26. listopadu a 10.prosince 2016

Podobné dokumenty
18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

Integrální počet - II. část (určitý integrál a jeho aplikace)

Integrální počet - III. část (určitý vlastní integrál)

7. Integrální počet Primitivní funkce, Neurčitý integrál

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

II. 5. Aplikace integrálního počtu

VIII. Primitivní funkce a Riemannův integrál

Matematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné

Integrál a jeho aplikace Tomáš Matoušek

6. Určitý integrál a jeho výpočet, aplikace

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. IV. Základy integrálního počtu

Matematika II: Testy

Kapitola 7: Neurčitý integrál. 1/14

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.

Přehled základních vzorců pro Matematiku 2 1

2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ

Kapitola 7: Integrál.

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

VIII. Primitivní funkce a Riemannův integrál

12.1 Primitivní funkce

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Kapitola 8: Dvojný integrál 1/26

Kapitola 7: Integrál. 1/17

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Matematika II: Listy k přednáškám

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí

Matematika II: Listy k přednáškám

11. cvičení z Matematické analýzy 2

MATEMATIKA II V PŘÍKLADECH

17 Křivky v rovině a prostoru

Masarykova univerzita

Obsah na dnes Derivácia funkcie

KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t

Integrální počet - II. část (další integrační postupy pro některé typy funkcí)

5.2. Určitý integrál Definice a vlastnosti

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

FAKULTA STAVEBNÍ MATEMATIKA I MODUL 8 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

Ur itý integrál. Úvod. Denice ur itého integrálu

JEDNODUCHÝ INTEGRÁL příklady. pro vysoké školy

je daná funkce. Množinu všech primitivních funkcí k f na I nazveme neurčitým f(x)dx nebo f.

III.4. Fubiniova (Fubiniho) věta pro trojný integrál

2.3 Aplikace v geometrii a fyzice Posloupnosti a řady funkcí Posloupnosti funkcí... 17

8. Elementární funkce

5.5 Elementární funkce

Obsah rovinného obrazce

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.

OBECNÝ URČITÝ INTEGRÁL

Teorie. Hinty. kunck6am

Matematika II: Pracovní listy do cvičení

Matematické metody v kartografii

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

Matematická analýza ve Vesmíru. Jiří Bouchala

Riemannův určitý integrál.

8.6. Aplikace určitého integrálu ve fyzice Index

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

2.3 Aplikace v geometrii a fyzice... 16

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce

f(x)dx, kde a < b < c

Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali

Primitivní funkce. Definice a vlastnosti primitivní funkce

x + F F x F (x, f(x)).

NMAF061, ZS Písemná část zkoušky 25. leden 2018

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.

Matematika II: Pracovní listy

Kapitola 1. Taylorův polynom

Správné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

Funkce jedné proměnné

Matematická analýza II Osnova cvičení

Výpočet obsahu rovinného obrazce

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková

Matematika II: Pracovní listy

II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y)

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

1 Neurčitý integrál 1.1 NEURČITÝ INTEGRÁL

Teorie. Hinty. kunck6am

Digitální učební materiál

DERIVACE A INTEGRÁLY VE FYZICE

Limity, derivace a integrály Tomáš Bárta, Radek Erban

3. APLIKACE URČITÉHO INTEGRÁLU

vás seznámí s učivem, které v dané kapitole poznáte a které byste po jejím prostudování měli umět.

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.

II. 3. Speciální integrační metody

3. ROVNICE A NEROVNICE Lineární rovnice Kvadratické rovnice Rovnice s absolutní hodnotou Iracionální rovnice 90

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný.

Křivkový integrál funkce

Matematika vzorce. Ing. Petr Šídlo. verze

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Bakalářská matematika I

Transkript:

Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016

Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

K čemu integrální počet? určení funkce, je-li znám její derivce neurčitý integrál výpočet plochy, která je vymezen grfem funkce f (x) n intervlu,, b osou nezávislé proměnné x, délky křivky, objemu, fyzikálních veličin - moment,... Úloh: zdné funkci f budeme hledt funkci F tkovou, by pltilo: F = f. Doporučený text http://homel.vsb.cz/~s164/cd/pdf/print/ip.pdf

Neurčitý integrál Definice. Necht funkce f (x) je definovná n intervlu I. Funkce F (x) se nzývá primitivní k funkci f (x) n I, jestliže pltí F (x) = f (x) pro kždé x I. Množin všech primitivních funkcí k funkci f (x) n I se nzývá neurčitý integrál z funkce f (x) znčí se f (x)dx: f (x)dx = F (x) Vět. Necht funkce F (x) je primitivní k funkci f (x) n intervlu I. Pk kždá jiná primitivní funkce k funkcif (x) n I má tvr F (x) + c, kde c R. Vět. Je-li funkce f spojitá n intervlu I, pk n tomto intervlu existuje lespoň jedn primitivní funkce k funkci f.

Vět. Necht n intervlu I existují integrály f (x)dx g(x)dx. Pk n I existují tké integrály (f (x) ± g(x))dx f (x)dx, kde R je libovolná konstnt, pltí: (f (x) ± g(x))dx = f (x)dx ± g(x)dx, f (x)dx = f (x)dx Neurčitý integrál ze součtu (rozdílu) je součtem (rozdílem) neurčitých integrálů, konstntu lze z neurčitého integrálu vytknout. Přímo z definice neurčitého integrálu vyplývá pltnost rovností [ f (x)dx] = f (x) F (x) dx = F (x) + c, c R

Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

Zákldní integrční metody Tbulkové integrály Metod per prtes Substituční metod

Tbulkové integrály 1 2 0dx = c dx = x + c 3 x α dx = xα+1 α + 1 + c α R, α 1 1 4 dx = ln x + c x 5 e x dx = e x + c 6 x dx = x ln + c, > 0 7 sin xdx = cos x + c 8 cos xdx = sin x + c 1 9 dx = rctgx + c 1 + x2 1 10 dx = rcsinx + c 1 x 2 1 11 cos 2 dx = tgx + c x Příkldy ( x 1 3 1 ) dx x 2 3 4 5 6 7 8 x 3 1 x 1 dx x 4 1 x + 2 dx ( 3 ) 2 x x dx x 2 x 2 + 2 1 + x 2 dx dx sin 2 x cos 2 x cos 2x cos 2 x dx cotg 2 xdx

Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

Substituční metod Připomenutí: (F [ϕ(x)]) = F [ϕ(x)] ϕ (x) Vět. Necht funkce f (u) má n otevřeném intervlu J primitivní funkci F (u), funkce ϕ(x) má derivci n otevřeném intervlu I pro libovolé x I je ϕ(x) J. Pk má složená funkcef [(ϕ(x))]ϕ (x) n intervlu I primitivní funkci pltí f [(ϕ(x))]ϕ (x) dx = F [ϕ(x)] + c Použití: Oznčíme u = ϕ(x). Rovnost u = ϕ(x) diferencujeme: u = du dx = 1, ϕ (x) = dϕ(x) dx Nhrdíme ϕ(x) u, ϕ (x) dx du: f [(ϕ(x))]ϕ (x) dx = ϕ(x) = u ϕ (x)dx = du = f (u) du

Příkldy : substituční metod 1 2 3 4 5 6 7 8 sin x cos xdx dx x ln x dx 1 x 2 rccosx e x e x + 2 dx sin 2xdx e 5x dx dx x 2 + 9 dx 4x x 2

Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

Metod per-prtes Připomenutí: (u(x) v(x)) = u (x) v(x) + u(x) v (x) u(x) v (x)dx = u(x) v(x) u (x) v(x)dx Příkldy 1. (2x + 3) cos x dx 2. x 2 ln x dx 3. x ln 2 x dx 4. ln x dx 5. 6. 7. 8. rctgx dx e x cos x dx cos(ln x)x dx 2x sin 2 x dx

Rozkld n prciální zlomky Rcionální funkce je podíl dvou mnohočlenů. Kždou neryze lomenou rcionální funkci (stupeň čittele je větší než stupeň jmenovtele nebo je mu roven) lze dělením převést n součet mnohočlenu ryze lomené rcionální funkce ( stupeň čittele je menší než stupeň jmenovtele). Prciální zlomky A, k N, α, A R (x α) k Mx + N (x 2 + px + q) k, k N, M, N, p, q R, p2 4q < 0

Rozkld n prciální zlomky - příkldy Necht R(x) P(x) je rcionální ryze lomená funkce. Q(x) Podle rozkldu jmenovtele Q(x) = (x α 1 ) k 1... (x α r ) kr (x 2 +p 1 x +q 1 ) l 1... (x 2 +p s x +q s ) ls rozkládáme R(x) n součet prciálních zlomků: k násobnému reálnému kořenu α hledáme A i : A 1 x α,..., A k (x α) k l násobným komplexně sdruženým kořenům (x + px + q): M 1 x + N 1 x 2 + px + q,..., M l x + N l (x 2 + px + q) l 2x x + 8 1. x 2 6x + 5 dx 3. x 3 + 8 dx dx 3x + 1 2. x 2 (x 1) dx 4. x 3 1 dx

Integrály obshující goniometrické funkce: R(cos x, sin x) cos m x sin n x dx, m, n Z spoň jedno z čísel m, n je liché: substituce: (m je liché) sin x = t resp. (n je liché) cos x = t cos x dx = dt resp. sin x dx = dt, sin 2 x = 1 cos 2 x cos 2 x = 1 sin 2 x obě čísl jsou sudá úprv: sin 2 x = Příkldy 1. cos 5 x sin 2 x dx 2. 1 cos 2x, cos 2 x = 2 3. 1 sin x dx, x (0, π) 1 + cos 2x 2 cos 2 x dx univerzální substituce t = tg x, x ( π, π), 2 x = rctg t, dx = 2 2t 1 t2 dt, sin x =, cos x = 1 + t2 1 + t2 1 + t 2

Integrály obshující odmocniny R(x, s x): substituce x = t s x 2 + x + 1 Příkld: x + x dx R(x, s x + b): substituce x + b = t s R(x, x 2 + bx + c): Eulerovy substituce, goniometrické substituce

Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv z následujících podmínek: (1) f (x) je monotónní, (2) f (x) je spojitá, (3) f (x) je omezená má nejvýše konečný počet bodů nespojitosti. Potom existuje určitý integrál b f (x)dx. Výpočet určitého integrálu: Newtonov - Leibnitzov formule Necht funkce f (x) je integrovtelná n intervlu, b necht F (x) je její primitivní funkce. Potom pltí: b f (x) dx = F (b) F ()

Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

Aplikce určitého integrálu Geometrické plikce Obsh rovinné množiny Délk křivky Objem rotčního těles Obsh pláště rotčního těles Fyzikální plikce hmotnost, sttický moment, souřdnice těžiště, moment setrvčnosti...

Výpočet obshu (plochy) rovinných útvrů Necht je funkce f (x) integrovtelná n intervlu, b, je n něm nezáporná. Pk pro obsh křivočrého lichoběžník ohrničeného shor grfem funkce f (x), přímkmi x =, x = b osou x pltí P = b f (x) dx. Je-li funkce f (x) n intervlu, b nekldná, pro obsh křivočrého lichoběžník ohrničeného zdol grfem funkce f (x), přímkmi x =, x = b osou x pltí P = b f (x) dx. Necht jsou funkce f (x) g(x) integrovtelné pltí g(x) f (x) pro kždé x, b. Pk pro obsh křivočrého lichoběžník ohrničeného zdol grfem funkce g(x), shor grfem funkce f (x) přímkmi x =, x = b pltí P = b (f (x) g(x)) dx.

Příkldy Vypočtěte obsh rovinného obrzce ohrničeného 1 y = 4 x 2 ; y = 0 2 xy = 4; x + y = 5 3 y 2 = 2x + 1, x y 1 = 0 4 y 4, x 2 y, x 2 4y

Prmetricky zdná funkce Necht funkce f je dán prmetrickými rovnicemi x = ϕ(t) y = ψ(t), přičemž funkce ϕ(t) ψ(t)jsou spojité pro t α, β. Je-li funkce ϕ(t) ryze monotonní má spojitou derivci n intervlu α, β, přičemž ϕ(α) = ϕ(β) = b, pk pro obsh křivočrého lichoběžník ohrničeného shor grfem funkce f, přímkmi x =, x = b osou x pltí β P = ψ(t)ϕ (t) dt. Příkldy 1 x = 2 sin t, y = 2 cos t, 0 t π; 2 x = 2t t 2, y = 2t 2 t 3, 0 t 2 α

Délk oblouku křivky Necht je funkce f (x) definovná n intervlu <, b > má zde spojitou derivci. Pk délk této křivky s = b 1 + [f (x)] 2 dx. Necht funkce f je dán prmetrickými rovnicemi x = ϕ(t) y = ψ(t), přičemž funkce ϕ(t) ψ(t)jsou spojité pro t α, β, přičemž funkce ϕ(t) ψ(t) mjí spojité derivci n intervlu α, β Pk délk této křivky Příkldy s = β 1 y = ln x, 3 x 8 α [ϕ (t)] 2 + [ψ (t)] 2 dt. 2 x = 2 cos t, y = 2 sin t, 0 t π

Objem rotčního těles Necht je funkce f (x) spojitá nezáporná n intervlu <, b >. Pk rotční těleso, které vznikne rotcí křivočrého lichoběžník ohrničeného shor funkcí f (x), osou x přímkmi x =, x = b kolem osy x, má objem V = π b f 2 (x) dx Pro výpočet objemu rotčního těles, které vznikne rotcí oblsti ohrničené křivkmi g(x) f (x) kolem osy x pro x <, b > použijeme vzth V = π b f 2 (x) dx π b g 2 (x) dx = π b [ f 2 (x) g 2 (x) ] dx Zcel nlogicky můžeme určit objem rotčního těles, jehož plášt vznikl rotcí spojité křivky x = h(y), y < c, d > kolem osy y: d V = π h 2 (y) dy c Příkld: y = x 2, x = y 2 kolem osy x; kolem osy y

Obsh pláště rotčního těles Necht je funkcef (x) spojitá nezáporná n intervlu <, b > má zde spojitou derivc if (x). Pk pro obsh rotční plochy vzniklé rotcí oblouku křivkyy = f (x) kolem osy x pltí S = 2π b f (x) 1 + [f (x)] 2 dx Necht je funkce f dán prmetrickými rovnicemi x = ϕ(t) y = ψ(t), t α, β, přičemž funkce ϕ(t), ψ(t) mjí spojité derivce n intervlu α, β funkceψ(t) je nezáporná n intervlu α, β. Pk pro obsh plochy, která vznikne rotcí grfu funkce f kolem osy x pltí β S = 2π ψ(t) [ϕ (t)] 2 + [ψ (t)] 2 dt α

Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

Křivk zdná prmetricky Necht je křivk dán prmetrickými rovnicemi x = ϕ(t) y = ψ(t), t α, β, přičemž funkce ϕ(t), ψ(t) mjí spojité derivce n intervlu α, β. Je-li délková hustot ρ křivky konstntní, pk má křivk hmotnost β m = ρ [ϕ (t)] 2 + [ψ (t)] 2 dt α Pro sttické momenty pltí β S x = ρ ψ(t) [ϕ (t)] 2 + [ψ (t)] 2 dt S y = ρ α β α ϕ(t) [ϕ (t)] 2 + [ψ (t)] 2 dt Momenty setrvčnosti této křivky dostneme ze vzthů: β I x = ρ ψ 2 (t) [ϕ (t)] 2 + [ψ (t)] 2 dt I y = ρ α β α ϕ 2 (t) [ϕ (t)] 2 + [ψ (t)] 2 dt Těžiště T = (ξ, η) má souřdnice ξ = S y m, η = S x m

Křivk zdná explicitně Necht je hmotná křivk určená explicitní rovnicíy = f (x) se spojitou derivci f (x) n intervlu <, b > konstntní délkovou hustotou ρ. Pk má křivk hmotnost m = ρ Pro sttické momenty pltí: S x = ρ S y = ρ b b b 1 + [f (x)] 2 dx f (x) 1 + [f (x)] 2 dx x 1 + [f (x)] 2 dx Momenty setrvčnosti této křivky dostneme ze vzthů: b I x = ρ f 2 (x) 1 + [f (x)] 2 dx I y = ρ b x 2 1 + [f (x)] 2 dx Těžiště T = (ξ, η) má souřdnice ξ = S y m, η = S x m

Těžiště moment setrvčnosti rovinné oblsti Necht je hmotná rovinná oblst ohrničen křivkmi g(x) f (x), kde g(x) f (x) n intervlu, b. Pk hmotnost této oblsti s konstntní plošnou hustotou ρ je m = ρ Pro sttické momenty pltí: S x = ρ 1 2 S y = ρ b b b [f (x) g(x)] dx [f 2 (x) g 2 (x)] dx x[f (x) g(x)] dx Momenty setrvčnosti této rovinné oblsti dostneme ze vzthů: S x = ρ 1 3 S y = ρ b b [f 3 (x) g 3 (x)] dx x 2 [f (x) g(x)] dx Těžiště T = (ξ, η) má souřdnice ξ = S y m, η = S x m