Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte inverzní funkci k funkci f =. Definiční obor dané funkce je celá reálná osa R. Daná funkce není na svém definičním oboru prostá. Proto k této funkci inverzní funkce neeistuje. Příklad 4. Nalezněte inverzní funkci k funkci f =, jejíž definiční obor je D f =, +. Funkce f je prostá. Proto inverzní funkce eistuje. Obor hodnot této funkce je množina H f =, +. Pro inverzní funkci y = f platí = y = y = + = y = ± +. Protože definiční obor D f =, + a obor hodnot H f =, +, je inverzní funkce dána předpisem f = +, D f = H f =, + a H f = D f =, +. Příklad 5. Nalezněte inverzní funkci k funkci f =, jejíž definiční je D f =,,. Typeset by AMS-TEX
Funkce f je prostá. Proto inverzní funkce eistuje. Obor hodnot této funkce je množina H f =, 3, +. Pro inverzní funkci y = f platí = y = y = + = y = ± +. Protože definiční obor D f =,, a obor hodnot H f =, 3, +, je inverzní funkce dána předpisem { + pro 3, + f = + pro, D f = H f =, 3, + a H f = D f =,,. Příklad 6. Nalezněte definiční obor funkce f = ln ln 5 + 6. Definiční obor nalezneme z nerovností ln 5 + 6 > 5 + 6 >. Z nich plyne ln 5 + 6 < 3 > = = 5 + 6 < e, 3, + = = 5 + + 4e 5 + 4e <, 3, + = 5 + 4e =, 5 + + 4e, 3, + = 5 + 4e = D f =, 3, 5 + + 4e. Příklad 7. Naleznete definiční obor funkce f = 9 + ln 3. Definiční obor dané funkce najdeme ze vztahů 9 3 > = ±3 + > = =,, 3 3, + = D f =,, 3 3, +. Příklad 8. Nalezněte inverzní funkci k funkci f = e +.
Definiční obor této funkce je D f = R a její obor hodnot je H f =, +. Funkce je prostá, a proto k ní inverzní funkce y = f eistuje. Najdeme ji jako řešení rovnice = e y +. Z ní snadno dostaneme vztah y = + ln. Tedy inverzní funkce je f = + ln. Její definiční obor je D f = H f = + a její obor hodnot je H f = D f = R. Příklad 9. Nalezněte definiční obor funkce f = ln cos 3 /3. Definiční obor dané funkce najdeme z podmínky cos 3 /3 ekvivalentní vztahu cos 3. Čili cos 3 Tedy D f = k Z = cos 3 ± = 3 π 4 + kπ k π, k + π., k Z = + k >. To je π, k Z. Příklad. Najděte definiční obor funkce f = arcsin Definiční obor dané funkce najdeme ze vztahů + + Z nich plyne + = +. +. = + > + < = = = D f =,. Příklad. Vyjádřete funkce f = argsinh pomocí logaritmů. Funkce y = argsinh je inverzní funkcí k funkci f = sinh = e e. Tedy je řešením rovnice = ey e y. Z této rovnice dostaneme e y e y = = e y = + = e y = ± +. Protože e y >, musíme v posledním vztahu vzít pouze znaménko +. Pak snadno dostaneme y = argsinh = ln + +. 3
Cvičení Číselné množiny arccos Příklad. Najděte definiční obor funkce f =. + Funkce f je dána předpisem f = ep její definiční obor dán nerovnostmi ln + arccos. Proto je + > + = =,, + = =, = D f =,. Příklad. Najděte supremum a infimum množiny M = { R ; < }. Množina M je dána nerovnostmi nebo = < = < = < =. Tedy množina M je interval M = /, +. Protože množina M není shora omezená, neeistuje v R supremum. inf M =. Příklad 3. Nech Q značí množinu všech racionálních čísel. Najděte supremum a infimum množiny M = { Q ; } : a v množině Q; b v množině R. Množina M obsahuje všechna racionální čísla, pro která je. Protože není racionální číslo, neeistuje v množině Q supremum ani infimum této množiny. Naproti tomu v množině reálných čísel R je sup M = a inf M =. Příklad 4. Dokažte, že pro každé n N platí nerovnost 3 4... n n < n +. 4
Dané tvrzení lze dokázat matematickou indukcí. Nejprve ukážeme, že tvrzení platí pro n =. To znamená, že <, což je pravda. 3 V dalším kroku předpokládáme, že uvedené tvrzení platí pro n N, a za tohoto předpokladu musíme ukázat, že tvrzení platí pro n +. Tedy předpokládáme, že platí 3 4... n n a musíme ukázat, že z toho plyne vztah Podle předpokladu platí nerovnost < n + 3 4... n n + n n + <. n + 3 3 4... n n + n n + < n + n + n + = n + n +. Ze vztahu n + n + 3 = 4n + 8n + 3 < 4n + 8n + 4 = n + získáme n + nerovnost n + <. Z toho a předchozí nerovnosti již plyne požadovaná n + 3 nerovnost. Příklad 5. Mezi členy aritmetické posloupnosti platí pro každé n N vztah a n+ = a n + d, kde d je konstanta. Dokažte, že pro součet prvních n členů aritmetické posloupnosti platí vztah n s n = a k = a + a + + a n = n k= a + a n. Tvrzení dokážeme indukcí. Pro n = dostaneme s = a = a + a. Tedy pro n = naše tvrzení platí. Dále předpokládáme, že pro n N platí s n = n a + a n. Z tohoto předpokladu musíme ukázat, že tvrzení platí pro n +. Pro s n+ dostaneme s n+ = a + a + + a n + a n+ = s n + a n+ = n a + a n + an+. Pro n tý člen aritmetické posloupnosti platí a n = a + n d. Toto tvrzení dokážeme opět indukcí. Je zřejmé pro n = tvrzení platí. Předpokládejme, že platí pro n N. Člen a n+ je dán vztahem a n+ = a n + d = a + n d + d = a + nd. Tím je vztah a n = a + n d dokázán pro všechna n N. 5
Z výše odvozené relace pro s n+ dostaneme s n+ = n a + a + n d + a + nd = n + a + = n + a + a + nd = n + a + a n+. nn + d = Tím je uvedené tvrzení dokázáno pro všechna n N. Příklad 6. Mezi členy geometrické posloupnosti platí pro každé n N vztah a n+ = qa n, kde q je konstanta. Dokažte, že když q platí pro součet prvních n členů geometrické posloupnosti vztah s n = n k= a k = a + a + + a n = a q n q. Důkaz provedeme matematickou indukcí. Pro n = má naše tvrzení tvar s = a = q a, a tedy platí. q Nyní předpokládáme, že tvrzení platí pro n N a z tohoto předpokladu dokážeme jeho platnost pro n +. Protože pro n + ní člen geometrické posloupnosti platí a n+ = a q n, dostáváme q n s n+ = a + a + + a n + a n+ = s n + a n+ = a q + a q n q n+ = a. q Příklad 7. Nechť f = arccotg a M =,. Najděte obraz množiny M při zobrazení f, tj. množinu fm. Funkce f = arccotg je inverzní funkcí k funkci cotg. Protože je funkce cotg klesající, je také funkce f = arccotg klesající. Navíc je funkce arccotg spojitá na celé, R. Proto je obraz intervalu M =, interval. Protože platí arccotg = π a pro velká záporná se hodnota funkce f = arccotg blíží k π, je obraz 4 množiny M roven fm = π/4, π. Příklad 8. Nechť má funkce f tvar f = a + b a platí f = a f3 = 5. Najděte f a f. 6
Nejprve určíme konstanty a a b. Z rovností f = b = a f3 = 3a + b = 5 dostaneme a = 7 3 a b =. Tedy f = 7 3. Odtud plyne f = 3 a f = 8 3. Příklad 9. Najděte funkci f tvaru f = a + b c, jestliže je f = 5, f = 3 a f4 = 9. Konstanty a, b a c musí splňovat soustavu rovnic f = a + b = 5, f = a + b c = 3, f4 = a + b c 4 = 9. Z této soustavy rovnic plyne a = 5 b, b c = 5, b c 4 = 75 = c4 c = c + = 5 = = c = 4 = c = ± c = c =, b = 5, a = = f = + 5. Příklad. Nechť má funkce f definiční obor D f =,. Najděte definiční obor funkce g = fln. Definiční obor funkce g určíme z podmínky < ln <. To znamená, že D g =, e. Příklad. Najděte z jako funkci a y, jestliže platí arctg z = arctg + arctg y. Podle definice platí pro každé R rovnost tg arctg =. Pro jednoduchost označme α = arctg a β = arctg y. Pak platí tg α = a tg β = y. Z definiční rovnice dostaneme z = tg arctg z = tgα + β = tg α + tg β tg α tg β = + y y. Příklad. Nechť je ϕ = sgn a ψ =. Najděte funkce ϕ ϕ = ϕ ϕ, ψ ψ = ψ ψ, ϕ ψ = ϕ ψ a ψ ϕ = ψ ϕ. V případě ϕ ϕ dostaneme pro > rovnost sgn sgn = sgn = ; pro = dostáváme sgn sgn = sgn = a pro < rovnost sgn sgn = sgn =. Tedy ϕ ϕ = ϕ. 7
V případě ψ ψ dostaneme ψ ψ = =,. / V případě ϕ ψ dostáváme pro > vztah ϕ ψ = sgn / = a pro < vztah ϕ ψ = sgn / =. Tedy ϕ ψ = sgn a definiční obor této funkce je R \ {}. V případě ψ ϕ je pro > ψ ϕ = a pro < je ψ ϕ =. Tedy ψ ϕ = sgn s definičním oborem R \ {}. Příklad 3. Najděte f, jestliže platí f =. + Označme y =. Pak je = y. Po dosazení do daného vztahu dostaneme + y y fy =. Tedy f = y. Příklad 4. Je funkce f = ln sudá nebo lichá? + Platí f = ln + = ln + = f. Funkce je lichá. Příklad 5. Najděte nejmenší periodu funkce f = sin + sin + 3 sin 3. Funkce f je součtem tří periodických funkcí f = sin, f = sin a f 3 = 3 sin 3. Jejich nejmenší periody jsou po řadě L = π, L = π a L 3 = 6π. Nejmenší perioda je nejmenší společný násobek těchto tří period. Tedy nejmenší perioda je L = 6π. Příklad 6. Najděte nejmenší periodu funkce f = cos + sin. Funkce f je součtem dvou periodických funkci f = cos a f = sin. Jejich nejmenší periody jsou L = π a L = π. Protože je iracionální číslo, neeistují přirozená čísla p a q taková, že p = q. Daná funkce není periodická. 8
Příklad. Najděte limitu lim n Daný výraz lze upravit na tvar n + 3n + 3n 8 lim n n 3 n + Cvičení 3 Limity posloupností n + 3n + 3n 8 n 3 n. + + /n3 + /n3 8/n = lim n /n + /n 3 = 8. n Příklad. Podle definice ukažte, že lim n n 3 + =. K danému ε > máme najít n N tak, aby pro každé n > n bylo Platí nerovnosti n n 3 + n n 3 = n n. Proto stačí zvolit n < ε. Tedy lze vzít jakékoliv n > ε. n n 3 + < ε. n + 4 n 4 Příklad 3. Najděte lim n n + 3 + n 3. Daný výraz lze upravit na tvar n + 4 n 4 Tedy lim n n + 3 + n 3 = 4. n + 4 n 4 n + 3 + n 3 = 8n3 + 8n n 3 + 6n. Příklad 4. Najděte lim n n +! + n!. n +! n! Daný výraz lze například napsat ve tvaru n +! + n! n +! n! n +! + n! Tedy lim n n +! n! = n! n + n + n! n + n n = 4n + n + 4n. =. 9
n+3 + 3 n Příklad 5. Určete lim n n+8 3 n+. Po zkrácení 3 n dostaneme lim n n+3 + 3 n 3 /3 n + n+8 = lim 3n+ n 8 /3 n 3 = 3. a n Příklad 6. Kolik je lim, kde a >? n + an Pro a > je lim n an = +. Proto je pro a > lim n a n + a n = lim n Pro a = je daný výraz roven konstantě a n =, a tedy lim 3 n Pro < a < je lim n an =. Proto je lim n a n + a n =. a n + =. a n + a n = 3. 5n sin n! Příklad 7. Najděte lim n n +. Posloupnost sin n! je omezená, protože sin n!. Neboť 5n sin n! lim n n + =. lim n 5n n + =, je 5n cos n Příklad 8. Najděte lim n 3n + 7. Tato limita neeistuje. Je jednoduché ukázat, že lim n 3n + 7 = 5. Ale již není tak 3 snadné ukázat, že posloupnost a n = cos n nemá limitu. Přesto kdybyste se moc snažili, ukážete, že množina hromadných bodů této posloupnosti je celý interval,. Ale spíš si to jen pamatujte. 5n Příklad 9. Najděte limitu lim 4 n. n n
Jak by měl každý vědět, je tato limita rovna lim 4 n = e n n 4. Nedokazujte to, ale taky si příklady podobného typu spíš pamatujte. 3n+ n + 3 Příklad. Kolik je lim? n n Daný výraz lze upravit ne tvar 3n+ n + 3 = + 4 3n+. n n 3n+ n + 3 Tedy byste měli vědět, že lim = e 6. n n Příklad. Najděte lim n ln +. n n Protože víme, že lim + n = e, dostaneme lim n n n ln + =. n n Příklad. Dokažte, že platí následující věta: Nechť lim α n = a lim β n = ±. n n βn Pak je lim + αn = ep lim α nβ n. n n Daný výraz je typu. Proto jej upravíme na tvar βn + αn = e β n ln +α n = ep β n α n ln + α n. α n Pak je ale lim n + αn βn = ep lim n βn α n lim n ln + α n α n. Ale podle předchozího příkladu lze tušit toto tvrzení dokážeme později, že ln + α n =. Proto platí lim n α n lim n βn + αn = ep lim α nβ n. n
Příklad 3. Najděte lim + n n +3 n n 3. + Z předcházejícího příkladu plyne, že stačí najít lim lim + n n +3 n n 3 = e. + n n n n 3 + 3 =. Tedy + Příklad 4. Určete hromadné body posloupnosti,, 4, 8, 7 8,..., n, n n,.... Tato posloupnost je složena ze dvou podposloupností těchto posloupností jsou lim n posloupnosti a n jsou body a. n = a lim n n a n n. Limity n n =. Tedy hromadné body Příklad 5. Najděte hromadné body posloupnosti a n = 3 4 + cos nπ. 3n Daná posloupnost je součtem dvou posloupností. První posloupnost 3 4 3n má limitu 3. Druhou posloupnost lze napsat ve tvaru cos nπ = n. Tato posloupnost má hromadné body ±. Proto jsou hromadné body dané posloupnosti rovny 5 a Příklad 6. Určete hromadné body posloupnosti, 3, 3, 4, 4, 3 4,..., n, n,..., n n,.... Posloupnost a n obsahuje všechna racionální čísla z intervalu,. Proto je množina hromadných bodů této posloupnosti celý interval,.
Příklad. Najděte limitu lim n Daný výraz lze upravit na tvar n + 3n + 3n 8 lim n n 3 n + Cvičení 3 Limity posloupností n + 3n + 3n 8 n 3 n. + + /n3 + /n3 8/n = lim n /n + /n 3 = 8. n Příklad. Podle definice ukažte, že lim n n 3 + =. K danému ε > máme najít n N tak, aby pro každé n > n bylo Platí nerovnosti n n 3 + n n 3 = n n. Proto stačí zvolit n < ε. Tedy lze vzít jakékoliv n > ε. n n 3 + < ε. n + 4 n 4 Příklad 3. Najděte lim n n + 3 + n 3. Daný výraz lze upravit na tvar n + 4 n 4 Tedy lim n n + 3 + n 3 = 4. n + 4 n 4 n + 3 + n 3 = 8n3 + 8n n 3 + 6n. Příklad 4. Najděte lim n n +! + n!. n +! n! Daný výraz lze například napsat ve tvaru n +! + n! n +! n! n +! + n! Tedy lim n n +! n! = n! n + n + n! n + n n = 4n + n + 4n. =. 3
n+3 + 3 n Příklad 5. Určete lim n n+8 3 n+. Po zkrácení 3 n dostaneme lim n n+3 + 3 n 3 /3 n + n+8 = lim 3n+ n 8 /3 n 3 = 3. a n Příklad 6. Kolik je lim, kde a >? n + an Pro a > je lim n an = +. Proto je pro a > lim n a n + a n = lim n Pro a = je daný výraz roven konstantě a n =, a tedy lim 3 n Pro < a < je lim n an =. Proto je lim n a n + a n =. a n + =. a n + a n = 3. 5n sin n! Příklad 7. Najděte lim n n +. Posloupnost sin n! je omezená, protože sin n!. Neboť 5n sin n! lim n n + =. lim n 5n n + =, je 5n cos n Příklad 8. Najděte lim n 3n + 7. Tato limita neeistuje. Je jednoduché ukázat, že lim n 3n + 7 = 5. Ale již není tak 3 snadné ukázat, že posloupnost a n = cos n nemá limitu. Přesto kdybyste se moc snažili, ukážete, že množina hromadných bodů této posloupnosti je celý interval,. Ale spíš si to jen pamatujte. 5n Příklad 9. Najděte limitu lim 4 n. n n 4
Jak by měl každý vědět, je tato limita rovna lim 4 n = e n n 4. Nedokazujte to, ale taky si příklady podobného typu spíš pamatujte. 3n+ n + 3 Příklad. Kolik je lim? n n Daný výraz lze upravit ne tvar 3n+ n + 3 = + 4 3n+. n n 3n+ n + 3 Tedy byste měli vědět, že lim = e 6. n n Příklad. Najděte lim n ln +. n n Protože víme, že lim + n = e, dostaneme lim n n n ln + =. n n Příklad. Dokažte, že platí následující věta: Nechť lim α n = a lim β n = ±. n n βn Pak je lim + αn = ep lim α nβ n. n n Daný výraz je typu. Proto jej upravíme na tvar βn + αn = e β n ln +α n = ep β n α n ln + α n. α n Pak je ale lim n + αn βn = ep lim n βn α n lim n ln + α n α n. Ale podle předchozího příkladu lze tušit toto tvrzení dokážeme později, že ln + α n =. Proto platí lim n α n lim n βn + αn = ep lim α nβ n. n 5
Příklad 3. Najděte lim + n n +3 n n 3. + Z předcházejícího příkladu plyne, že stačí najít lim lim + n n +3 n n 3 = e. + n n n n 3 + 3 =. Tedy + Příklad 4. Určete hromadné body posloupnosti,, 4, 8, 7 8,..., n, n n,.... Tato posloupnost je složena ze dvou podposloupností těchto posloupností jsou lim n posloupnosti a n jsou body a. n = a lim n n a n n. Limity n n =. Tedy hromadné body Příklad 5. Najděte hromadné body posloupnosti a n = 3 4 + cos nπ. 3n Daná posloupnost je součtem dvou posloupností. První posloupnost 3 4 3n má limitu 3. Druhou posloupnost lze napsat ve tvaru cos nπ = n. Tato posloupnost má hromadné body ±. Proto jsou hromadné body dané posloupnosti rovny 5 a Příklad 6. Určete hromadné body posloupnosti, 3, 3, 4, 4, 3 4,..., n, n,..., n n,.... Posloupnost a n obsahuje všechna racionální čísla z intervalu,. Proto je množina hromadných bodů této posloupnosti celý interval,. 6
Cvičení 5 Derivace Příklad. Najděte derivaci funkce f = 3 + 3 +. Funkci f lze zapsat ve tvaru f = 6 3 5 3 4 + 3 +. Podle věty o linearitě derivace a známého vztahu n = n n je f = 5 5 4 3 + 6 +. Příklad. Najděte derivaci funkce f = +. Jestliže napíšeme funkci f ve tvaru f =, snadno dostaneme + f = 4 +. Příklad 3. Najděte derivaci funkce f = + ln. Pomocí věty o derivaci podílu získáme f = + ln = ln. Příklad 4. Najděte derivaci funkce f =. Když napíšeme funkci f ve tvaru f = e ln, získáme pomocí věty o derivaci složené funkce f = e ln ln = + ln. Příklad 5. Najděte derivaci funkce f =. 7
Jestliže napíšeme funkci f ve tvaru f = e ln, získáme pomocí věty o derivaci složené funkce f = e ln ln + = ln +. Příklad 6. Najděte derivaci funkce f = ln arctg. Podle věty o derivaci složené funkce a známých vzorců pro derivace je f = arctg +. Příklad 7. Najděte derivaci funkce f = log + +. Podle věty o derivaci složené funkce a známých vzorců pro derivace je f = ln + + + = + ln +. Příklad 8. Najděte derivaci funkce f = ln lnln. Podle věty o derivaci složené funkce a známých vzorců pro derivace je f = lnln ln. Příklad 9. Najděte derivaci funkce f = arcsin. Podle věty o derivaci složené funkce a známých vzorců pro derivace je f = =. Příklad. Najděte derivaci funkce f = arccotg tg. 8
Podle věty o derivaci složené funkce a známých vzorců pro derivace je f = + tg cos = cos + sin =. Příklad. Najděte derivaci funkce f = ln. Funkci f přepíšeme do tvaru f = e ln. Podle věty o derivaci složené funkce dostaneme f = e ln ln = +ln ln. Příklad. Najděte derivaci funkce f = ln tg Pomocí vět o derivacích postupně dostaneme f = = tg/ cos / sin3 sin cos sin 4 4 sin/ cos/ sin cos sin 3 = sin + cos sin 3 = sin 3. = cos sin. = sin + sin + cos sin 3 = Příklad 3. Najděte derivaci funkce f = cotg + ln sin. Pomocí vět o derivacích postupně dostaneme f = cotg + sin + cos sin = sin sin = = cos sin = cotg. Příklad 4. Najděte derivaci funkce f = arctg + ln +. 9
Pomocí vět o derivacích postupně dostaneme f = arctg + + + + = arctg + + = arctg + + + + + + + = + + = arctg +. + = Příklad 5. Najděte derivaci f funkce f = + arcsin +. V některých případech když hledáme derivaci funkce f v daném bodě, není třeba hledat derivaci v obecném bodě, ale určit derivaci pomocí definice. Například v tomto případě je f =. Tedy podle definice derivace je f = lim h [ + h + h + h arcsin h + h = + lim h arcsin ] = + h + h = + arcsin = + π 4. Jinak lze výpočet zjednodušit i jiným způsobem. Podle věty o derivaci součtu a součinu je f = + arcsin + + [ arcsin Protože v bodě = je + rovno a derivace funkce v tomto bodě omezená je f = + arcsin [ + arcsin + + ]. [ arcsin ] = = + π 4. + ] je Příklad 6. Nechť je D tzv. Dirichletova funkce, která je definována předpisem { pro iracionální D = pro racionální.
Najděte derivaci funkce f = D v bodě =. Protože funkce D není spojitá dokonce v žádném bodě, musíme se pokusit najít derivaci f pomocí definice. Podle ní je f = lim h fh f h = lim h h Dh h = lim h hdh. Protože platí hdh h, je tato limita rovna nule. Tedy f =. Příklad 7. Najděte obě jednostranné derivace funkce f = e v bodě =. Pro je f = e = e. Tedy f + =. Pro je f = e = e. Tedy f =. Příklad 8. Najděte obě jednostranné derivace funkce f = 3 v bodě =. Derivace funkce f = 3 je v obecném bodě různém od nuly dána vztahem f = 3 /3. V bodě = není tato derivace definována. Proto raději určíme jednostranné derivace přímo z definice. Pro platí 3 f + h = lim = lim h /3 = +. h + h h + Pro platí f + = lim h 3 h h = lim h h /3 =. Příklad 9. Najděte derivaci f funkce f = sin pro a f =. Protože je lim f =, je funkce f v bodě = spojitá. Lze se tedy pokusit najít její derivaci. Derivace funkce f v obecném bodě je f = sin cos. Tato funkce ale nemá limitu v bodě =. Přesto je [ f = lim h sin h ] h h = lim h sin =. h h Tedy derivace funkce f = sin v bodě = eistuje a je rovna nule. Uvědomte si, že derivace této spojité funkce není v bodě = spojitá.
Cvičení 6 Diferenciály a geometrický význam derivace Příklad. Najděte diferenciál df ; h, kde f = sin + a = π. Diferenciál df ; h funkce f v bodě je definován vztahem df ; h = f h. Protože platí f = sin + = e lnsin +, je Tedy f π/ = a dfπ/; h = h. f = sin lnsin + cos +. sin Příklad. Najděte diferenciál df ; h, kde f = cosh +e a =. Diferenciál df ; h funkce f v bodě je definován vztahem df ; h = cosh f h. Protože platí f = + e = e cosh ln + e, je f = cosh sinh ln + cosh Tedy f = a df; h = h. + e. Příklad 3. Najděte diferenciál df ; h, kde f = =. cosh e + e 3 a Diferenciál df ; h funkce f v bodě je definován vztahem df ; h = cosh f h. Protože platí f = e + e 3 = e cosh lne + e 3, je f = e cosh sinh lne + cosh Tedy f = 3 a df, h = 3h. e 3e 3. Příklad 4. Najděte diferenciál df ; h, kde f = sin + a = π.
Diferenciál df ; h funkce f v bodě je definován vztahem df ; h = f h. Protože platí f = sin + = e lnsin +, je Tedy f π/ = a dfπ/; h = h. f = sin lnsin + cos +. sin Příklad 5. Pomocí diferenciálu najděte přibližně hodnotu.3. Pomocí diferenciálu lze pro hodnotu diferencovatelné funkce f v bodě přibližně psát f f + df ; = f + f = f + f. V našem případě zvolíme f =, = a = =.3. Potom je f = f = a f = ln. Tedy f = f = ln. Protože ln. =.6935 dostaneme.3 + ln.3. =.4. Příklad 6. Pomocí diferenciálu najděte přibližně hodnotu ln.. Pomocí diferenciálu lze pro hodnotu diferencovatelné funkce f v bodě přibližně psát f f + df ; = f + f = f + f. V našem případě zvolíme f = ln, = a = =.. Potom je f = f = a f =. Tedy f = f =. Tedy ln... Příklad 7. Pomocí diferenciálu najděte přibližně hodnotu 8. Pomocí diferenciálu lze pro hodnotu diferencovatelné funkce f v bodě přibližně psát f f + df ; = f + f = f + f. V našem případě zvolíme f =, = 8 a = =. Potom je f = f8 = 9 a f =. Tedy f = f 8 = 8. Tedy 8 9 + 8. = 8.9445. 3
Příklad 8. Pro měření gravitačního zrychlení pomocí kyvů kyvadla se používá vztah g = 4π l, kde l je délka kyvadla, T je perioda kyvu kyvadla. Jak se odrazí T na hodnotě g relativní chyba δ při měření: a délky l; b periody T? Předpokládejme, že l a T jsou přesné hodnoty délky kyvadla a jeho periody. Pak je přesná hodnota gravitačního zrychlení g = 4π l. Jestliže měřením zjistíme délku kyvadla l = l + l, resp. periodu T = T + T l = l l a T = T T se nazývají absolutní chyba a veličiny δl = l a δt = T jsou relativní chyby, l T najdeme z daného vzorce zrychlení g = 4π l, resp. g = 4π l T T. Absolutní chyba nalezeného gravitačního zrychlení je g = g g = 4π l l, resp. g = g g = T T 4π l T 4π l T. Relativní chybu měření g pak definujeme jako δg = g. pomocí g diferenciálů pak dostaneme v prvním případě g = 4π T l tj. δg = δl. Ve druhém případě je g = 4π l T + T 4π l T 8π l T 3 T, tedy δg = δt. Obecně jestliže je znám vztah mezi dvěmi veličinami y = f a z měření veličiny určujeme pomocí tohoto vztahu veličinu y, dostaneme pro absolutní a relativní chyby vztahy y = f f = f + f f a δy = y y f f. Příklad 9. Najděte rovnice tečny ke grafu funkce f = arccotg ln + ln v bodě M = [ ;? ]. Rovnice tečny ke grafu funkce y = f v bodě je y y = f, kde y = f. V našem případě je y = f = arccotg = π 4 a protože f = ln + + ln + ln / ln / + ln, 4
je f =. Tedy rovnice hledané tečny je y π 4 =, neboli y = + π 4. Příklad. Najděte rovnice tečny ke grafu funkce f = ln v bodě M = [ ;? ]. Rovnice tečny ke grafu funkce y = f v bodě je y y = f, kde y = f. V našem případě je y = f = a protože f = ln, je f =. Tedy rovnice hledané tečny je y =, neboli y = +. Příklad. Najděte rovnice tečny ke grafu funkce f = sin v bodě M = [ π;? ]. Rovnice tečny ke grafu funkce y = f v bodě je y y = f, kde y = f. V našem případě je y = fπ = a protože platí f = e sin ln, je f = cos sin ln + sin. Tedy f π = lnπ. Rovnice hledané tečny je y = lnπ π, neboli y = lnπ + π lnπ +. Příklad. Najděte rovnice tečny ke grafu funkce f = cos cosh +3 v bodě M = [ ;? ]. Rovnice tečny ke grafu funkce y = f v bodě je y y = f, kde y = f. V našem případě je y = f = a protože platí f = e cosh lncos + 3, je f = cos cosh sinh lncos cosh tg + 3. Tedy f = 3. Rovnice hledané tečny je y = 3, neboli y = 3 +. Příklad 3. Najděte rovnice normály ke grafu funkce f = v bodě M = [ ;? ]. cosh + e 5
Rovnice normály ke grafu funkce y = f v bodě je f y y =, kde y = f. V našem případě je y = f = a protože platí f = e cosh ln + e, je f = cosh sinh ln + cosh + e. Tedy f =. Rovnice hledané normály je y =, neboli y = +. Příklad 4. Najděte rovnice normály ke grafu funkce f = sin + v bodě M = [ π/;? ]. Rovnice normály ke grafu funkce y = f v bodě je f y y =, kde y = f. V našem případě je y = fπ/ = + π a protože platí f = 4 e lnsin +, je f = sin lnsin + cos +. sin Tedy f π/ = π. Rovnice hledané normály je π y π = π 4, neboli y = π + π 4 + 3. Příklad 5. Najděte rovnice normály ke grafu funkce f = cos cosh + 3 v bodě M = [ ;? ]. Rovnice normály ke grafu funkce y = f v bodě je f y y =, kde y = f. V našem případě je y = f = a protože platí f = e cosh lncos + 3, je f = cos cosh sinh lncos cosh tg + 3. Tedy f = 3. Rovnice hledané normály je 3y =, neboli y = 3 +. Příklad 6. Najděte rovnice normály ke grafu funkce f = ln bodě M = [ /;? ]. v 6
Rovnice normály ke grafu funkce y = f v bodě je f y y =, kde y = f. V našem případě je y = f/ = ln 3. Protože f = +, je f / = 8 3. Tedy rovnice hledané normály je 8 3 y = 3 8 + 3 6 ln 3. y + ln 3 =, neboli Příklad 7. Najděte rovnice normály ke grafu funkce f = sin + 3 cos v bodě M = [ π/;? ]. Rovnice normály ke grafu funkce y = f v bodě je f y y =, kde y = f. V našem případě je y = fπ/ = a protože platí f = e lnsin + 3 cos, je f = sin lnsin + cos 3 sin. sin Tedy f π/ = 3. Rovnice hledané normály je 3y = π, neboli y = 3 + π 6. Příklad 8. Najděte rovnice normály ke grafu funkce f = 4 sin + 3 cos v bodě M = [ ;? ]. Rovnice normály ke grafu funkce y = f v bodě je f y y =, kde y = f. V našem případě je y = f = 4 a protože platí f = e sin ln4 + 3 cos, je f = 4 sin cos ln4 4 sin 3 sin. Tedy f = ln 4. Rovnice hledané normály je ln 4 y 4 =, neboli y = ln 4 + 4. Příklad 9. Určete rovnici tečny ke grafu funkce y = 3 +, která je rovnoběžná s přímkou y = 4. 7
Rovnice tečny ke grafu funkce y = f v bodě je dána rovnicí y y = f, kde y = f. Protože f je směrnice hledané tečny, která má být rovnoběžná s danou přímkou, jejíž směrnice je k = 4, budeme hledat na grafu funkce y = 3 + body [ ; y ], ve kterém je f = 3 + = 4. Z této rovnice najdeme = ±. Proto jsou body dotyku [; ] nebo [ ; 4]. Rovnice hledané tečny tedy jsou y = 4 nebo y + 4 = 4 +. Hledaná rovnice tečny je y = 4, která se grafu funkce dotýká ve dvou bodech [; ] a [ ; 4]. Příklad. Určete rovnici tečny ke grafu funkce y = 3 + 3 5, která je kolmá na přímku 6y + =. Rovnice tečny ke grafu funkce y = f v bodě je dána rovnicí y y = f, kde y = f. Protože f je směrnice hledané tečny, která má být kolmá na danou přímkou, jejíž směrnice je k =, budeme hledat na grafu funkce 3 y = 3 + 3 5 body [ ] ; y, ve kterém je f = 3 + 6 = 3. Z této rovnice najdeme =. Proto je bod dotyku [ ; 3]. Rovnice hledané tečny tedy je y + 3 = 3 +, neboli y = 3 6. Příklad. Určete rovnici tečny ke grafu funkce y = ln, která je kolmá na přímku y =. Směrnice dané přímky je k p =. Protože hledáme tečnu kolmou na tuto přímku, musí být její směrnice rovna k t =. Protože směrnice tečny ke grafu funkce y = f v bodě je k t = f, musí pro platit rovnice f = =. Tedy bod dotyku je [; ln ]. Rovnice hledané tečny je tedy y ln =, neboli y = + ln. Příklad. Určete rovnici normály ke grafu funkce y = 4 + 5, která je rovnoběžná s přímkou + 4y =. Daná přímka má směrnici k p = 4. Normála ke grafu funkce y = f v bodě má směrnici k n = f. Protože hledáme rovnici normály rovnoběžné s danou přímkou, musí pro bod platit f = 4 = 4. Z toho plyne = 4 a y = f = 5. Rovnice hledané normály je tedy y 5 = 4, neboli 4 y = 4 + 6. 8
Příklad 3. Určete rovnici normály ke grafu funkce y = +, která je kolmá na přímkou y = + 4. Daná přímka má směrnici k p =. Přímka kolmá na tuto přímku má směrnici k =. Normála ke grafu funkce y = f v bodě má směrnici k n = f. Protože hledáme rovnici normály kolmé danou přímkou, musí pro bod platit f = =. Z toho plyne = a y = f =. Rovnice hledané normály je tedy y =, neboli y =. Příklad 4. Ke grafu funkce y = + 9 veďte tečny, které procházejí bodem [; ]. + 5 Rovnice tečny ke grafu funkce y = f v bodě je y y = f, kde y = f. Naším úkolem je na grafu funkce y = f najít bod [ ] ; y tak, aby přímka y y = f procházela bodem [; ], tj. bod, pro který platí y = f. Protože je y = + 9 + 5 a f 4 =, budeme hledat + 5 řešení rovnice + 9 + 5 = 4 + 5, čili +8 +45 =. Její řešení jsou = 3 nebo = 5. Hledané body dotyku proto jsou [ 3; 3] nebo [ 5; 3/5]. Protože je f 3 = a f 5 =, dostáváme dvě tečny y 3 = + 3, neboli 5 y =, a y 3 5 + 5 =, neboli y = 5 5. Příklad 5. Ke grafu funkce y = veďte tečny, které procházejí bodem [ ; ]. Rovnice tečny ke grafu funkce y = f v bodě je y y = f, kde y = f. Naším úkolem je na grafu funkce y = f najít bod [ ; y ] tak, aby přímka y y = f procházela bodem [ ; ], tj. bod, pro který platí y = f. Protože je f =, musí splňovat rovnici =, čili =. Její řešení jsou = ±. Tedy hledané body dotyku jsou [ + ; ] a [ ; ]. Protože je f + = 3 + a f = 3, jsou rovnice hledaných tečen 9
y + = 3 +, neboli y = 3 + +, a y + + = 3 +, neboli y = 3. Příklad 6. Najděte rovnice tečen k hyperbole 7 y = 4, které jsou kolmé na přímku + 4y 3 =. Směrnice dané přímky je k p =. Proto musí být směrnice tečny rovna k t =. Budeme tedy na hyperbole hledat body [ ; y ] takové, aby y = f =. Předpokládejme, že jsme našli řešení y = y rovnice 7 y = 4. Jestliže derivujeme tuto rovnice, dostaneme v bodě vztah 4 4y y =. Hledané body dotyku [ ; y ] tedy musí proto splňovat vztahy 4 8y = a 7 y = 4. Řešení této soustavy rovnice nám dá dva body dotyku [4; 7] a [ 4; 7]. Eistují tedy dvě tečny s danými vlastnostmi: y 7 = 4, neboli y =, a y + 7 = + 4, čili y = +. 3
Cvičení 7 L Hospitalovo pravidlo, derivace vyšších řádů Příklad. Dokažte nerovnost sin sin y y. Uvažujme funkci f = sin. Protože je f = a f = cos, eistuje podle Lagrangeovy věty o střední hodnotě číslo ξ,, pro které platí rovnost f f = sin = cos ξ. Protože je cos ξ dostaneme pro > nerovnost sin. Tedy pro platí nerovnost sin. Pomocí vztahu sin sin y = cos + y sin y dostaneme sin sin y = cos + y protože cos + y a sin y sin y y. sin y y, cosh cos Příklad. Najděte lim. Jde o limitu výrazu typu. Protože čitatel i jmenovatel jsou diferencovatelné funkce, lze použít l Hospitalovo pravidlo. Pomocí něj dostaneme cosh cos lim sinh + sin = lim. Limita je opět typu. Proto použijeme l Hospitalovo pravidlo ještě jednou a dostaneme cosh cos lim = lim sinh + sin = lim cosh + cos =. tg Příklad 3. Najděte lim sin. Jde o limitu typu. Všechny předpoklady pro použití l Hospitalova pravidla jsou splněny. Pomocí něj dostaneme lim tg sin = lim cos cos = lim cos cos lim cos = lim +cos =. 3
Příklad 4. Najděte lim cotg. Nejprve najdeme limitu lim cotg. Ta je typu. Ale lze psát lim cotg = lim cos sin = lim cos lim sin =. Proto je daná limita typu. Všechny předpoklady pro použití l Hospitalova pravidla jsou splněny. Proto je cotg lim cotg = lim sin sin cos = lim sin sin cos = lim 3 lim sin = lim = lim sin 6 = 3. = cos sin 6 = Příklad 5. Najděte lim cos sin. Jde o limitu typu. Protože jsou splněny všechny předpoklady pro použití l Hospitalova pravidla, je jej pro výpočet této limity možné použít. Ale při podrobnějším zkoumání daného výrazu, zjistíme, že se v něm proměnná vyskytuje pouze ve tvaru. Proto je možné zavést pomocnou proměnnou t = a zkoumat limitu cos t lim, pro kterou je použití l Hospitalova pravidla jednodušší. Dostaneme t + t sin t cos lim sin = lim cos t t + t lim t + t sin t = lim sin t t + t =. Příklad 6. Najděte lim arcsin arcsin 3. Jde o limitu typu. Všechny předpoklady l Hospitalova pravidla jsou splněny. 3