Křivové integrál prvního druhu Vpočítejte dané řivové integrál prvního druhu v R. Přílad. ds x, de je úseča AB, A[, ], B[4, ]. Řešení: Pro řivový integrál prvního druhu platí: fx, ) ds β α fϕt), ψt)) ϕ t) + ψ t) dt, de regulární řiva je parametric vjádřena rovnicemi x ϕt), ψt), t α, β. Parametricé vjádření úseč AB je x + 4t, + t, t,. Křivu můžeme ted parametric vjádřit rovnicemi ϕt) + 4t, ψt) + t, t,. Odtud ds x 4 + 4t + t) dt 5 t + dt 5 [ln t + ] 5 ln. Přílad. x + ) ds, de je obvod trojúhelnía ABC, A[, ], B[, ], C[, 3] Řešení: Platí 3, de,, 3 jsou stran trojúhelnía ABC. Je : x + t, + t, t,, : x t, + t, t,, 3 : x + t, + t, t,.
x + ) ds t + ) dt + t) + + t)) 8 dt + t + ) dt 8 + 3 8. Přílad 3. x ds, de { x, ) R : x, ln x }. Řešení: Křivu můžeme parametric vjádřit pomocí rovnic x ds x t, ln t, t,. t + t dt Označme u t + a dále du t dt. t t + dt 5 t t + dt. u du 5 5 ). 3 Přílad 4. x + ds, de je ružnice x + x. Řešení: Doplněním na čtverec a úpravou převedeme rovnici ružnice na tvar x ) +. Její parametricé vjádření je x + ds π x + cos t, sin t, t, π. π + cos t + cos t dt dt π π cos t π cos t π cos t π [ dt + cos t dt sin t ] π [ sin t Přílad 5. x + ) ds, de je řiva daná parametricými rovnicemi x acos t + t sin t), asin t t cos t), t, π, a >. Řešení: Nejdříve určíme ϕ t) a sin t + sin t + t cos t) at cos t, ψ t) acos t cos t + t sin t) at sin t. π x + ) ds a cos t + t sin t) + sin t t cos t) ) at dt a 3 π + π ). ] π π ) 8
Vpočítejte dané řivové integrál prvního druhu v R 3. Přílad 6. rovnicemi ds x + +z, de je řiva jeden závit šroubovice) daná parametricými x a cos t, a sin t, z bt, t, π, a >, b >. Řešení: ds x + + z π a + b t a + b dt a + b b [ b arctg bt ] π a a a + b ab arctg bπ a. Přílad 7. ) x + z ds, de je řiva jeden závit uželové šroubovice) daná parametricými rovnicemi Řešení: Nejdříve určíme x t cos t, t sin t, z t, t, π. ϕ t) cos t t sin t, ψ t) sin t + t cos t, χ t) a ds ϕ t) + ψ t) + χ t) dt + t dt. ) x + z ds π t cos t + sin t) t) + t dt π t + t dt + 4π ) 3 3 ). Apliace řivového integrálu prvního druhu. Přílad 8. Vpočítejte délu asteroid 3 x + 3 3 a, a >, jejíž parametricé rovnice jsou x a cos 3 t, x a sin 3 t, t, π. Řešení: Asteroida není regulární řiva. Víme, že funce F x, ) 3 x + 3 3 a je sudá v proměnné x i v proměnné a řiva je souměrná podle os i podle os x.
Platí 3 4, de,, 3, 4 jsou čtři regulární řiv stejné dél. Pro délu asteroid platí s ds 4 ds. Nejdříve určíme ϕ t) 3a cos t sin t, ψ t) 3a sin t cos t a ds 3a cos 4 t sin t + sin 4 t cos t dt 3a cos t sin t dt. Odtud s 4 ds 4 π/ [ sin t 3a cos t sin t a ] π/ 6a. Přílad 9. ploch Pomocí řivového integrálu prvního druhu vpočítejte obsah válcové Ω {x,, z) R 3 : x + 4 z 4 x }. Řešení: Z geometricého významu řivového integrálu prvního druhu víme, že obsah části válcové ploch je roven číslu σ fx, ) ds, de je řiva v rovině z, do teré se válcová plocha promítne a plocha je zdola omezena rovinou z a shora grafem funce z fx, ). V našem případě je ružnice x + 4 s parametricými rovnicemi x cos t, sin t, t, π ) a fx, ) 4 x. σ π x ds 4 4 cos dt 4 π 4 sin t dt + 4 π π π sin t dt 4 sin t dt 4 π [ cos t] π sin t dt + [cos t]π π ) 6. Přílad. Pomocí řivového integrálu prvního druhu vpočítejte obsah válcové ploch Ω { x,, z) R 3 : x + ax x + + z a } a > ). Řešení: Plocha je souměrná podle rovin z a podle rovin x a je sjednocením čtř ploch o stejném obsahu. Pro obsah ploch Ω platí σ 4 a x ds,
de je půlružnice x a cos t), a sin t, t, π a graf funce fx, ) a x je horní část zadané ulové ploch x + + z a. Ted σ 4 a x ds 4 π a a + cos t) a dt a a π π sin t dt a [ cos t ] π cos t 4a. dt Přílad. Najděte souřadnice těžiště homogenní řiv dané parametricými rovnicemi x t sin t), cos t), t, π část cloid). Řešení: Pro souřadnice těžiště T [x t, t ] platí ) x t S m, t S m, de m je hmotnost řiv a S x, resp. S je staticý moment řiv vzhledem ose x, resp. vzhledem ose. Platí m fx, ) ds, S x fx, ) ds S xfx, ) ds, de fx, ) je hustota řiv v bodě x, ). V našem případě je řiva homogenní, tj. fx, ) onst. a souřadnice těžiště jsou na této onstantě nezávislé ve vzorcích ) se tato onstanta vrátí) a proto položím fx, ). Je ϕ t) cos t, ψ t) sin t a ds Dále cos t) + sin t dt cos t cos t dt S x ds π 4 π m ds π cos t) sin t π dt 4 sin t sin t dt 4 π sin t [ dt 4 cos t ] π 4. cos t sin t dt cos t ) sin t dt 8 sin t dt, t, π. u ) du 6 3 při výpočtu integrálu volíme substituci u cos t ) a π S x ds t sin t) sin t π dt t sin t π dt sin t sin t dt 6 3.
První integrál počítáme metodou per partes a ve druhém po úpravě sin t sin t cos t volíme substituci u sin t.) Je ted x t 6 3 4 4 3, t 6 3 4 4 3. Křivové integrál druhého druhu Přílad. Vpočítejte řivový integrál ) z ) dx + z d x dz, de ) je ladně orientovaný oblou daný parametricými rovnicemi x t, t, z t 3, t,. Řešení: Pro řivový integrál druhého druhu fx,, z) dx + gx,, z) d + hx,, z) dz, ) de ) je ladně ve směru rostoucího parametru) orientovaný hladý oblou daný parametricými rovnicemi x ϕt), ψt), z χt), t α, β, platí fx,, z) dx + gx,, z) d + hx,, z) dz ) β fϕt), ψt), χt))ϕ t) + gϕt), ψt), χt))ψ t) + hϕt), ψt), χt))χ t)) dt α Je ted ) z ) dx + z d x dz Přílad 3. Vpočítejte řivový integrál t 4 t 6 + t t 3 t t 3t ) dt 35. ) x x ) dx + x ) d, de ) je orientovaný oblou s trajetorií { x, ) R : x, x }, přičemž pb), ), b), ). Řešení: Oblou budeme parametrizovat rovnicemi ϕt) t, ψt) t, t,. Protože pb), ) je počátečním bodem oblouu, znamená to, že je při zvolené parametrizaci orientován ladně. ) x x ) dx + x ) d t t 3 ) + t 4 t 3 ) t ) dt 4 5.
Přílad 4. Vpočítejte řivový integrál ) ) dx + + x) d, de ) je obvod trojúhelnía ABC, A[, ], B[, ], C[, ] a orientace je dána uvedeným pořadím vrcholů. Řešení: Oblou ) není hladý oblou. Platí ) ) ) 3 ), de ), ), 3 ) jsou hladé oblou stran trojúhelnía ABC). Je : x t, t, t,, ladně orientovaná, : x t, t, t,, záporně orientovaná, 3 : x, t, t,, záporně orientovaná. ) ) dx + + x) d t + + t) dt + t t) dt ) dt. Přílad 5. Užitím Greenov vět vpočtěte řivový integrál de ) je ladně orientovaná elipsa x /a ) + /b ), a >, b > ). Řešení: Podle Greenov vět platí ) fx, ) dx + gx, ) d M gx, ) ) x+) dx x ) d, ) fx, ) dx d, de ) je ladně orientovaná hranice uzavřené oblasti M. V našem případě je fx, ) x+, gx, ) x ) a M je oblast omezená elipsou x /a ) + /b ). Ted a dále fx, ), gx, ) x + ) dx x ) d ) dx d abπ. ) M Dvojný integrál jsme vpočítali substitucí pomocí zobecněných polárních souřadnic.) Přílad 6. Užitím Greenov vět vpočtěte řivový integrál e x cos ) dx e x sin ) d, de ) je ladně orientovaná hranice uzavřené ) { oblasti M x, ) R : x, π } sin x. Řešení: Je a odtud fx, ) e x cos ), fx, ) e x sin, gx, ) e x sin ), gx, ) e x sin )
a dále e x cos ) dx e x sin ) d e x + e x sin e x sin ) dx d ) M π e x dx d sin x M e x d dx π e x sin x dx 4 eπ + ). Přílad 7. Uažte, že řivový integrál druhého druhu vetorového pole fx, ) x x ), x ) ) nezávisí v oblasti G R na cestě, a vpočtěte,3) integrál fx, ) ds.,) Řešení: Křivový integrál druhého druhu nezávisí na cestě, je-li pro vetorové pole fx, ) fx, ), gx, )) splněna podmína vetorové pole je potenciální) V našem případě je fx, ) fx, ) 4x, gx, ). gx, ) 4x a to znamená, že vetorové pole je potenciální a řivový integrál druhého druhu,3) x x ) dx + x ) d nazávisí na cestě a můžeme volit libovolnou,) cestu ), terá spojí bod, ) s bodem, 3), přičemž bod, ) je počáteční bod cest. Zvolme cestu ) ) ), de ) je úseča spojující bod, ) a, ) a ) je úseča spojující bod, ) a, 3) cestu volíme ta, abchom postupovali rovnoběžně se souřadnicovými osami). Je : x t,, t,, ladně orientovaná, : x, t, t, 3, ladně orientovaná.,3) x x ) dx + x ) d x x ) dx + x ) d+,) + ) ) 3 x x ) dx + x ) d t t ) dt + t4 t ) dt 6. Přílad 8. Uažte, že řivový integrál druhého druhu vetorového pole fx, ) { x, x) nezávisí v oblasti G x, ) R : x > } na cestě, a vpočtěte,) integrál fx, ) ds.,)
Řešení: Protože fx, ) gx, ) x je vetorové pole potenciální a řivový integrál,),) x dx x d nezávisí na cestě. Zvolme opět cestu ) ) ), de ) je úseča spojující bod, ) a, ) a ) je úseča spojující bod, ) a, ). Ted : x t,, t,, záporně orientovaná, : x, t, t,, ladně orientovaná.,),) x dx x d ) t dt + x dx x d + dt 3. ) x dx x d