou {[,, E 3 ; + + 4, }, orientovanou normálovým vektorem n o ([,, i. Řešení : Plocha je polovina kulové ploch s bod majícími -ové souřadnice neáporné. Takto adaná plocha není uavřená. Tok touto plochou můžeme spočítat pomocí plošného integrálu f d p. Chceme-li použít G.-. větu, musíme přidat ještě plochu tak, ab bla plocha uavřená, stejně orientovaná. Ted 53

4 E. Brožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 ( f d p f d p+ G.-. f d p ± f d p (,, d p (,, n o dp (,, (,,dd + 4 int ( :, + 4 n o (,, normál ploch, směřují dovnitř ploch div f ddd Vrátíme se k ( a při použití vět G.-. pamatujeme, že normál směřují dovnitř ploch, takže před trojným integrálem na pravé straně napíšeme naménko minus. f d p+ (+ ddd ( objemu koule int ( 4 3 π π. Je dáno vektorové pole f a je dána plocha. a Napište Gaussovu-strogradského větu. věřte, že jsou splněn předpoklad pro výpočet toku vektorového pole f plochou. b Načrtněte danou plochu. c Vpočítejte divf. d Vpočítejte f d p, tj. tok vektorového pole úloh a. 68. f (+cos,+e,+sin, je dovnitř orientovaný povrch tělesa, které je omeené plochami o rovnicích 4,. cdiv f 3 d 4π 68. f ( 3,,, D {[,, E 3 : + 4, 3}, plocha je povrchem tělesa D orientována vně. cdiv f 3 d36π 68. f (,,, plocha je povrchem tělesa D a je orientována vnější normálou, D {[,, E 3 ; + + 4, }. [ cdiv f d8π 54

5 E. Brožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II ( f (,+,, je povrch tělesa D, který je orientovaný směrem dovnitř, D {[,, E 3 :,, +, 4 }. cdiv f d / f (,,, D {[,, E 3 ;,, /, +}, je povrch tělesa D orientovaný směrem ven. cdiv f 3 d 35/ f (+,,, D {[,, E 3 : + 6 }, je povrch tělesa D orientovaný směrem vně. cdiv f d 64π/ f (,e,, D {[,, E 3 ; }, plocha je dovnitř orientovaný povrch tělesa D. cdiv f + d 7π/ 687. f (, 3,, je povrch tělesa D {[,, E 3 : + 4}, který je orientovaný vně. cdiv f 3 d6π 688. f (,,, je vně orientovaný povrch tělesa, které je omeeno plochami + 4,, 3. cdiv f + + d3π 55

6 E. Brožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 Užitím G.-. vět vpočtěte tok vektorového pole f po částech hladkou uavřenou a orientovanou plochou : 689. f (,,, je povrch kužele s poloměrem podstav a a výškou b, orientace vnější normálou. [πa b 69. f (,,, jepovrchdutéhoválceomeenéhoplochami : +, : + 4, 3 :, 4 : 3, orientace vnější normálou. [7π 69. f ( 3, 3, 3, : + +,, :, + orientace je dovnitř ploch. [ 6 5 π 69. f (,,, je povrch krchle a, a, a, orientace vnější normálou. [3a f (,,, {[,, E 3 ; + + a }, orientace vnitřní normálou. [ 4πa f (,,, je kulová plocha se středem v bodě [,, a poloměrem r 3, orientace vnější normálou. [ 7π 695. f (,,, je povrch tělesa omeeného plochami : + a, : a, 3 : a (a >, orientace je dovnitř ploch. [πa f (,,, je povrch tělesa omeeného 4, + 4, orientace je dovnitř ploch f (,,, je povrch tělesa omeeného plochami +, 3, orientace vnější normálou f ( 3,,, je povrch tělesa omeeného plochami +, 4, orientace vnější normálou f (,,, {[,, E 3 ; }, orientace vnější 9 normálou. [ 6 3 π [7π [ 6 3 π 7. f (,, +, je povrch tělesa omeeného plochami + b,, a, (, a, orientace vnější normálou. [b aπ [3π 7. f (,,, ječástválcovéploch + 9, 4 (plochajeotevřená, n o ([3,, i. Výpočet proved te a přímo pomocí plošného integrálu; b užitím vět G.-. (Plocha se musí uavřít pomocí :, : 4. [ 7π 7. f ( +, +. Ve kterých následujících adáních ploch le +, použít větu G.-.? V kladném případě vpočítejte f d p. a : + + 4, orientace vnější normálou; b je povrch kvádru omeeného rovinami,,, 3,, 5, orientace vnitřní normálou. [anele; b le; 6 56

Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál.

Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál. E. rožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 III.6. Aplikace trojných integrálů Příklad 6. Užitím vorce pro výpočet objemu tělesa pomocí trojného integrálu (tj.v ddd ukažte, že objem

Více

III.4. Fubiniova (Fubiniho) věta pro trojný integrál

III.4. Fubiniova (Fubiniho) věta pro trojný integrál E. Brožíková, M. Kittlerová, F. Mrá: Sbírk příkldů Mtemtik II ( III.. Fubiniov (Fubiniho vět pro trojný integrál Vpočítejte trojné integrál n dných množinách E : Příkld. I Řešení : I ( + d d d; {[,, E

Více

) (P u P v dudv, f d p na ploše Q E 3, která je orientována. x = u, y = v, z = a, (P u P v dudv = B

) (P u P v dudv, f d p na ploše Q E 3, která je orientována. x = u, y = v, z = a, (P u P v dudv = B E. rožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II 6 V.4. Plošný integrál vektorové funkce Necht je jednoduchá hladká plocha orientovaná v bodech X jednotkovým vektorem normál n o X. Necht

Více

U dx+v dy = y. f = (2x+3y,5x y 4) po obvodu ABC ve směru A B C, kde A = [1,0],B = [1, 3], C = [ 3,0].

U dx+v dy = y. f = (2x+3y,5x y 4) po obvodu ABC ve směru A B C, kde A = [1,0],B = [1, 3], C = [ 3,0]. E. Brožíková, M. Kittlerová, F. Mráz: Sbírka příkladů z Matematik II (6) IV.6. Greenova věta Křivkový integrál vektorového pole po uzavřené křive nazýváme irkulaí vektorového pole f po křive a zapisujeme

Více

F n = F 1 n 1 + F 2 n 2 + F 3 n 3.

F n = F 1 n 1 + F 2 n 2 + F 3 n 3. Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,

Více

VEKTOROVÁ POLE Otázky

VEKTOROVÁ POLE Otázky VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

y ds, z T = 1 z ds, kde S = S

y ds, z T = 1 z ds, kde S = S Plošné integrály příklad 5 Určete souřadnice těžiště části roviny xy z =, která leží v prvním oktantu x >, y >, z >. Řešení: ouřadnice těžiště x T, y T a z T homogenní plochy lze určit pomocí plošných

Více

VEKTOROVÁ POLE VEKTOROVÁ POLE

VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

Matematika pro chemické inženýry

Matematika pro chemické inženýry Matematika pro chemické inženýry Drahoslava Janovská Plošný integrál Přednášky Z 216-217 ponzorováno grantem VŠCHT Praha, PIGA 413-17-6642, 216 Povinná látka. Bude v písemkách a bude se zkoušet při ústní

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

III. Dvojný a trojný integrál

III. Dvojný a trojný integrál E. Brožíková, M. Kittlerová, F. Mráz: Sbírka příkladů z Matematik II 6 III. vojný a trojný integrál III.. Eistence Necht je měřitelná v Jordanově smslu množina v E resp. E a funkce f je omezená na. Necht

Více

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 18 Vektorová analýza a teorie pole Vybrané kapitoly z matematiky 2018-2019 2 / 18 Vektorová funkce jedné

Více

Otázky k ústní zkoušce, přehled témat A. Číselné řady

Otázky k ústní zkoušce, přehled témat A. Číselné řady Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte

Více

Plošný integrál Studijní text, 16. května Plošný integrál

Plošný integrál Studijní text, 16. května Plošný integrál Plošný integrál tudijní text, 16. května 2011 Plošný integrál Jednoduchý integrál jsme rozšířili zavedením křivkového integrálu. Rozlišovali jsme dva druhy integrálu, přičemž křivkový integrál 2. druhu

Více

x 2(A), x y (A) y x (A), 2 f

x 2(A), x y (A) y x (A), 2 f II.10. Etrém funkcí Věta (nutná podmínka pro lokální etrém). Necht funkce f(, ) je diferencovatelná v bodě A. Má-li funkce f v bodě A lokální etrém, pak gradf(a) = 0. Onačme hlavní minor matice druhých

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

14. cvičení z Matematické analýzy 2

14. cvičení z Matematické analýzy 2 4. cvičení z atematické analýzy 2 8. - 2. ledna 28 4. (Greenova věta) Použijte Greenovu větu k nalezení práce síly F (x, y) (2xy 3, 4x 2 y 2 ) vykonané na částici podél křivky Γ, která je hranicí oblasti

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Matematické analýzy 11. - 15. prosince 17 11.1 (trojný integrál - Fubiniho věta) Vypočtěte (i) xyz dv, kde je ohraničeno plochami y x, x y, z xy a z. (ii) y dv, kde je ohraničeno shora rovinou

Více

Takže platí : x > 0 : x y 1 x = x+1 y x+1 x < 0 : x y 1 x = x+1 y x+1 D 1 = {[x,y] E 2 : x < 0, x+1 y 1 x}, D 2 = {[x,y] E 2 : x > 0, 1 x y x+1}.

Takže platí : x > 0 : x y 1 x = x+1 y x+1 x < 0 : x y 1 x = x+1 y x+1 D 1 = {[x,y] E 2 : x < 0, x+1 y 1 x}, D 2 = {[x,y] E 2 : x > 0, 1 x y x+1}. E. Brožíková, M. Kittlerová, F. Mráz: Sbírka příkladů z Matematik II (206 II. Diferenciální počet funkcí více proměnných II.. Definiční obor funkce z = f(, Určete definiční obor funkcí a zakreslete jej

Více

terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy

terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy 2. Plošný integrál. Poznámka. Obecně: integrování přes k-rozměrné útvary (k-plochy) v R n. Omezíme se na případ k = 2, n = 3. Definice. Množina S R 3 se nazve plocha, pokud S = ϕ(), kde R 2 je otevřená

Více

VEKTOROVÁ POLE VEKTOROVÁ POLE

VEKTOROVÁ POLE VEKTOROVÁ POLE VEKTOROVÁ POLE Podíváme se podrobněji na vektorové funkce. Jde často o zkoumání fyzikálních veličin jako tlak vzduchu, proudění tekutin a podobně. VEKTOROVÁ POLE Na zobrazení z roviny do roviny nebo z

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více

14. Věty Gauss-Ostrogradského, Greenova a Stokesova věta

14. Věty Gauss-Ostrogradského, Greenova a Stokesova věta 14. Věty Gauss-Ostrogradského, Greenova a Stokesova věta Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2010/11 14.1 Úvod Definice (zobecněná plocha) Řekneme, že S R n (n 2) je zobecněná (n

Více

II.7.* Derivace složené funkce. Necht jsou dány diferencovatelné funkce z = f(x,y), x = x(u,v), y = y(u,v). Pak. z u = f. x x. u + f. y y. u, z.

II.7.* Derivace složené funkce. Necht jsou dány diferencovatelné funkce z = f(x,y), x = x(u,v), y = y(u,v). Pak. z u = f. x x. u + f. y y. u, z. II.7.* Derivace složené funkce Necht jsou dán diferencovatelné funkce z = f(,), = (u,v), = (u,v). Pak u = u + u, v = v + v. Vpočítejte derivace daných diferencovatelných funkcí. Příklad 0. Jsou dán diferencovatelné

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v . a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x

Více

10. cvičení z Matematické analýzy 2

10. cvičení z Matematické analýzy 2 . cvičení z Matematické analýzy 3. - 7. prosince 8. (dvojný integrál - Fubiniho věta Vhodným způsobem integrace spočítejte daný integrál a načrtněte oblast integrace (a (b (c y ds, kde : y & y 4. e ma{,y

Více

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1). III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

1 Integrál komplexní funkce pokračování

1 Integrál komplexní funkce pokračování Integrál komplexní funkce pokračování Definice. Nechť D a F ) je taková funkce, že F ) = f) pro všechna D. Pak F ) naýváme primitivní funkcí k funkci f) v oblasti D. Protože při integraci funkce f po křivce,

Více

PLOŠNÉ INTEGRÁLY V praxi se vyskytuje potřeba integrovat funkce nejen podle křivých čar, ale i podle křivých ploch (např. přes povrch koule).

PLOŠNÉ INTEGRÁLY V praxi se vyskytuje potřeba integrovat funkce nejen podle křivých čar, ale i podle křivých ploch (např. přes povrch koule). LOŠNÉ INTEGRÁLY V praxi se vyskytuje potřeba integrovat funkce nejen podle křivých čar, ale i podle křivých ploch (např. přes povrch koule). uzavřená hladká kraj LOCHY lochy v prostoru, které byly zatím

Více

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro 7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,

Více

je omezena + =,,0 1 je omezena,0 2,0 2,0 je horní polovina koule + + je omezena + =1, + + =3, =0

je omezena + =,,0 1 je omezena,0 2,0 2,0 je horní polovina koule + + je omezena + =1, + + =3, =0 Příklad 1 Vypočtěte trojné integrály transformací do cylindrických souřadnic a) b) c) d), + + +,,, je omezena + =1,++=3,=0 je omezena + =,,0 1 je omezena,0 2,0 2,0 je horní polovina koule + + Řešení 1a,

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE

PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE Příklad Představme si, že máme vypočítat integrál I = f(, y) d dy, M kde M = {(, y) R 2 1 < 2 + y 2 < 4}. y M je mezikruží mezi kružnicemi o poloměru 1 a 2 a se

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 10. POSUVNÝ PROUD A POYNTINGŮV VEKTOR 3 10.1 ÚKOLY 3 10. POSUVNÝ

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis

( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis 1.. Derivace elementárních funkcí I Předpoklad: 1 Shrnutí z minulé hodin: Chceme znát jakým způsobem se mění hodnot funkce f ( f ( + f ( přibližná hodnota změn = přesnost výpočtu se bude zvětšovat, kdž

Více

Matematika 2 (2016/2017)

Matematika 2 (2016/2017) Matematika 2 (2016/2017) Co umět ke zkoušce Průběh zkoušky Hodnocení zkoušky Co umět ke zkoušce Vybrané partie diferenciálního počtu funkcí více proměnných Vybrané partie integrálního počtu funkcí více

Více

Katedra aplikované matematiky, VŠB TU Ostrava.

Katedra aplikované matematiky, VŠB TU Ostrava. SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY JIŘÍ BOUCHALA Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala 3 Předmluva Cílem této sbírky je poskytnout studentům vhodné

Více

14. cvičení z Matematické analýzy 2

14. cvičení z Matematické analýzy 2 4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Dvojné a trojné integrály příklad 3. x 2 y dx dy, Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

1 Nulové body holomorfní funkce

1 Nulové body holomorfní funkce Nulové body holomorfní funkce Bod naýváme nulový bod funkce f), jestliže f ) =. Je-li funkce f) holomorfní v bodě, pak le funkci f) v jistém okolí bodu rovinout v Taylorovu řadu: f) = n= a n ) n, a n =

Více

3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE

3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE 3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE V této kapitole se dozvíte: jak popsat kružnici a kruh v rovině; jak určit vzájemnou polohu bodu nebo a kružnice, resp. bodu a kruhu; jakými metodami určit vzájemnou

Více

Z teorie je nutné znát pojmy: lineární funkcionál, jádro, hodnost a defekt lineárního funkcionálu. Také využijeme 2. větu o dimenzi.

Z teorie je nutné znát pojmy: lineární funkcionál, jádro, hodnost a defekt lineárního funkcionálu. Také využijeme 2. větu o dimenzi. Lineární funkcionál Z teorie je nutné znát pojm: lineární funkcionál jádro hodnost a defekt lineárního funkcionálu Také vužijeme větu o dimenzi [cvičení] Nechť je definován funkcionál ϕ : C C pro každé

Více

12 Trojný integrál - Transformace integrálů

12 Trojný integrál - Transformace integrálů Trojný integrál transformace integrálů) - řešené příklady 8 Trojný integrál - Transformace integrálů. Příklad Spočtěte x + y dxdydz, kde : z, x + y. Řešení Integrační obor určený vztahy z, x + y je válec.

Více

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27, Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()

Více

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2 PŘÍKLADY K ATEATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY ZDENĚK ŠIBRAVA.. Dvojné integrály.. Vícenásobné intergrály Příklad.. Vypočítejme dvojný integrál x 3 + y da, kde =, 3,. Řešení: Funkce f(x, y) = x je na obdélníku

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus Zkoušková písemná práce č. 1 z předmětu 01MAB4 pondělí 25. května 2015, 9:00 11:00 Vypočítejte integrál y d(, y), kde Ω Objekt Ω načrtněte do obrázku! Ω = { (, y) R 2 :, y 0 4 + y 4 1 ( 4 + y 4 ) 3 16

Více

Kapitola 8: Dvojný integrál 1/26

Kapitola 8: Dvojný integrál 1/26 Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet

Více

Implicitní funkce. 2 + arcsin(x + y2 ) = arccos(y + x 2 ), [0, 0] , 5] stacionární bod?

Implicitní funkce. 2 + arcsin(x + y2 ) = arccos(y + x 2 ), [0, 0] , 5] stacionární bod? Implicitní funkce V následujících úlohách ukažte, že uvedená rovnice určuje v jistém okolí daného bodu [ 0, y 0 ] implicitně zadanou funkci proměnné. Spočtěte první a druhou derivaci této funkce v bodě

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2 4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch

Více

svou hloubku, eleganci i široké spektrum aplikací bývají tyto věty považovány za jedny

svou hloubku, eleganci i široké spektrum aplikací bývají tyto věty považovány za jedny Kapitola Integrální věty V této kapitole se seznámíme s hlubšími větami integrálního počtu, které vyjadřují souvislost mezi typy integrálů, s nimiž jsme se setkali během předchozího výkladu. Jedná se Gaussovu

Více

PŘÍKLADY K MATEMATICE 3

PŘÍKLADY K MATEMATICE 3 PŘÍKLADY K ATEATIE 3 ZDENĚK ŠIBRAVA. Křivkové integrály.. Křivkový integrál prvního druhu. Příklad.. Vypočítejme křivkový integrál A =, ), B = 4, ). Řešení: Úsečka AB je hladká křivka. Funkce ψt) = 4t,

Více

SMART Notebook verze Aug

SMART Notebook verze Aug SMART Notebook verze 10.6.219.2 Aug 5 2010 Pořadové číslo projektu CZ.1.07/1.4.00/21.3007 Šablona č.: III/2 Datum vytvoření: 3.9.2012 Pro ročník: 6. až 9. Vzdělávací obor předmět: Matematika Klíčová slova:

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

matematika 5 stavební fakulta ČVUT 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je

matematika 5 stavební fakulta ČVUT 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je a) 4:π, b) :π, c) :4π, d) :4π, e) π :,. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme o 0 %, zmenší

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

Řešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1,

Řešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1, Určete Křivkový integrál příklad 4 x ds, kde {x, y ; y ln x, x 3}. Řešení: Nejprve musíme napsat parametrické rovnice křivky. Asi nejjednodušší parametrizace je Tedy daný integrál je x ds x t, y ln t,

Více

Protože se neobejdeme bez základních poznatků vektorové algebry, připomeneme si nejdůležitější pojmy., pak - skalární součin vektorů u,

Protože se neobejdeme bez základních poznatků vektorové algebry, připomeneme si nejdůležitější pojmy., pak - skalární součin vektorů u, 4 VEKTOROVÁ ANALÝZA 41 Vektorová funkce Protože se neobejdeme bez základních poznatků vektorové algebry, připomeneme si nejdůležitější pojmy Jsou-li dány tři nenulové vektory, uu ( 1, u, u), vv ( 1, v,

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

, 4. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv

, 4. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv ..06, 4. skupina (6: - 7:4) Jméno: Zápočtový test z PSI Nezapomeňte podepsat VŠECHNY papír, které odevzdáváte. Škrtejte zřetelně a stejně zřetelně pište i věci, které platí. Co je škrtnuto, nebude bráno

Více

3.2. ANALYTICKÁ GEOMETRIE ROVINY

3.2. ANALYTICKÁ GEOMETRIE ROVINY 3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou

Více

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) 2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017 Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................

Více

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ). III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,

Více

Základní topologické pojmy:

Základní topologické pojmy: Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński

Více

7. Integrál přes n-rozměrný interval

7. Integrál přes n-rozměrný interval 7. Integrál přes n-rozměrný interval Studijní text 7. Integrál přes n-rozměrný interval Definice 7.1. Buď A = a 1, b 1 a n, b n R n n-rozměrný uzavřený interval a f : R n R funkce ohraničená na A Df. Definujme

Více

STEREOMETRIE 9*. 10*. 11*. 12*. 13*

STEREOMETRIE 9*. 10*. 11*. 12*. 13* STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou

Více

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018 Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf

Více

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty. Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,

Více

2. DVOJROZMĚRNÝ (DVOJNÝ) INTEGRÁL

2. DVOJROZMĚRNÝ (DVOJNÝ) INTEGRÁL . VOJROZMĚRNÝ (VOJNÝ) INTEGRÁL Úvodem připomenutí základních integračních vzorců, bez nichž se neobejdete: [.] d = C [.] d = + C n+ n [.] d = + C n + [4.] d = ln + C [5.] sin d = cos + C [6.] cos d = sin

Více

Substituce ve vícenásobném integrálu verze 1.1

Substituce ve vícenásobném integrálu verze 1.1 Úvod Substituce ve vícenásobném integrálu verze. Následující text popisuje výpočet vícenásobných integrálů pomocí věty o substituci. ěl by sloužit především studentům předmětu ATEAT k přípravě na zkoušku.

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace

Více

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu 22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y

Více