CVIČNÝ TEST 18. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

Podobné dokumenty
CVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 20. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 25. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 17. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 53. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 27. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 23. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 29. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 56. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13

CVIČNÝ TEST 11. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

CVIČNÝ TEST 38. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 42. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 6. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

CVIČNÝ TEST 55. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 19 IV. Záznamový list 21

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

VZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C)

CVIČNÝ TEST 12. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

CVIČNÝ TEST 16. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

CVIČNÝ TEST 47. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

c jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c.

CVIČNÝ TEST 7. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

Modelové úlohy přijímacího testu z matematiky

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

Modelové úlohy přijímacího testu z matematiky

CVIČNÝ TEST 8. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 23 IV. Záznamový list 25

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

MATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A

Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/ Mgr. Jakub Novák. Datum: Ročník: 9.

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Základy matematiky pracovní listy

MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH

CVIČNÝ TEST 4. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 21 IV. Záznamový list 23

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

Opakování k maturitě matematika 4. roč. TAD 2 <

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN!

MATEMATIKA MAMZD13C0T04

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

Analytická geometrie lineárních útvarů

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

MATEMATIKA MAIZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

MATEMATIKA vyšší úroveň obtížnosti

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, a 0,1, 0,01, 0,001.. Čísla navzájem opačná

MATEMATIKA základní úroveň obtížnosti

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

Maximální bodové Hranice. bílých polí.. žádné body. hodnocení. bodů. chybné řešení. První. je právě jedna. odpovědí. nesprávnou.

MATEMATIKA základní úroveň obtížnosti

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

MATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA 9 M9PZD15C0T01. 1 Základní informace k zadání zkoušky

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun.

SBÍRKA n PŘÍKLADŮ Z MATEMATIKY kde n =

Cvičné texty ke státní maturitě z matematiky

Jak by mohl vypadat test z matematiky

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017

4 Rovnice a nerovnice

MATEMATIKA vyšší úroveň obtížnosti

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina

Příklady k opakování učiva ZŠ

Témata absolventského klání z matematiky :

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Mateřská škola a Základní škola při dětské léčebně, Křetín 12

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

MATEMATIKA+ MAIPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

4.3.4 Základní goniometrické vzorce I

MATEMATIKA 9 Přijímací zkoušky na nečisto

Transkript:

CVIČNÝ TEST 18 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Anna zdědila 150 000 Kč a banka jí nabízí uložit je na roční termínovaný vklad při 3% roční úrokové míře. Před vyzvednutím částky se z úroku odpočítává státem stanovená daň ve výši 15 %. Anna hotovost nepotřebuje, a proto nechá vklad zvýšený o zdaněný úrok v peněžním ústavu za stejných podmínek po dobu dalších dvou let. 1 Kolik korun bude připraveno po třech letech k vyzvednutí? (Výsledek vyjádřete v celých Kč.) VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 2 Střecha přízemního domu má tvar pravidelného čtyřbokého jehlanu o podstavné hraně délky a = 10 m. Sklon střechy je ϕ = 30. 2.1 Jaká je užitná plocha přízemí tohoto domu, zanedbáme-li tloušťku stěn? 2.2 Kolik zaplatí majitel tohoto přízemního domu za nákup plechové střešní krytiny, jestliže ta se prodává v balících po 10 m 2 za cenu 1 950 Kč za 1 balík? 1 bod 3 Určete počet všech průsečíků grafu funkce f: y = sin(2x) s oběma souřadnicovými osami pro x 0; 2π. VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 4 Je dán bod A a přímka p (viz obrázek). Pro přímku q platí, že prochází bodem A a je kolmá na přímku p. 2 Maturita z matematiky 02

4 Určete souřadnice průsečíku P [x; y] přímek p a q. V záznamovém listu uveďte celý postup řešení. 5 Určete počet všech společných dělitelů čísel 30, 42 a 120. 1 bod 1 bod 6 Řešte v oboru reálných čísel nerovnici a výsledek zapište intervalem, příp. sjednocením intervalů. 6 3x x x 2 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 7 Je dán pravoúhlý trojúhelník ABC s pravým úhlem při vrcholu C. Výška v na přeponu dělí přeponu na dva úseky. Obsahy S 1 a S 2 čtverců sestrojených nad těmito úseky jsou v poměru 81 : 16. Maturita z matematiky 03 3

7 V jakém poměru jsou délky odvěsen pravoúhlého trojúhelníku? A) 81 : 16 B) 5 : 2 C) 9 : 4 D) 3 : 2 E) v jiném poměru 2 body max. 4 body 8 Přiřaďte ke každému výrazu (8.1 8.4) jeho maximální definiční obor (A F). 8.1 x + 1 x + 2 x 1 8.2 8.3 8.4 4 x 2 x 1 x 1 x 2 x + 1 x 1 : (x + 1) x + 2 A) ( ; 2) ( 2; 1) ( 1; ) B) ( ; 2) ( 2; 1) (1; ) C) ( ; 1) ( 1; 2) (2; ) D) ( ; 2) ( 2; ) E) ( ; 1) ( 1; ) F) ( ; 1) (1; ) VÝCHOZÍ TEXT K ÚLOZE 9 Graf lineární funkce f prochází body A [1; 2] a B [ 1; 4]. 9 Rozhodněte o každém tvrzení (9.1 9.4), zda je pravdivé (ANO), či nikoli (NE): 9.1 Předpisem funkce f je rovnice y = kx q, kde k, q jsou kladná reálná čísla. 9.2 Jeden z průsečíků grafu funkce f se souřadnicovými osami je bod P [ 3; 0]. 9.3 Funkce f je rostoucí. 9.4 Funkční hodnota funkce f v bodě 2 je 1, tj. f(2) = 1. ANO NE 4 Maturita z matematiky 03

VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 10 Žáci jednoho semináře jedou na exkurzi minibusem, ve kterém je 19 míst k sezení (viz obrázek). Na sedadle vedle řidiče bude sedět organizátor exkurze. 2 body 10 Kolika způsoby si můžou do minibusu sednout Adam s Evou, jestliže spolu nastupují jako první a chtějí sedět těsně vedle sebe. A) 18 B) 16 C) 14 D) 8 E) 7 KONEC TESTU Maturita z matematiky 03 5

II. AUTORSKÉ ŘEŠENÍ VÝCHOZÍ TEXT K ÚLOZE 1 Anna zdědila 150 000 Kč a banka jí nabízí uložit je na roční termínovaný vklad při 3% roční úrokové míře. Před vyzvednutím částky se z úroku odpočítává státem stanovená daň ve výši 15 %. Anna hotovost nepotřebuje, a proto nechá vklad zvýšený o zdaněný úrok v peněžním ústavu za stejných podmínek po dobu dalších dvou let. 1 Kolik korun bude připraveno po třech letech k vyzvednutí? (Výsledek vyjádřete v celých Kč.) Jedná se o úlohu na vzrůst hodnoty. Nejprve vypočteme čistou úrokovou míru, tedy promítneme do ní zdanění úroku: p = (1 0,15) 3 = 2,55. Jestliže počáteční hodnota je a 0 = 150 000 Kč, úroková míra je p = 2,55 a počet úrokovacích období je n = 3, potom konečná cena je a n = a 0 (1 + p 100 ) n = 150 000 (1 + 2,55 100 ) n = 161 770 Po třech letech bude k vyzvednutí připraveno 161 770 Kč. Řešení: 161 770 Kč VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 2 Střecha přízemního domu má tvar pravidelného čtyřbokého jehlanu o podstavné hraně délky a = 10 m. Sklon střechy je ϕ = 30. max. 3 body 2.1 Jaká je užitná plocha přízemí tohoto domu, zanedbáme-li tloušťku stěn? Užitnou plochu domu tvoří čtverec o straně a = 10 m, takže její velikost je: S = a 2 = (10 m) 2 = 100 m 2 Užitná plocha přízemí tohoto domu je 100 m 2. Řešení: 100 m 2 6 Maturita z matematiky 03

2.2 Kolik zaplatí majitel tohoto přízemního domu za nákup plechové střešní krytiny, jestliže ta se prodává v balících po 10 m 2 za cenu 1 950 Kč za 1 balík? Střechu domu tvoří plášť pravidelného čtyřbokého jehlanu. Plášť pravidelného čtyřbokého jehlanu tvoří čtyři shodné rovnoramenné trojúhelníky. Výšku trojúhelníku vypočteme s využitím goniometrických funkcí v pravoúhlém trojúhelníku: a 2 cos φ = v a = a = 10 m = 10 3 m va 2 cos φ 2 cos 30 3 Plochu střechy S pl vypočteme jako obsah čtyř trojúhelníků: av S pl = 4 2 a = 2av a = 2 10m 10 3 m = 200 3 m 2 = 120 m 2 3 3 Jestliže se krytina prodává v balících po 10 m 2, pak je na pokrytí střechy třeba 12 balíků, a celková cena bude: 12 1 950 Kč = 23 400 Kč Majitel zaplatí za nákup plechové střešní krytiny 23 400 Kč. Řešení: 23 400 Kč 1 bod 3 Určete počet všech průsečíků grafu funkce f: y = sin(2x) s oběma souřadnicovými osami pro x 0; 2π. Graf funkce f: y = sin (2x) má pět průsečíků se souřadnicovými osami (viz obrázek). Řešení: 5 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 4 Je dán bod A a přímka p (viz obrázek). Pro přímku q platí, že prochází bodem A a je kolmá na přímku p. Maturita z matematiky 02 7

4 Určete souřadnice průsečíku P [x; y] přímek p a q. V záznamovém listu uveďte celý postup řešení. Přímka p je určena body [1; 0] a [0; 2]. Směrový vektor přímky p: s p = (1; 2). Normálový vektor přímky p: n p = (2; 1). Obecná rovnice přímky p: 2x y + c = 0. Přímka p je určena bodem [1; 0] 2 1 0 + c = 0 c = 2 p: 2x y 2 = 0 q p n q = s p = (1; 2). Obecná rovnice přímky q: x + 2y + c = 0. Přímka q je určena bodem [ 2; 0] 2 + 2 0 + c = 0 c = 2 q: x + 2y + 2 = 0. Řešíme soustavu rovnic: 2x y 2 = 0 x + 2y + 2 = 0. Z první rovnice vyjádříme y = 2x 2, dosadíme do druhé: x + 2(2x 2) + 2 = 0, upravíme: 5x 2 = 0, vyjádříme: x = 2 5 a y = 2 2 5 2 = 6 5. Průsečík má souřadnice P [ 2 5 ; 6 5 ]. Řešení: P [ 2 5 ; 6 5 ] 8 Maturita z matematiky 02

5 Určete počet všech společných dělitelů čísel 30, 42 a 120. 1 bod Určíme největšího společného dělitele čísel 30, 42 a 120, přičemž platí: D (30; 42; 120) = D (30; 42), protože číslo 120 je násobkem čísla 30. Rozložíme čísla 30 a 42 na součin prvočísel, tj. 30 = 2 3 5 a 42 = 2 3 7, z čehož vyplývá, že D (30; 42; 120) = 2 3 = 6. Společnými děliteli čísel 30, 42 a 120 jsou čísla 1, 2, 3 a 6, jejich počet je tedy 4. Řešení: 4 1 bod 6 Řešte v oboru reálných čísel nerovnici a výsledek zapište intervalem, příp. sjednocením intervalů. 6 3x x x 2 Nerovnice je řešitelná pro x 2. Upravíme levou stranu nerovnice vytknutím a zkrácením: 6 3x = 3(2 x) = 3. x 2 x 2 Z nerovnosti 3 x vyplývá: x 3, přičemž řešením nerovnice jsou všechna reálná čísla x, pro která platí: x 3 x 2, tj. x ( ; 2) (2; 3. Řešení: x ( ; 2) (2; 3 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 7 Je dán pravoúhlý trojúhelník ABC s pravým úhlem při vrcholu C. Výška v na přeponu dělí přeponu na dva úseky. Obsahy S 1 a S 2 čtverců sestrojených nad těmito úseky jsou v poměru 81 : 16. Maturita z matematiky 03 9

7 V jakém poměru jsou délky odvěsen pravoúhlého trojúhelníku? A) 81 : 16 B) 5 : 2 C) 9 : 4 D) 3 : 2 E) v jiném poměru 2 body S 1 S2 = 81 c 2 b = 9 2 16 2 ca 4 2 ( c b ca ) 2 = ( 9 4 ) 2 c b ca = 9 c a = 4 4 cb 9 Euklidovy věty pro odvěsny: a 2 = c c a b 2 = c c b a 2 = c c a = b 2 c cb c a cb = 4 9 = 2 2 3 2 ( a b ) 2 = ( 2 3 ) 2 a b = 2 3 Odvěsny jsou tedy v poměru 2 : 3, resp. 3 : 2, správně je tedy možnost D. Řešení: D max. 4 body 8 Přiřaďte ke každému výrazu (8.1 8.4) jeho maximální definiční obor (A F). 8.1 x + 1 x + 2 x 1 8.2 8.3 8.4 4 x 2 x 1 x 1 x 2 x + 1 x 1 : (x + 1) x + 2 A) ( ; 2) ( 2; 1) ( 1; ) B) ( ; 2) ( 2; 1) (1; ) C) ( ; 1) ( 1; 2) (2; ) D) ( ; 2) ( 2; ) E) ( ; 1) ( 1; ) F) ( ; 1) (1; ) 10 Maturita z matematiky 03

8.1 Ze jmenovatele zlomku vyplývá, že x 2 x ( ; 2) ( 2; ). Jde tedy o možnost D. 8.2 Ze jmenovatele zlomku vyplývá, že x 1 x ( ; 1) (1; ). Jde tedy o možnost F. 8.3 Zlomek upravíme: x 1 x 2 = x 1 x + 1 (x 2)(x + 1) Ze jmenovatele zlomku vyplývá, že: x 2 x 1 x ( ; 1) ( 1; 2) (2; ). Jde tedy o možnost C. 8.4 Zlomek upravíme: x 1 : (x + 1) = x 1 1 ; x + 2 x + 2 x + 1 Ze jmenovatele zlomku vyplývá, že x 2 x 1 x ( ; 2) ( 2; 1) ( 1; ). Jde tedy o možnost A. Řešení: D, F, C, A VÝCHOZÍ TEXT K ÚLOZE 9 Graf lineární funkce f prochází body A [1; 2] a B [ 1; 4]. 9 Rozhodněte o každém tvrzení (9.1 9.4), zda je pravdivé (ANO), či nikoli (NE): 9.1 Předpisem funkce f je rovnice y = kx q, kde k, q jsou kladná reálná čísla. 9.2 Jeden z průsečíků grafu funkce f se souřadnicovými osami je bod P [ 3; 0]. 9.3 Funkce f je rostoucí. 9.4 Funkční hodnota funkce f v bodě 2 je 1, tj. f(2) = 1. ANO NE 9.1 f: y = kx q A f: 2 = k q(i) B f: 4 = k q(ii) (I) + (II): 6 = 2q q = 3 > 0 (I)k = q 2 = 1 > 0 Tvrzení je pravdivé. 9.2 P y : x = 0 y = 0 3 = 3 P y [0; 3] P x : y = 0 0 = x 3 x = 3 P x [3; 0] Tvrzení je nepravdivé. Maturita z matematiky 02 11

9.3 f: y = x 3; k = 1 > 0 funkce f je rostoucí Tvrzení je pravdivé. 9.4 f(2) = 2 3 = 1 1 Tvrzení je nepravdivé. Řešení: ANO, NE, ANO, NE VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 10 Žáci jednoho semináře jedou na exkurzi minibusem, ve kterém je 19 míst k sezení (viz obrázek). Na sedadle vedle řidiče bude sedět organizátor exkurze. 2 body 10 Kolika způsoby si můžou do minibusu sednout Adam s Evou, jestliže spolu nastupují jako první a chtějí sedět těsně vedle sebe. A) 18 B) 16 C) 14 D) 8 E) 7 V autobusu je pět dvojsedadel, takže dvojice má 5 možností, jak je obsadit. Dále je v autobusu jedno čtyřsedadlo, které může dvojice obsadit 3 různými způsoby sednout si těsně vedle sebe k levému či pravému okénku, nebo doprostřed. Dvojice má tedy dohromady 8 způsobů, a navíc si mohou mezi sebou vyměnit místo, takže možností je celkem 2 8 = 16. Jde tedy o možnost B. Řešení: B 12 Maturita z matematiky 02

III. KLÍČ 1) Maximální bodové ohodnocení je 20 bodů. Hranice úspěšnosti v testu je 7 bodů. 2) Úlohy 1 6 jsou otevřené. 3) Úlohy 7 10 jsou uzavřené s nabídkou možných odpovědí, kde u každé úlohy resp. podúlohy je právě jedna odpověď správná. Tabulka úspěšnosti Počet bodů Výsledná známka 20 17 výborně 16 14 chvalitebně 13 11 dobře 10 7 dostatečně 6 a méně nedostatečně Úloha Správné řešení Počet bodů 1 161 770 Kč 2 2.1 100 m 2 1 bod 2.2 23 400 Kč 3 5 1 bod 4 Přímka p je určena body [1; 0] a [0; 2]. Směrový vektor přímky p: s p = (1; 2). Normálový vektor přímky p: n p = (2; 1). Obecná rovnice přímky p: 2x y + c = 0. Přímka p je určena bodem [1; 0] 2 1 0 + c = 0 c = 2 p: 2x y 2 = 0 q p n q = s p = (1; 2). Obecná rovnice přímky q: x + 2y + c = 0. Přímka q je určena bodem [ 2; 0] 2 + 2 0 + c = 0 c = 2 q: x + 2y + 2 = 0. Řešíme soustavu rovnic: 2x y 2 = 0 x + 2y + 2 = 0. Z první rovnice vyjádříme y = 2x 2, dosadíme do druhé: x + 2(2x 2) + 2 = 0, upravíme: 5x 2 = 0, vyjádříme: x = 2 5 a y = 2 2 5 2 = 6 5. Průsečík má souřadnice P [ 2 5 ; 6 5 ]. Řešení: P [ 2 5 ; 6 5 ] 5 4 1 bod Maturita z matematiky 03 13

6 x ( ; 2) (2; 3 1 bod 7 D 2 body 8 9 8.1 D 8.2 F 8.3 C 8.4 A 9.1 ANO 9.2 NE 9.3 ANO 9.4 NE 10 B 2 body max. 4 body 4 podúlohy 4 b. 3 podúlohy 3 b. 2 podúlohy 2 b. 1 podúloha 1 b. 0 podúloh 0 b. 4 podúlohy 2 b. 3 podúlohy 1 b. 2 podúlohy 0 b. 1 podúloha 0 b. 0 podúloh 0 b. 14 Maturita z matematiky 03

IV. ZÁZNAMOVÝ LIST 1) Maximální bodové ohodnocení je 20 bodů. Hranice úspěšnosti v testu je 7 bodů. 2) Úlohy 1 6 jsou otevřené. Zapište výsledek. V úloze 4 uveďte i celý postup řešení. 3) Úlohy 7 10 jsou uzavřené s nabídkou možných odpovědí, kde u každé úlohy resp. podúlohy je právě jedna odpověď správná. Zapište vybranou možnost. Tabulka úspěšnosti Počet bodů Výsledná známka 20 17 výborně 16 14 chvalitebně 13 11 dobře 10 7 dostatečně 6 a méně nedostatečně Úloha Správné řešení Počet bodů 1 2 2.1 1 bod 2.2 3 1 bod 4 5 1 bod Maturita z matematiky 03 15

6 1 bod 7 2 body 8 9 8.1 8.2 8.3 8.4 9.1 9.2 9.3 9.4 10 2 body max. 4 body 4 podúlohy 4 b. 3 podúlohy 3 b. 2 podúlohy 2 b. 1 podúloha 1 b. 0 podúloh 0 b. 4 podúlohy 2 b. 3 podúlohy 1 b. 2 podúlohy 0 b. 1 podúloha 0 b. 0 podúloh 0 b. 16 Maturita z matematiky 03