NUMERICKÝ VÝPOČET INVERZNÍ LAPLACEOVY TRANSFORMACE

Rozměr: px
Začít zobrazení ze stránky:

Download "NUMERICKÝ VÝPOČET INVERZNÍ LAPLACEOVY TRANSFORMACE"

Transkript

1 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF RADIO ELECTRONICS NUMERICKÝ VÝPOČET INVERZNÍ LAPLACEOVY TRANSFORMACE NUMERICAL INVERSION OF THE LAPLACE TRANSFORM BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS AUTOR PRÁCE AUTHOR VEDOUCÍ PRÁCE SUPERVISOR TOMÁŠ CEPEK Ing. MARTIN ŠTUMPF BRNO 011

2 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakula elekroechniky a komunikačních echnologií Úsav radioelekroniky Bakalářská práce bakalářský sudijní obor Elekronika a sdělovací echnika Suden: Tomáš Cepek ID: Ročník: 3 Akademický rok: 010/011 NÁZEV TÉMATU: Numerický výpoče inverzní Laplaceovy ransformace POKYNY PRO VYPRACOVÁNÍ: Sezname se základy eorie Laplaceovy ransformace a prosuduje možnosi výpoču inverzní Laplaceovy ransformace. Zaměře se na algorimy založené na numerickém výpoču Bromwichova inegrálu pomocí Fourierových řad. Implemenuje vybrané meody v programu Malab. Tyo algorimy vzájemně porovneje a diskuuje jejich vlasnosi na vhodně zvolených příkladech. DOPORUČENÁ LITERATURA: [1] MELKES, F. Maemaika. Elekronické skripum. Brno: FEKT VUT v Brně, 005. [] DUFFY, D. G. Transform mehods for solving parial differenial equaions, /E. Chapman & Hall/CRC, 004. Termín zadání: Termín odevzdání: Vedoucí práce: Ing. Marin Šumpf UPOZORNĚNÍ: prof. Dr. Ing. Zbyněk Raida Předseda oborové rady Auor bakalářské práce nesmí při vyváření bakalářské práce poruši auorská práva řeích osob, zejména nesmí zasahova nedovoleným způsobem do cizích auorských práv osobnosních a musí si bý plně vědom následků porušení usanovení 11 a následujících auorského zákona č. 11/000 Sb., včeně možných resněprávních důsledků vyplývajících z usanovení čási druhé, hlavy VI. díl 4 Tresního zákoníku č.40/009 Sb.

3 ABSTRAKT V práci jsou popsány možnosi výpoču inverzní Laplaceovy ransformace. Dále jsou popsány a odvozeny 3 algorimy popisující numerický výpoče inverzní Laplaceovy ransformace. Tyo 3 algorimy jsou oesovány a popsány v prosředí Malab na jednoduchých abulkových příkladech a v poslední řadě na příkladech sdělovacího vedení. Numerické výsledky a vlasnosi esovaných algorimů jsou porovnány a diskuovány. KLÍČOVÁ SLOVA Bromwichův inegral, Dubner-Abaeho algorimus, Hosonův algorimus, lichoběžníkové pravidlo, Simpsonovo pravidlo, obdélníkové pravidlo. ABSTRACT In he work are described possibiliies of a calculaion of he inverse Laplace ransform. Furher are described and derived 3 algorihms describing he numerical inversion of he Laplace ransform. These 3 algorihms are esed and described in he Malab environmen on he simple abular examples and on he examples from a ransmission line heory. Numerical resuls and feaures of all esed algorihms are compared and discussed. KEYWORDS Bromwich inegral, Dubner-Abae algorihm, Hosono algorihm, Trapezoidal rule, Midpoin rule, Simpson rule.

4 CEPEK, T. Numerický výpoče inverzní Laplaceovy ransformace. Brno: Vysoké učení echnické v Brně, Fakula elekroechniky a komunikačních echnologií. Úsav radioelekroniky, s. Bakalářská práce. Vedoucí práce: ing. Marin Šumpf.

5 PROHLÁŠENÍ Prohlašuji, že svou bakalářskou práci na éma Numerický výpoče inverzní Laplaceovy ransformace jsem vypracoval samosaně pod vedením vedoucího bakalářské práce a s použiím odborné lieraury a dalších informačních zdrojů, keré jsou všechny ciovány v práci a uvedeny v seznamu lieraury na konci práce. Jako auor uvedené bakalářské práce dále prohlašuji, že v souvislosi s vyvořením éo bakalářské práce jsem neporušil auorská práva řeích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích auorských práv osobnosních anebo majekových a jsem si plně vědom následků porušení usanovení 11 a následujících zákona č. 11/000 Sb., o právu auorském, o právech souvisejících s právem auorským a o změně někerých zákonů (auorský zákon), ve znění pozdějších předpisů, včeně možných resněprávních důsledků vyplývajících z usanovení čási druhé, hlavy VI. díl 4 Tresního zákoníku č. 40/009 Sb. V Brně dne (podpis auora)

6 PODĚKOVÁNÍ Děkuji vedoucímu bakalářské práce Ing. Marinu Šumpfovi za účinnou meodickou, pedagogickou a odbornou pomoc a další cenné rady při zpracování mé bakalářské práce. V Brně dne (podpis auora)

7 OBSAH Seznam obrázků Seznam abulek ix xi Úvod 1 1 MOŽNOSTI VÝPOČTU INVERZNÍ LAPLACEOVY TRANSFORMACE 1.1 Bromwichův inegrál Bromwichova inegrační cesa Výpoče Bromwichova inegrálu Výpoče pomocí slovníku Heavisideův rozvoj Nenásobné kořeny : Násobné kořeny :... 6 MODIFIKACE BROMWICHOVA INTEGRÁLU 7.1 Dubner-Abaeho algorimus Odvození Dubner-Abaeho algorimu Algorimus založený na Simpsonově pravidlu Odvození algorimu založené na Simpsonově pravidlu Hosonův algorimus Odvození Hosonova algorimu esování algorimů na jednoduchých obrazech Tesování Dubner Abaeho algorimu na funkci jednokového skoku 1 3. Tesování Hosonoho algorimu na funkci jednokového skoku Tesování algorimu založeném na Simpsonově pravidle Tesování Dubner-Abaeho algorimu na lineární funkci Tesování Dubner-Abaeho algorimu na goniomerické funkci sinus Tesování Hosonoho algorimu na goniomerické funkci sinus Tesování algorimu založeného na Simpsonově pravidle na goniomerické funkci esování algorimů na obrazech sdělovacího vedení 34 vii

8 4.1 Vedení se zanedbaelným svodem i indukčnosí, spojené na jednom konci nakráko ( podzemní kabel ) Tesování Dubner-Abaeho algorimu na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko ( podzemní kabel ) Tesování Hosonoho algorimu na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko ( podzemní kabel ) Tesování algorimu založeného na Simpsonově pravidle na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko ( podzemní kabel ) Závěr 4 Lieraura 43 Seznam symbolů, veličin a zkraek 44 Seznam příloh 45 viii

9 SEZNAM OBRÁZKŮ Obr. 1 Bromwichova inegrační cesa... 3 Obr. Rozdělení funkce f(x) na inervaly délky h ( x )... 8 Obr. 3 Tesování Dubner-Abaeho algorimu na funkci jednokového skoku pro c = 0.1 a pro N = Obr. 4 Tesování Dubner Abaeho algorimu na funkci jednokového skoku pro c = 0.5 a N= Obr. 5 Tesování Dubner-Abaeho algorimu na funkci jednokového skoku pro c = 1 a N = Obr. 6: Tesování Dubner-Abaeho algorimu na funkci jednokového skoku při c = 0.5 a N= Obr. 7 Tesování Dubner Abaeho algorimu na funkci jednokového skoku pro c = Obr. 8 Tesování Dubner-Abaeho algorimu na funkci jednokového skoku při c = 0,5 a N = Obr. 9 Tesování Hosonoho algorimu na funkci jednokového skoku pro c = 0,1 a N= Obr. 10 Tesování Hosonoho algorimu na funkci jednokového skoku při c = 0.1 a N= Obr. 11 Tesování Hosonoho algorimu na funkci jednokového skoku pro c = 0,3 a N = Obr. 1 Tesování Hosonoho algorimu na funkci jednokového skoku pro c = 1 a N = Obr. 13 Tesování Hosonoho algorimu na funkci jednokového skoku při c = 0,35 a N = Obr. 14 Tesování algorimu odvozeného pomocí Simpsonova pravidla pro c = 0.1 a N = Obr. 15 Tesování algorimu odvozeného pomocí Simpsonova pravidla pro c = 0.5 a N = Obr. 16 Tesování Dubner-Abaeho algorimu na lineární funkci pro c = 0.5 a N = Obr. 17 Tesování Dubner-Abaeho algorimu na funkci sin(a) pro c = 0.1 a N = Obr. 18 Tesování Dubner-Abaeho algorimu na funkci sin(a) pro c = 0.3 a N=100 a a = Obr. 19 Tesování Dubner-Abaeho algorimu na funkci sin(a) pro c = 0.8 a N = ix

10 Obr. 0 Obr a a = Tesování Hosono algorimu na funkci f() = sin(a) pro c = 1 a N = 100 a a = Tesování Hosonoho algorimu na funkci f() = sin(a) pro c = a N = 100 a a = Obr. Tesování algorimu založeného na Simpsonově pravidle na funkci f() = sin(a) pro c = 1 a N = 100 a a = Obr. 9 Obr. 30 Obr. 31 Obr. 3 Obr. 33 Obr. 34 Tesování Dubner-Abaeho algorimu na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko pro c = 1, N = 100 a m = 10, délka vedení je l = 5m a je zjišěn časový průběh napěí v bodě x = 4.5 m. 36 Tesování Dubner-Abaeho algorimu na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko pro c = 1, N = 100 a m = 10, ω = 4π délka vedení je l = 5m a je zjišěn časový průběh napěí v bodě x = 4.5 m Tesování Hosonoho algorimu na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko pro c = 1, N = 100 a m = 10, ω = 4π délka vedení je l = 5m a je zjišěn časový průběh napěí v bodě x = 4.5 m Tesování Hosonoho algorimu na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko pro c = 1, N = 100 a m = 10, ω = 4π délka vedení je l = 5m a je zjišěn časový průběh napěí v bodě x = 4.5 m Tesování algorimu založeném na Simpsonově pravidle na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko pro c = 1, N = 100 a m = 10, ω = 4π délka vedení je l = 5m a je zjišěn časový průběh napěí v bodě x = 4.5 m Tesování algorimu založeném na Simpsonově pravidle na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko pro c = 1, N = 100 a m = 10, ω = 4π délka vedení je l = 5m a je zjišěn časový průběh napěí v bodě x = 4.5 m x

11 SEZNAM TABULEK Tab. 1 Příklad slovníku Laplaceovy ransformace :... 5 xi

12 ÚVOD Kvůli pořebě výpoču předměů inverzní Laplaceovy ransformace, keré nejsou známy v uzavřeném varu, bylo vyvinuo několik meod pro výpoče inverzní Laplaceovy ransformace. Tyo meody nejvíce využívají Bromwichova inegrálu a Fourierových řad [4]. Laplaceova ransformace se používá například k řešení parciálních diferenciálních rovnic. Sám Leonard Euler zvažoval použií Laplaceovy ransformace na řešení diferenciálních rovnic. řádu (1763 až 1769). Nejvěší průlom ale udělal Oliver Heaviside, kerý zavedl operáorový poče a en se dodnes užívá v elekroechnice, zejména u přechodových dějů. Poom pokračoval výzkum dále a vědci chěli Heavisideův poče spoji s Laplaceovou ransformací. Jedním z nich byl Bromwich, kerý objevil vzorec na inverzní Laplaceovu ransformaci (1.1) [4]. Obyčejné a parciální diferenciální rovnice popisují různé fyzikální jevy závislé na čase. Takovéo jevy jsou například kolísání proudu v RLC obvodu, mechanické oscilace na membráně nebo problémy šíření epla. Aplikací Laplaceovy ransformace na složié diferenciální rovnice, keré popisují výše zmíněné fyzikální problémy, se řešená diferenciální rovnice zjednoduší na rovnici algebraickou, jejíž řešení ransformujeme zpě do originální oblasi pomocí Laplaceovy inverze. Tao bakalářská práce se zabývá použiím různých meod pro numerický výpoče inverzní Laplaceovy ransformace a jejich aplikací na různé druhy obrazů sdělovacích vedení či jednoduchých abulkových obrazů. Použié algorimy vycházejí z Bromwichova inegrálu [4]. 1

13 1 MOŽNOSTI VÝPOČTU INVERZNÍ LAPLACEOVY TRANSFORMACE 1.1 Bromwichův inegrál Bromwichův inegrál je hlavním klíčem pro získání originálu funkce f(), získaného z obrazu F(s) éo funkce. Ve vědě a inženýrsví bylo vyvinuo několik numerických meod používajících Bromwichův inegrál za pomoci Fourierových řad. Nejjednodušším schémaem pro výpoče inverzní Laplaceovy ransformace je právě použií Fourierových řad. Bromwichův inegrál je časo označován jako Fourier- Mellinovův inegrál. Bromwichův inegrál má následující var []: c+ i 1 f ( ) = F( s) e s ds πi c i (1.1),kde f() je originál funkce, i je označení imaginární složky, c je libovolná nezáporné celé číslo ležící napravo od všech singulari, F(s) je obraz originálu funkce, e je Eulerovo číslo, je čas, s je paramer Laplaceovy ransformace, definovaný jako komplexní proměnná. Laplaceova ransformace funkce f() je definována jako [4]: F ( s) = L( f ( ) ) = e f ( ) d 0 s (1.) Symbol L značí Laplaceovu ransformaci, kde funkce f = f() generuje novou F ( s) = L f ( ) funkci ( ) Vzorec (1.) lze přepsa do liminího varu, kdy [5] s s F( s) = e f ( ) d = lim e f ( )d (1.3) 0 τ τ 0 Pokud ao limia exisuje, pak inegrál konverguje (žádoucí případ) a pokud limia neexisuje inegrál diverguje (nežádoucí případ). Divergence limiy plaí za předpokladu, že s 0. V omo případě již Laplaceovu ransformaci nelze použí. Paramer s si lze předsavi jako komplexní proměnou, kdy s = x + yi.z maemaického hlediska, musí bý s vhodně zvolen, aby byla zajišěna konvergence Laplaceova inegrálu (1.3). V praxi je paramer s ale zanedbáván, proože diferenciální rovnice již mají výsledek známý. s V Bromwichově inegrálu (1.1) je velmi důležiým paramerem složka e, jádro Laplaceovy ransformace. Jelikož oo jádro má exponenciální charaker, ak výsledná

14 inverovaná funkce f() po aplikaci Bromwichova inegrálu na obraz funkce F(s) může bý v numerickém algorimu degradována. Čím více oiž rose čas, ím více se ao složka začne projevova a funkci f() již nelze rozezna od originálu. Záleží ale na použiém obrazu, chování algorimu a jeho rychlosi konvergence k hledanému výsledku Bromwichova inegrační cesa Obr. 1 Bromwichova inegrační cesa Bromwichovu inegrační cesu lze chápa jako přímku, jež spojuje body c - j a c + j. Tao přímka je napravo od všech singulárních bodů vyšeřované funkce Obr 1. Číslo c určuje vzdálenos inegrační cesy od imaginární osy Im a je vždy kladné. 3

15 1.1. Výpoče Bromwichova inegrálu Inegrál je vedený po přímce p = s + jω, kde < ω <, lze počía pomocí reziduí, poom plaí [5]: n c+ i 1 s ( ( ) ( )) > = = rez F p exp p pro 0 f ( ) F( s) e ds p= pk (1.4) k = 1 πi c i 0 pro < 0 Je-li znám obraz funkce F(s), pak lze provés inverzní Laplaceovu ransformaci pomocí residuí. Nejprve se určí poče pólů obrazové funkce F(s), poom se vypočou všechna residua pro každý pól a nakonec dojde k souču všech residuí. Teno souče je poom výslednou funkcí f() a konečnou inverzí. Bromwichův inegrál vyjádřený Fourierovou řadou má var [3]: c c e e f ( ) = Re[ F( c + iη) ] cos( η) dη = Im[ F( c + iη) ] sin( η) dη π π 0 0 (1.5),kde c je libovolné celé číslo, ležící napravo od všech singulari F(s), i je imaginární jednoka, e je Eulerovo číslo. 4

16 1. Výpoče pomocí slovníku Další možnosí, jak vypočía inverzní Laplaceovu ransformaci a naopak je slovník, v němž jsou obsaženy již předem známé obrazy. Obraz může bý přímo obsažen ve slovníku, poom je inverze velmi jednoduchá nebo se musí upravi, pokud se například jedná o racionální lomené funkce, je řeba uo racionální lomenou funkci upravi pomocí rozkladu na parciální zlomky. Výsledek je pak dán součem jednolivých obrazů převedených pomocí slovníku. Jedná se o zjednodušení na několik lehčích výrazů, jejichž posupnou ransformací pomocí slovníku lze lehce převés obraz. Výhodou slovníku je snadná a rychlá inverze obrazu, jeho nevýhodou je naopak převod složiějších výrazů, na keré musí bý aplikována někerá z meod Bromwichova inegrálu nebo eorie residuí [7]. Tab. 1 Příklad slovníku Laplaceovy ransformace []: 1 s n F(s) 1 1 s 1 s ( n = 1,,3..,) f() δ () 1 1 n ( n 1)! s s 1 a e s a 1 1 a ( e 1) ( s a) s + a a cos ( a) s s a + a a a sin ( a) sinh ( a) Uvedený slovník je pouze kráký, v různých odborných maemaických lieraurách jsou slovníky mnohem rozsáhlejší, eno slouží pouze jako ukázka nebo pomůcka řešící jednoduché obrazy. 5

17 1.3 Heavisideův rozvoj Veškeré uvedené vzorce éo kapioly jsou převzay z [8] Užívá se v případě, kdy obraz vyšeřované funkce F(s) je ve varu racionálně lomené funkce, jde edy o výrazy ypu m 1 ( s) bms b1s + b0 = n 1 ( s) ans a1s + a0 M F( s) = (1.6) N,čili výrazy ypu polynom lomeno polynomem. Teno výraz lze rozloži na : m 1 ( s) bms b1s + b0 = ( s) a ( s p )...( s p )( s p ) M F( s) = (1.7) N n n ; p 1...pn jsou póly (singulární body body nespojiosi) funkce F(s) Nenásobné kořeny : Funkce F(s) je zapsána ve varu : A1 A An F( s) = s p s p s p Kde A,..., 1 n 1. (1.8) 1 An jsou konsany v čiaelích parciálních zlomků p,..., 1 p n jsou póly ve jmenovaelích 1.3. Násobné kořeny : Funkce F(s) je ve varu : M ( s) k ( s p ) ( s p )( s p ) F( s) = (1.9) a n 1 3 Rozložením éo funkce pomocí rozkladu na parciální zlomky se výraz změní na : F( s) Kde B B 1 k 1 = s p1 ( s p1) s pk s p s p3 Ai a B Bk jsou konsany v čiaeli p, p,... 1 p n, p k jsou póly ve jmenovaelích A A A i s p i (1.10) 6

18 MODIFIKACE BROMWICHOVA INTEGRÁLU Meody sloužící k numerickému výpoču inverzní Laplaceovy ransformace využívají hlavně Bromwichova inegrálu, jak bylo popsáno v kapiole 1.1. Na základě modifikace vzorce (1.5), kde je Bromwichův inegrál není nic jiného než přepis pomocí Fourierovy řady, lze odvodi několik meod, keré využívají numerických meod v kombinaci s Bromwichovým inegrálem. Jsou o například lichoběžníkové, Simpsonovo nebo obdélníkové pravidlo. Tao kapiola bude hovoři o ěcho meodách[3]. Tao meoda má dva důvody pro numerický výpoče efekivním způsobem. Prvním důvodem je rychlejší zpracování na číslicových počíačích. Druhým důvodem je jednoduchá meoda, kerá vyžaduje poměrně minimum programovacího úsilí, proože výsledná inversní funkce se dá vyjádři jako Fourierova řada s funkcí kosinus nebo sinus s koeficieny s vhodnými hodnoami. Na začáku se provede omezení funkce f() ak, aby se sala reálnou funkcí [1]: Re { F( s) } = c e f ( ) = π,kde 0 0 c e f ( )cos w d (.1) Re s = a + iω { F( s) } cos w d (.) Veškeré níže uvedené vzorce éo kapioly byly odvozeny pomocí lieraur [3] a [6].1 Dubner-Abaeho algorimus Teno algorimus byl odvozen z kombinace rovnice (1.5) a lichoběžníkového pravidla. Dosazením lichoběžníkového pravidla z meod pro numerické inegrování do rovnice (1.5) dojde k převedení složiého inegrálu na algebraický výraz se sumou a ím k snadnému výpoču inverzní Laplaceovy ransformace..1.1 Odvození Dubner-Abaeho algorimu Lichoběžníkové pravidlo má var [6]: b h f = 0 1 f n 1 + f n a ( x) dx ( f + f + f ) ( ) (.3) b a,kde h = a x k = a + kh ; k = 0;1; ;... n (.4) n 7

19 Obr. Rozdělení funkce f(x) na inervaly délky h ( x ) Meoda spočívá v rozdělení nějaké spojié funkce na n čásečných inervalů délky h. Pro jednolivé body y 0...yn funkce f(x), rozdělené na podinervaly, plaí: h h h 1.) y0 = f 0.) y1 = f1 = h f1 3.) y = f = h f... (.5) Označením h = Δx přejdou yo výrazy na vzahy : x x x 1.) y0 = f 0.) y1 = f1 = x f1 3.) y = f = x f... (.6) Dosazením výrazů do rovnice (1.5), pouze pro její kosinusový var, dojde ke zkompleování lichoběžníkového pravidla a Bromwichova inegrálu vyjádřeného pomocí Fourierovy kosinusové ransformace do varu Dubner-Abaeho algorimu. Čili pro jednolivé y 0...yn plaí subsiuce x = η, proože Bromwichův inegrál vyjádřený Fourierovou řadou byl inegrovaný podle η. Uvedené funkční hodnoy v jednolivých inervalech x přejdou do varů : 1.) y 0 = Re F( c) cos 0η = Re F( c) ( ) ( ) ( ) ( F( c + i η) ) cos( η) ( F( c + i η) ) cos( η).) y1 = Re 3.) y = Re 4.) Sečením ěcho nových hodno y 0...yn a dosazením do lichoběžníkového pravidla za předpokladu subsiuce x = η dojde ke konečnému převodu rovnice (1.5) do varu: c c e η e f ( ) = Re( F( c) ) + η Re( F( c + i η) ) cos( η)... (.7) π π 8

20 Funkci f() lze přepsa do výrazu se sumou, proože hodnoa f ( 0) = η y0 se dá označi jako sřední hodnoa, jelikož v dalších sčíancích už jsou jen dvojnásobky funkčních hodno f ( 1)... f ( n 1). Výraz se sumou lze edy přepsa do varu za π předpokladu subsiuce A = c a η = : A/ e f ( ) = A A e Re F + / N ( 1) n= 1 n A + nπi Re F (.8) Výraz ( 1) n π předsavuje pouze přepis výrazu cos( η) za subsiuce η =. Dosazením éo subsiuce do rovnice kosinu, dojde k odsranění času a hodnoa v něm π π se mění jako n násobek. Proože cos n = 0, dojde k odsranění všech lichých složek a zbydou pouze y sudé, keré obsahují výraz cos ( nπ ), což je vlasně přepis výrazu ( 1) n, proože kosinus se pohybuje v omo případě pouze na hodnoách <-1;1>.. Algorimus založený na Simpsonově pravidlu Algorimus je velmi podobný s lichoběžníkovým pravidlem, ale jeho chování je jiné, proože má jiný var. Dosazením Simpsonova pravidla z numerických meod do (1.5) dojde k převedení složiého inegrálu na algebraický výraz a ím k jednoduššímu výpoču inverzní Laplaceovy ransformace, obdobně jako u Dubner-Abaeho algorimu. Teno algorimus byl odvozen auorem éo bakalářské práce...1 Odvození algorimu založené na Simpsonově pravidlu Simpsonovo pravidlo má var [6]: b x y = f ( x) dx = ( f f1 + f + 4 f 3 + f f n 1 + f n ) (.9) 3 a,kde y 0...yn jsou jednolivé funkční body spojié funkce, x je délka inervalu funkce f(x), rozdělené na n inervalů éo délky x = h. Pro jednolivé body funkce f(x) plaí : x x 4 x 1.) y0 = f 0.) y1 = 4 f1 = x f1 3.) y = f = x f... (.10) x Z uvedeného vzorce (.9) je vidě, že první člen f 0 je vynásoben výrazem a 3 osaní členy jsou násobeny poměrem x podle oho, jesli jde o sudou funkční hodnou 9

21 10 n f nebo lichou funkční hodnou n f. Lichá funkční hodnoa n f je vynásobena poměrem x 3 4 a sudá funkční hodnoa n f je vynásobena poměrem x 3. Dosazením Simpsonova pravidla do rovnice (1.5), pro její kosinusový var, dojde ke spojení Simpsonova pravidla a Bromwichova inegrálu a ím k usnadnění výpoču inverzní Laplaceovy ransformace. Jednolivé hodnoy funkce f(x) ( n y...y 0 ) přejdou do varů : ( ) ( ) ( ) ) ( Re 0 cos ) ( Re.) 1 0 c F c F y = = η ( ) ( ) η η + = i c F y cos ) ( Re.) 1 ( ) ( ) η η + = i c F y cos ) ( Re.) 3, což jsou vary sejné jako u lichoběžníkového pravidla. Sečením ěcho hodno n y...y 0 dojde k sečení výrazů v závorce rovnice (.9), posupným vynásobením výrazů v závorce podle oho, jesli jde o sudý nebo lichý vzorek a nakonec k vynásobení výrazem 3 x, vzorec (1.5) pak přejde do varu : ( ) ( ) { } ( ) { } ( )+ + + = η η η π η π i c F e c F e f c c cos Re 3 4 Re 3 ( ) { } ( )... cos Re η η η π i c F e c (.11) Za subsiuce c A = a π η =, dojde k převodu rovnice (.11) na výraz : ( ) = i A F e A F e f A A cos Re 3 4 Re 3 / / π π π π π π... cos Re 3 / i A F e A π π π π ( ) = cos Re 3 4 Re 3 / / π π i A F e A F e f A A cos( )... Re 3 / π π i A F e A (.1) Opě je vidě, že liché složky jsou odsraněny, proože 0 cos = π n. Čili všechny složky, keré jsou násobeny 3 4 v rovnici (.11) jsou auomaicky anulovány. Proo výraz (.1) přejde na snadnější zápis se sumou : ( ) ( ) = + + = N n n A A i n A F e A F e f 1 / / Re 1 3 Re 3 π (.13)

22 .3 Hosonův algorimus Teno algorimus byl vyvořen z kombinace rovnice (1.5) Bromwichova inegrálu v sinusovém varu a obdélníkového pravidla podle japonského vědce jménem Hosono. V algorimu je obsažena imaginární složka, což je způsobeno sinusovým varem Bromwichova inegrálu..3.1 Odvození Hosonova algorimu Obdélníkové pravidlo má var : b a ( f + f + f + f ) f... + ( x) dx = x 0 1 n (.14) Opě dojde k rozdělení funkce f (x) na inervalu <a;b> na podinervaly délky x. Pro jednolivé hodnoy y 0...yn inervalu <a;b> plaí : 1.) y0 = x f 0.) y1 = x f1 3.) y = x f... (.15) Je vidě, že všechny funkční hodnoy inervalu <a;b> jsou vynásobeny pouze hodnoou, kerou byla funkce f(x) rozdělena a o hodnoou x. Dosazením ěcho hodno y 0...yn z obdélníkového pravidla (.14) do rovnice (1.5) v sinusovém varu dosanou jednolivé hodnoy funkce f(x) ( y 0...yn ) var : ( F( c) ) sin( 0 ) 0 ( F( c + i η) ) sin( η) ( F( c + i η) ) sin( η) 1.) y 0 = Im η =.) y1 = Im 3.) y = Im (.16) Je vidě, že sřední hodnoa funkce f(x) y 0 je nulová, je o způsobeno indexem n=0 v sinusu, kerý je obsažen v sadě výrazů (.5) Sečením jednolivých výrazů y 0...yn funkce f(x) dojde ke zkompleování obdélníkového pravidla a Bromwichova inegrálu v sinusovém varu na var : c e f ( ) = η + π { Im[ F( c + i η) sin( η) ] + Im[ F( c + i η) sin( )]...} (.17) π Opě dojde ke subsiuci A = c a η = jako u lichoběžníkového nebo Simpsonova pravidla a ím k převodu rovnice (.6) na zápis : A / N e n A + (n 1) πi f ( ) = ( 1) Im F = (.18) n 1 11

23 3 TESTOVÁNÍ ALGORITMŮ NA JEDNODUCHÝCH OBRAZECH Tao kapiola se zabývá esováním odvozených algorimů z kapioly na jednoduchých, již známých obrazech z Laplaceova slovníku. Jedná se například o funkce jednokového skoku, lineární funkce nebo jednoduché funkce sinus či kosinus v Laplaceově obrazu. Jednolivé obrazy v Laplaceově varu jsou věšinou algebraické výrazy, proo se s nimi dobře pracuje. Ve všech níže uvedených grafech ( obr. 3 až ) je zeleným grafem originál esované funkce a modře je zvýrazněna inverovaná funkce f(), na keré byl daný algorimus esován. 3.1 Tesování Dubner Abaeho algorimu na funkci jednokového skoku Tao kapiola se zabývá esováním Dubner-Abaeho algorimu na nejzákladnější funkci a o funkci jednokového skoku. Ukazuje, co se děje s inverovanou funkcí f() při změně konsany c v malých či velkých hodnoách nebo změně poču opakování algorimu N. Veškeré obrázky jsou simulovány v programu malab. Program Malab má v sobě již zabudovanou funkci jednokového skoku a ou je funkce heaviside(x). X zde může nabýva jakýchkoliv hodno, funkce oiž pro jakékoliv x vráí vždy hodnou 1. 1

24 Obr. 3 Tesování Dubner-Abaeho algorimu na funkci jednokového skoku pro c = 0.1 a pro N =

25 Obr. 4 Tesování Dubner Abaeho algorimu na funkci jednokového skoku pro c = 0.5 a N=

26 Obr. 5 Tesování Dubner-Abaeho algorimu na funkci jednokového skoku pro c = 1 a N = 100. Obr. 3 až 5 poukazují na esování Dubner-Abaeho algorimu pro změnu konsany c pro hodnoy c = 0,1; 0,5; 1 funkce jednokového skoku. 1 Neboli : F( s) = v Laplaceově obrazu a omu odpovídající Heavisideova funkce ( s jednokový skok ) f ( ) = 1H(). Z obr. 3 je parné, že pro malé c se inverovaná funkce usálí mnohem pomaleji než pro věší c. U obr. 4 je zase vidě vhodně zvolená konsana c = 0.5, kdy se inverovaná funkce se snaží udrže sejnou hodnou jako originál i ve velkých časech. Obr. 5 demonsruje, že při použií příliš velké konsany c dojde k rychlému exponenciálnímu nárůsu a inverovaná funkce začne nabýva enormních hodno a již vůbec nekopíruje originál funkce. Je o způsobeno exponenciální funkcí c e ve vzorci (1.5) pro výpoče inverzní Laplaceovy ransformace pomocí Bromwichova inegrálu ve Fourierově varu. Čím více oiž rose čas, ím rychleji dochází k omuo nárůsu. 15

27 Pro funkci jednokového skoku je edy nejvýhodnější c < 0.1;0. 4 > v daném časovém rozmezí pro < 0s; 0s > pro konsanní N = 100. Obr. 6: Tesování Dubner-Abaeho algorimu na funkci jednokového skoku při c = 0.5 a N=10. Dojde-li ale k snížení poču opakování (N) v algorimu na nižší hodnou než N = 100 při c = 0.5, dojde k usálení jednokového skoku jenom jen ve velmi malém časovém rozmezí. To ukazuje Obr. 6, kerý demonsruje použií algorimu na funkci jednokového skoku při c = 0.5 a N =10. Při nižším poču opakování N = 10 dojde c k projevu výše zmíněné funkce e mnohem dříve než při věším poču opakování. Zmíněné přiblížení k jednokovému skoku je jen pro časové rozmezí < s; 3s >. 16

28 Obr. 7 Tesování Dubner Abaeho algorimu na funkci jednokového skoku pro c = 1 Obr. 7 poukazuje na případ, kdy c = 1 a N = Čili algorimus se velmi rychle usálí, než pro menší c, pro danou funkci f() na požadovanou hodnou 1. Bohužel velký poče opakování způsobuje věší časovou náročnos PC a o cca 5 sekund. Z výše zmíněných pokusů pro esování Dubner-Abaeho algorimu pro funkci jednokového skoku vyplývá, že malá konsana c sice prodlouží dobu usálení inverované funkce, ale na úkor pomalého usalování. Velká konsana c zase zlepší rychlé usalování pro kraší časy, ale rvání usálené inverované funkce je zase malé. Poče opakování algorimu N je důležiým fakorem, čím je oiž věší, ím déle vydrží usálení inverované funkce. Cílem je edy zvoli vhodně N i c ak, aby inverze byla co nejefekivnější, pro dosažení nejlepší shody s daným originálem v minimálním výpočením čase. Tuo vlasnos algorimu demonsruje Obr

29 Obr. 8 Tesování Dubner-Abaeho algorimu na funkci jednokového skoku při c = 0,5 a N = Obr. 8 ukazuje, že použiím vhodné konsany c a ješě přijaelného poču opakování algorimu N, se inverovaná funkce jednokového skoku usálí v mnohem delším časovém inervalu, než při použií menšího poču opakování algorimu. V uvedeném případu dojde k přiblížení k jednokovému skoku v inervalu < 5s; 8s > s chybou cca. +0,009. Při čase nad = 8s začíná docháze k projevu exponenciální funkce a o již nelze ovlivni. Trvání výpoču a vykreslování grafu rvá asi 10 sec. Je-li zvoleno c = 0,5 a N = , čili o řád vyšší, dojde k usálení algorimu v časovém inervalu < 4,75s; 37s >, bohužel časová náročnos na výpoče již byla minuy. 18

30 3. Tesování Hosonoho algorimu na funkci jednokového skoku Obr. 9 Tesování Hosonoho algorimu na funkci jednokového skoku pro c = 0,1 a N=10. Obr. 9 ukazuje případ, kdy se Hosonoho algorimus sice snaží přiblíži k originálu funkce f() = 1H(), ale díky malé konsaně c = 0,1 a nízkému poču opakování algorimu N =10 není možné, aby se s dosaečnou rychlosí a přesnosí přiblížil k originálu. 19

31 Obr. 10 Tesování Hosonoho algorimu na funkci jednokového skoku při c = 0.1 a N=100 Na Obr. 10 je vidě, že při malé konsaně c = 0,1 a zvýšení poču opakování algorimu se inverovaná funkce pomalu usaluje, ale výsledek je mnohem lepší, než demonsruje Obr. 9. V dalším Obr. 11 bude ukázáno, jak se bude chova Hosonoho algorimus při esování jednokového skoku na věší konsaně c = 0,3 při zachování poču opakování algorimu N =

32 Obr. 11 Tesování Hosonoho algorimu na funkci jednokového skoku pro c = 0,3 a N = 100 Obr. 11 ukazuje, že při neparném zvýšení konsany c na hodnou c = 0,3 a zachování poču opakování algorimu N = 100 oproi Obr. 10, dojde k degradaci inverované funkce již při čase = 10s a k uspokojivému přiblížení k originálu v čase = 6 s. To při konsaně c = 0,1 a N =100 nebylo, zde se algorimus snažil přiblíži k originálu mnohem rychleji, zao však nedošlo k udržení inverované funkce f() a její rychlé degradaci. Obr. 1 ukáže, co se sane, když konsana c dosáhne hodnoy c = 1 a poče opakování algorimu N bude opě zachován a o N =

33 Obr. 1 Tesování Hosonoho algorimu na funkci jednokového skoku pro c = 1 a N = 100. Obrázek 1 ukazuje, jak se chová Hosonoho algorimus na funkci jednokového skoku při použií příliš vysoké konsany c = 1. Algorimus se éměř vůbec nepřiblíží k originálu funkce a už vůbec nedojde k usálení. V dalším Obr. 13 bude demonsrováno, jak se nejlépe přiblíži k usálenému savu, aby algorimus serval na hodnoě originálu f() = 1H().

34 Obr. 13 Tesování Hosonoho algorimu na funkci jednokového skoku při c = 0,35 a N = 10 4 Z Obr. 13, je vidě, že použiím věší konsany dojde k rychlejšímu usalování inverované funkce f() = 1H() a zároveň při použií věšího poču opakování algorimu dojde aké k silnějšímu usálení. Jinými slovy algorimu drží při věším poču opakování mnohem lépe, než při menším poču opakování pro věší časy. V uvedeném případě algorimus se velmi přesně usálil pro časové rozmezí < 8 s; 16s > Závěr esování Hosonoho algorimu na funkci jednokového skoku je jednoduchý. Čím menší je konsana c, ím lépe se algorimus chová pro věší časy a drží inverovanou funkci mnohem déle než při věší konsaně c (řádově deseiny a seiny). Nevýhodou malé konsany je ale velmi dlouhé usalování inverované funkce f() V opačném případě, kdy konsana c je věší (pro c < 0.35; 1 > pro funkci jednokového skoku ), dojde k rychlejšímu přiblížení k originálu funkce f(), ale bohužel algorimus již nedokáže drže svou hodnou f() = 1 na daném originálu a velmi rychle klesá k nízkým hodnoám, obdobně jako omu bylo u degradace při použií Dubner-Abaeho algorimu. 3

35 3.3 Tesování algorimu založeném na Simpsonově pravidle Jak už bylo zmíněno při odvozování ohoo algorimu, eno algorimus byl odvozen auorem éo práce a není možné předpokláda, jak se bude chova. Obr. 14 Tesování algorimu odvozeného pomocí Simpsonova pravidla pro c = 0.1 a N = 100. Obrázek 14 ukazuje usalování inverované funkce na funkci jednokového skoku. Zpočáku dochází k velmi pomalému usalování inverované funkce f() a až asi po čase = 1s dojde k usálení na nějakou hodnou. Jelikož nelze přepokláda chování algorimu, ak dochází k usálení na hodnou cca f() = 0,67 pro >1s. Je zde poměrně velká chyba od originálu a o cca

36 Obr. 15 Tesování algorimu odvozeného pomocí Simpsonova pravidla pro c = 0.5 a N = 100 Obrázek 15 spolu s předešlým Obr. 14 dokazuje, že použií algorimu odvozeného pomocí Simpsonova pravidla na funkci jednokového skoku má sice dobré usalující účinky pro věší N (řádově sovky až isíce), obdobné jako u Hosonoho algorimu, ale inverovaná funkce f() je značně posunuá od originálu. 5

37 3.4 Tesování Dubner-Abaeho algorimu na lineární funkci Tao kapiola je obdobná jako kapiola 3.1, jen je jako esovací funkce použia 1 lineární funkce, jejíž obraz je F ( s) = a originál funkce je f ( ) = H(). s Obr. 16 Tesování Dubner-Abaeho algorimu na lineární funkci pro c = 0.5 a N = 100. Siuace je éměř sejná jako u kapioly 3.1, kde byl Dubner-Abaeho algorimus esován na funkci jednokového skoku. Pro malé c (řádově deseiny) a dochází opě k pozvolnému usalování pro malé časy. Velké c ( nad 0.5 ) má za následek rychlé usálení inverované funkce, zao však pro věší časy již ao funkce nevydrží bý usálená. Jiné o bude, bude-li esována goniomerická funkce na Dubner-Abaeho algorimu, jak bude ukázáno v kapiole

38 3.5 Tesování Dubner-Abaeho algorimu na goniomerické funkci sinus V éo kapiole, jak název napovídá, bude esován Dubner-Abaeho algorimus na funkci sinus. Obraz funkce sinus má v operáorovém varu následující var : a F( s) = a omu odpovídající originál funkce sinus: f ( ) = sin( a). s + a,kde označuje čas, konsana a určuje frekvenci goniomerické funkce a s je paramer Laplaceovy ransformace Obr. 17 Tesování Dubner-Abaeho algorimu na funkci sin(a) pro c = 0.1 a N = 100 V předešlých kapiolách již bylo naznačeno, že konsana c určuje rychlos konvergence k danému originálu a poče opakování algorimu N zlepšuje uo rychlos usalování k danému originálu. V případě Obr. 17, kdy je konsana c zvolena c = 0.1 a N = 100. I když dojde k neměnnosi konsany c a N se bude zvěšova, nedojde k vidielnému zlepšení usalování. 7

39 Obr. 18 Tesování Dubner-Abaeho algorimu na funkci sin(a) pro c = 0.3 a N=100 a a = 10 Na Obr. 18 je zřeelně vidě, že při neměnnosi poču opakování algorimu N a menšímu zvýšení konsany c na hodnou c = 0,3 dojde k zlepšení usalování inverované funkce a v čase věším jak s se již snaží algorimus kopírova zelený originál funkce, ale ne dosaečně. Řešením pro daný algorimus bude zvoli konsanu c dosaečně velkou. Z výše ověřených pokusů vyplývá, že poče opakování algorimu nemá na inverovanou funkci f() zas ak velký vliv. Sačí zvoli N = 5 a více ( ne však 6 přesahující hodnou N =10, došlo by k věší náročnosi na PC ) a v uvedeném časovém inervalu o bohaě posačí k usálení funkce. Cílem je zvoli správně c, opě ak velké, aby došlo k rychlejšímu usalování, ale ak velké, že ve věším čase dojde k degradaci funkce. 8

40 Obr. 19 Tesování Dubner-Abaeho algorimu na funkci sin(a) pro c = 0.8 a N = 100 a a = 10 Obrázek 19 ukazuje, že při použií věší konsany c = 0.8, dojde k usálení funkce sin(10) již při 3.periodě éo funkce, což u menší konsany c u Obr. 18 nebylo možné. Bude-li zvolena konsana c věší jak c = 1, dojde k degradaci inverované funkce již při. periodě a inverovaná funkce přesane kopírova originál ve věších časech. Je o c způsobeno opě nárůsem exponenciální funkce e ve vzorci pro výpoče Dubner- Abaeho algorimu. 9

41 3.6 Tesování Hosonoho algorimu na goniomerické funkci sinus Tao kapiola se zabývá esováním Hosonoho algorimu na funkci f ( ) = sin( a). Jde o sejné esování jako u kapioly 3.5, aby mohlo dojí v kapiole 4 k porovnání všech esovaných algorimů. Obr. 0 Tesování Hosono algorimu na funkci f() = sin(a) pro c = 1 a N = 100 a a = 5. Na Obr. 0 je vidě, že inverovaná funkce má problém pro první periodu, ale s rosoucím časem ( čas nad s ) dojde k splynuí originálu a inverované funkce éměř s nulovou přesnosí. To vše se děje až do doby, kdy se inverovaná funkce začne od originálu oddalova. Je o způsobeno opě exponenciálním členem ypu v Hosonoho i Dubner-Abaeho algorimu ( rovnice (.6) a (.7) ). Při odvozování bylo naznačeno, že konsana A je závislá na čase i konsaně c, jinými slovy A = c. Pro A/ éměr nulové časy, bude člen e malý, ale jelikož je eno člen vydělen časem a en je e A / hodně malý, ve výsledku bude člen hodně velký. Proo má Hosonoho a Dubner Abaeho algorimus dobré účinky až po uplynuí nějaké doby ( cca s pro výše e A / 30

42 esované funkce ). Pak se algorimus nějakou dobu snaží kopírova originál funkce, ale e A / pak dochází k exponenciálnímu nárůsu členu a již nepomáhá ani vydělení ohoo členu časem, aby došlo k redukci ohoo členu na nižší hodnou a funkce mohla déle kopírova daný originál. Dalším fakem je člen, obsažený v rovnicích (.6 a.7), jehož var je : A + nπi A + (n 1) πi Re F pro Dubner Abaeho algorimus a Im F pro Hosonoho algorimus. Tyo členy nabývají ze začáku velmi nízkých, éměř nulových hodno a s rosoucím časem se zvěšují ( záleží na ypu esované funkce ). To aké přispívá k oddálení inverované funkce od originálu ve věších časech. V případě Hosonoho algorimu nepomáhá ani zvýšení poču opakování algorimu N o několik řádů 6 ( cca N =10 a více ). Teno případ demonsruje Obr. 1, kde byla konsana c zvolena věší ( c = ). Dojde edy k rychlejšímu usalování pro menší časy na úkor rychlejšímu oddálení inverované funkce od originálu ve věších časech. Obr. 1 Tesování Hosonoho algorimu na funkci f() = sin(a) pro c = a N = 100 a a = 5. 31

43 3.7 Tesování algorimu založeného na Simpsonově pravidle na goniomerické funkci Tao kapiola je věnována oesování ohoo algorimu aké na funkci f ( ) = sin( a), jako omu bylo v kapiolách 3.5 a 3.6. Jelikož docházelo k jisému posunuí od originálu v případě kapioly 3.3, kde se esoval eno algorimus na funkci jednokové skoku, lze předpokláda, že dojde k jisému posunuí i u funkce sinus nebo její deformaci. Obr. Tesování algorimu založeného na Simpsonově pravidle na funkci f() = sin(a) pro c = 1 a N = 100 a a = 4. Obrázek demonsruje chování algorimu založeného na Sipsonově pravidle. Jako u všech algorimů, má problém pro minimální časy, jako omu bylo u Hosonoho algorimu i Dubner-Abaeho. Problém je ovšem v nepřesnosi usalování, uvedená modrá křivka (inverovaná funkce) se sice snaží kopírova originál funkce, ale dochází ke snížení ampliudy éo inverované funkce. Řešením ohoo problému je zvýši ampliudu o nějakou hodnou, inverovaná funkce pak bude kopírova dobře daný originál. Experimenálně pomocí malabovských kurzorů bylo zjišěno, že vynásobením inverováné funkce hodnoou 1.5 dojde k lepšímu přiblížení k originálu. Tao hodnoa je velmi důležiá a můžu v ní bý skrya nepřesnos, kerou algorimus založený na Simpsonově pravidle dělá pro esování éo goniomerické funkce i funkce 3

44 jednokového skoku. V obou esovaných připadech, dojde-li k vynásobení konečné inverované funkce právě ouo hodnoou, inverovaná funkce se přiblíží ke svému originálu mnohem přesněji. 33

45 4 TESTOVÁNÍ ALGORITMŮ NA OBRAZECH SDĚLOVACÍHO VEDENÍ Tao kapiola je věnována esování různých obrazů proudu či napěí sdělovacího vedení různých ypů operáorového varu. Bude se jedna o vedení se zanedbaelným svodem i indukčnosí, spojené na jednom konci nakráko pro dva druhy vsupních signálů. Výše uvedené ypy vedení mají vhodné obrazy proudu či napěí pro esování algorimů odvozených v kapiole. 4.1 Vedení se zanedbaelným svodem i indukčnosí, spojené na jednom konci nakráko ( podzemní kabel ). Pro oo vedení plaí podmínka nulové indukčnosi,svodu a impedance zapojené na konec vedení, u lze zapsa jako : G = L = 0 a Z ( s) = 0 (4.1) Napěí vedení ohoo ypu v operáorovém varu má pak var []: sinh( sx RC ) U s = U s (4.) () 0() sinh( sl RC ) Za předpokladu, že na vsup vedení bylo připojeno napěí, rovnající se funkci jednokového skoku, rovnice (4.) pak přejde do varu []: 1 sinh( sx RC ) U() s = (4.3) s sinh( sl RC ),kde s je paramer Laplaceovy ransformace, funkce sinh je označení pro hyperbolický sinus, x je zvolené míso ve vedení, l je délka vedení a konsany R a C označují po řadě odpor a indukčnos vedení. V následujícím odsavci bude odvozen originál funkce obrazu rovnice (4.3) za použií residuovy věy a Bromwichova inegrálu. Za podmínky α = x RC a β = l RC přejde rovnice (4.3) do prvního kroku inverze a o za použií Bromwichova inegrálu []: c+ i s 1 e sinhα s u( ) = ds πi (4.4) s sinh β s c i Z residuovy věy vyplývá, že inverzní Laplaceovu ransformaci zapsanou jako rovnici (4.4) lze vypočía jako souče všech residuí v příslušných pólech vyšeřované funkce. Póly jsou myšlena mísa, kde jmenovael funkce nabývá nulových hodno. Pro yo póly dojde k výpoču příslušných residuí a jejich souču. Výsledný souče residuí je poom inverovaná funkce ( v omo případě hledané napěí u() ). 34

46 Dále je nuno zjisi, jaké póly ( řadu pólů ) má funkcesinh β s. Součem ěcho residuí je poom řada zapsaná ve varu. To se ěžko zjišťuje, proože funkce sinh je nulová pouze v 0. Proo je nuno použí obor komplexních čísel a ím zjisi nulovos ako položené funkce. V oboru komplexních čísel je funkce sinh β s nulová pro β s = ± jmπ. Souče všech residuí je poom dán výrazem []: s e sinhα s α u () = β + (4.5) m= 1 scosh β s β β s =± jmπ,kde m je celé kladné číslo od 1 do. Výraz cosh β s lze přepsa jako cosh β s = cos mπ = ( 1) m, výraz (4.5) po výpoču všech residuí a zpěnému dosazení podmínek za α = x RC a β = l RC pak přejde do varu []: u( ) = m= 1 ( 1) m mπx sin l mπ e m π l RC + x l (4.6) Teno výpoče je pouze velmi zkrácenou verzí a demonsrací oho, jak složiý výpoče musí obraz funkce varu vedení ohoo ypu podsoupi, aby došlo k jeho inverzi a získání napěí u() v časové oblasi. V následující kapiole bude eno obraz rovnice (4.3) esován na všech řech algorimech. Na rozdíl od kapioly 4.1 je zde k dispozici originál i obraz, proo může dojí k lepšímu porovnání. Pokud je na vsup vedení přiveden harmonický signál, v omo případě u ( ) = cos( ω ) (4.7) 0, přejde obraz napěí na vedení (4.5) v časové oblasi do usáleného varu []: 4 ω lrc x m m x u ( ) cos ( 1) mπ π = ω + sin l m= 1 ω lrc + mπ l m mπ mπx ωl RC sinω ( 1) sin m= 1 ω lrc + mπ l (4.8), kde ω je úhlový kmioče ( ω = πf, f je frekvence ), l je délka vedení, m je libovolné celé číslo, osaní veličiny jsou již známe z předchozích kapiol 35

47 4.1.1 Tesování Dubner-Abaeho algorimu na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko ( podzemní kabel ) V éo kapiole bude ukázána inverze pomocí Dubner-Abaeho algorimu na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko pro dva případy. První případ bude, pokud na vsup vedení bude připojeno napěí jednokového skoku a v druhém případě, bude-li na vsup vedení připojen harmonický signál u0 ( ) = cosω. 1.) Na vsup vedení připojen jednokový skok : ( rovnice (4.3) a (4.6) ) Obr. 3 Tesování Dubner-Abaeho algorimu na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko pro c = 1, N = 100 a m = 10, délka vedení je l = 5m a je zjišěn časový průběh napěí v bodě x = 4.5 m Hodnoy odporu a kapaciy vedení byly zvoleny ako : R = 3 kω a C = 8pF, hodnoy svodu G a indukčnosi L jsou zanedbány. Modrá křivka naznačuje přibližování k funkci jednokového skoku vynásobenou určiým poměrem, kerý udává poměr x/l. Too je křivka inverované funkce (4.3). To, že dochází k prosému násobení funkce jednokového skoku poměrem x/l, bylo zjišěno experimenálními pokusy, kdy při zachování všech osaních hodno, změně hodnoy x a následnému odečení hodnoy pomocí malabovských kurzorů ( pro x = 1,,4.5, 5 ) došlo k zjišění éo skuečnosi. 36

48 Při hlubším zkoumání originálu funkce napěí rovnice (4.6) na vedení ohoo ypu o lze m e l RC vysvěli ak, že čás rovnice (4.6) nabývá ak malých hodno, že jejím vynásobením osaními členy v sumě rovnice (4.6) pak dojde k éměř úplnému vynulování osaních hodno a zbyde pouze člen x/l. To ale nevadí, proože cílem ohoo experimenu bylo zjisi, jak se bude chova funkce vedení se zanedbaelnou indukčnosí a svodem spojené na jednom konci nakráko při přivedení jednokového skoku na vsup vedení ve zvoleném bodě x vedení délky l na Dubner-Abaeho algorimus. π.) Na vsup vedení je připojen harmonický signál cos(ω): s ( rovnice (4.8 a 4. při U 0 ( s) =, což je obraz kosinu ) s + a Hodnoy paramerů vedení jsou shodné s hodnoami při esování v předchozím případě, kdy byl na vsup vedení přiveden jednokový skok. Obr. 4 Tesování Dubner-Abaeho algorimu na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko pro c = 1, N = 100 a m = 10, ω = 4π délka vedení je l = 5m a je zjišěn časový průběh napěí v bodě x = 4.5 m 37

49 Obrázek 30 ukazuje siuaci éměř sejnou, jako když byl Dubner-Abaeho algorimus esován na funkci goniomerické funkci sinus v kapiole 3.5. Modrá inverovaná křivka má zpočáku pro malé časy problémy s kopírováním originálu, o se dá opě zajisi zvýšením konsany c opě na úkor věších časů, jak popisuje kapiola 3.5. Je zřejmé, že ampliudu kosinu určuje opě poměr x/l, jako omu bylo v předchozím případě. V následujících dvou ukázkách bude ukázáno pouze pro srovnání esování obou předchozích případů na Hosonově algorimu a algorimu založeném na Simpsonově pravidle Tesování Hosonoho algorimu na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko ( podzemní kabel ) 1.) Na vsup vedení připojen jednokový skok : Obr. 5 Tesování Hosonoho algorimu na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko pro c = 1, N = 100 a m = 10, ω = 4π délka vedení je l = 5m a je zjišěn časový průběh napěí v bodě x = 4.5 m Na Obr. 31 je opě vidě, že Hosonoho algorimus není až ak silná meoda, inverovaná funkce se ani nepřiblíží ke svému originálu a hned dochází k exponenciálnímu nárůsu. Řešením by mohla bý opě jiná volba konsany c a zvýšení poču opakování algorimu N. 38

50 .) Na vsup vedení je připojen harmonický signál cos(ω) : Obr. 6 Tesování Hosonoho algorimu na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko pro c = 1, N = 100 a m = 10, ω = 4π délka vedení je l = 5m a je zjišěn časový průběh napěí v bodě x = 4.5 m Na Obr. 3 je vidě, že Dubner-Abaeho algorimus a Hosonoho mají éměř idenické průběhy jako je ukázáno na Obr. 30. Je o dáno varem algorimů, algorimy jsou si hodně podobné, i když jsou založeny na lichoběžníkovém a obdélníkovém pravidle. Na goniomerické funkci o není až ak zřeelné. 39

51 4.1.3 Tesování algorimu založeného na Simpsonově pravidle na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko ( podzemní kabel ) 1.) Na vsup vedení připojen jednokový skok Obr. 7 Tesování algorimu založeném na Simpsonově pravidle na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko pro c = 1, N = 100 a m = 10, ω = 4π délka vedení je l = 5m a je zjišěn časový průběh napěí v bodě x = 4.5 m Na Obr. 33 je vidě nedosaek algorimu založeném na Simpsonově pravidle. Algorimus oiž posouvá ampliudu inverované funkce od originálu v poměru 1.5/1. Čili dojde li k vynásobení inverované funkce hodnoou 1.5, algorimus založený na Simpsonově pravidle bude již ukazova správnou hodnou inverované funkce v porovnání s jejím originálem. 40

52 .) Na vsup vedení je připojen harmonický signál cos(ω) Obr. 8 Tesování algorimu založeném na Simpsonově pravidle na vedení se zanedbaelným svodem i indukčnosí spojené na jednom konci nakráko pro c = 1, N = 100 a m = 10, ω = 4π délka vedení je l = 5m a je zjišěn časový průběh napěí v bodě x = 4.5 m Na Obr. 34 je vidě, že algorimus založený na Simpsonově pravidle opě lumí ampliudu inverované funkce. Zpočáku se algorimus snaží přiblíži k originálu a kdyby byl esován pro věší časy, hodnoa ampliudy inverované funkce by se usálila na hodnoě menší než je ampliuda originálu. Siuace je sejná jako v kapiole

53 5 ZÁVĚR Začáek práce je sousředěn na popsání základů Laplaceovy ransformace a její možnosi výpoču. Jedná se o výpoče Bromwichova inegrálu pomocí residuí, výpoče pomocí Laplaceova slovníku a nakonec Heavisideovy vzorce. Další čás práce je podrobněji zaměřena na odvození jednolivých 3 hlavních algorimů využívajícího numerický výpoče Laplaceovy ransformace. Jedná se o algorimy: Dubner-Abaeho algorimus, Hosonův algorimus a algorimus založený na Simpsonově pravidle. Algorimus založený na Simpsonově pravidle vykazoval velký nedosaek oproi Hosoho algorimu nebo Dubner-Abaeho a o, že lumil ampliudu inverované funkce. I po několikanásobné konrole odvozování ohoo algorimu nedošlo k nalezení chyby. Může o bý způsobení ím, že Simpsonovo pravidlo není vhodné pro numerický výpoče inverzní Laplaceovy ransformace. Po prosudování jednolivých numerických algorimů byly provedeny někeré simulace v prosředí Malab. Nejprve byly esovány algorimy na jednoduchých obrazech, jako je jednokový skok nebo lineární funkce. Poom došlo k oesování výše zmíněných algorimů na goniomerické funkci. V poslední řadě byl předsaven obraz sdělovacího vedení, jedná se o vedení se zanedbaelným svodem a indukčnosí spojené na jednom konci nakráko. Na jeho obrazu byly oesovány výše zmíněné algorimy v prosředí Malab. Z uvedených oesovaných obrazů lze usoudi, že všechny esované algorimy se hodí k inverování obrazů, keré nejsou náročné na esování pro velké časy. Všechny esované algorimy jsou náchylné na změnu konsany c. Její volba je hodně důležiá. Vliv konsany c je popsán v předešlých kapiolách. Nejlepší z uvedených algorimů po provedených esech je Dubner-Abaeho, proože inverovaná funkce dokáže kopírova originál mnohem déle než osaní dva algorimy. Hosonův algorimus není až ak silný jako Dubner-Abaeho. 4

54 LITERATURA [1] Dubner, H., and J.Abae, 1968: Numerical inversion of Laplace ransforms by relaing hem o he finie Fourier cosine ransform. J. ACM, 15, p [] André Ango : Užiá maemaika pro elekroechnické inženýry. SNTL 197 Praha, p [3] DUFFY, D. G. Transform mehods for solving parial differenial equaions, /E. Chapman & Hall/CRC, 004, p , p. 65 [4] The Laplace ransform: Theory and Aplicaion, Joel L. Schiff, Springer, p. [5] MELKES, F. Maemaika. Elekronické skripum. Brno: FEKT VUT v Brně, 005. [6] Přehled užié maemaiky, Karel Rekorys, 000. [7] Sedláček, J., Juraj Valsa Elekroechnika II Elekroechniské skripum. Brno: FEKT VUT v Brně [8] Sofwareová echnologie a managemen, Laplaceova ransformace dosupné na hp://moodle.dce.fel.cvu.cz/mod/resource/view.php?id=90&redirec... 43

55 SEZNAM SYMBOLŮ, VELIČIN A ZKRATEK Z(s) Obraz impedance vedení ω Úhlový kmioče Čas R Odpor vedení C Kapacia vedení G Vodivos vedení (svod) L Indukčnos vedení U ( ) Vsupní napěí na vedení 0 s 44

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

Laplaceova transformace Modelování systémů a procesů (11MSP)

Laplaceova transformace Modelování systémů a procesů (11MSP) aplaceova ransformace Modelování sysémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček 5. přednáška MSP čvrek 2. března 24 verze: 24-3-2 5:4 Obsah Fourierova ransformace Komplexní exponenciála

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

Kmitání tělesa s danou budicí frekvencí

Kmitání tělesa s danou budicí frekvencí EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzia omáše Bai ve Zlíně Úsav elekroechniky a měření Sřídavý proud Přednáška č. 5 Milan Adámek adamek@f.ub.cz U5 A711 +4057603551 Sřídavý proud 1 Obecná charakerisika periodických funkcí zákl. vlasnosí

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Tlumené kmity. Obr

Tlumené kmity. Obr 1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující

Více

10 Lineární elasticita

10 Lineární elasticita 1 Lineární elasicia Polymerní láky se deformují lineárně elasicky pouze v oblasi malých deformací a velmi pomalých deformací. Hranice mezi lineárním a nelineárním průběhem deformace (mez lineariy) závisí

Více

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované. finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární

Více

Parciální funkce a parciální derivace

Parciální funkce a parciální derivace Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci

Více

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8 Biologické modely Rober Mařík 9. lisopadu 2008 Obsah 1 Diferenciální rovnice 3 2 Auonomní diferenciální rovnice 8 3 onkréní maemaické modely 11 Dynamická rovnováha poču druhů...................... 12 Logisická

Více

Derivace funkce více proměnných

Derivace funkce více proměnných Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

Numerická integrace. b a. sin 100 t dt

Numerická integrace. b a. sin 100 t dt Numerická inegrace Mirko Navara Cenrum srojového vnímání kaedra kyberneiky FEL ČVUT Karlovo náměsí, budova G, mísnos 14a hp://cmpfelkcvucz/~navara/nm 1 lisopadu 18 Úloha: Odhadnou b a f() d na základě

Více

Vliv funkce příslušnosti na průběh fuzzy regulace

Vliv funkce příslušnosti na průběh fuzzy regulace XXVI. ASR '2 Seminar, Insrumens and Conrol, Osrava, April 26-27, 2 Paper 2 Vliv funkce příslušnosi na průběh fuzzy regulace DAVIDOVÁ, Olga Ing., Vysoké učení Technické v Brně, Fakula srojního inženýrsví,

Více

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav 5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických

Více

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2 STŘEDNÍ ŠKOLA ELEKTOTECNICKÁ FENŠTÁT p.. Jméno: JAN JEK Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENEÁTO FNKCÍ Číslo měření: 6 Zkoušené předměy: ) Komparáor ) Inegráor ) Generáor unkcí Funkce při měření:

Více

Bipolární tranzistor jako

Bipolární tranzistor jako Elekronické součásky - laboraorní cvičení 1 Bipolární ranzisor jako Úkol: 1. Bipolární ranzisor jako řízený odpor (spínač) ověření činnosi. 2. Unipolární ranzisor jako řízený odpor (spínač) ověření činnosi.

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07 Měřicí a řídicí echnika přednášky LS 26/7 SIMULACE numerické řešení diferenciálních rovnic simulační program idenifikace modelu Numerické řešení obyčejných diferenciálních rovnic krokové meody pro řešení

Více

1.3.4 Rovnoměrně zrychlený pohyb po kružnici

1.3.4 Rovnoměrně zrychlený pohyb po kružnici 34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb

Více

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je. Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy

Více

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru Asabilní obvod s reálnými operačními zesilovači Josef PUNČOCHÁŘ Kaedra eoreické elekroechniky Fakula elekroechnicky a informaiky Vysoká škola báňská - Technická universia Osrava ř. 17 lisopadu 15, 708

Více

4.5.8 Elektromagnetická indukce

4.5.8 Elektromagnetická indukce 4.5.8 Elekromagneická indukce Předpoklady: 4502, 4504 důležiý jev sojící v samých základech moderní civilizace všude kolem je spousa elekrických spořebičů, ale zaím jsme neprobrali žádný ekonomicky možný

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

NA POMOC FO. Pád vodivého rámečku v magnetickém poli

NA POMOC FO. Pád vodivého rámečku v magnetickém poli NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním

Více

Analogový komparátor

Analogový komparátor Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací

Více

LS Příklad 1.1 (Vrh tělesem svisle dolů). Těleso o hmotnosti m vrhneme svisle

LS Příklad 1.1 (Vrh tělesem svisle dolů). Těleso o hmotnosti m vrhneme svisle Obyčejné diferenciální rovnice Jiří Fišer LS 2014 1 Úvodní moivační příklad Po prosudování éo kapioly zjisíe, k čemu mohou bý diferenciální rovnice užiečné. Jak se pomocí nich dá modelova prakický problém,

Více

2.2.2 Měrná tepelná kapacita

2.2.2 Měrná tepelná kapacita .. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro

Více

POPIS OBVODŮ U2402B, U2405B

POPIS OBVODŮ U2402B, U2405B Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody

Více

Skupinová obnova. Postup při skupinové obnově

Skupinová obnova. Postup při skupinové obnově Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi

Více

ZÁKLADNÍ METODY REFLEKTOMETRIE

ZÁKLADNÍ METODY REFLEKTOMETRIE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PRUŽNÉ SPOJKY NA PRINCIPU TEKUTIN FLEXILE COUPLINGS

Více

PLL. Filtr smyčky (analogový) Dělič kmitočtu 1:N

PLL. Filtr smyčky (analogový) Dělič kmitočtu 1:N PLL Fázový deekor Filr smyčky (analogový) Napěím řízený osciláor F g Dělič kmioču 1:N Číače s velkým modulem V současné době k návrhu samoného číače přisupujeme jen ve výjimečných případech. Daleko časěni

Více

Inverzní Laplaceova transformace

Inverzní Laplaceova transformace Inverzní Laplaceova transformace Modelování systémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 6. přednáška MSP čtvrtek 30. března

Více

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Meodika zpracování finanční analýzy a Finanční udržielnos projeků PŘÍLOHA

Více

x udává hodnotu směrnice tečny grafu

x udává hodnotu směrnice tečny grafu Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je

Více

3B Přechodné děje v obvodech RC a RLC

3B Přechodné děje v obvodech RC a RLC 3B Přechodné děje v obvodech a íl úlohy Prohloubi eoreické znalosi o přechodných dějích na a obvodu. Ukáza možnos měření paramerů přechodných dějů v ěcho obvodech. U obvodu 2. řádu () demonsrova vliv lumicího

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

Vybrané metody statistické regulace procesu pro autokorelovaná data

Vybrané metody statistické regulace procesu pro autokorelovaná data XXVIII. ASR '2003 Seminar, Insrumens and Conrol, Osrava, May 6, 2003 239 Vybrané meody saisické regulace procesu pro auokorelovaná daa NOSKIEVIČOVÁ, Darja Doc., Ing., CSc. Kaedra konroly a řízení jakosi,

Více

Úloha II.E... je mi to šumák

Úloha II.E... je mi to šumák Úloha II.E... je mi o šumák 8 bodů; (chybí saisiky) Kupe si v lékárně šumivý celaskon nebo cokoliv, co se podává v ableách určených k rozpušění ve vodě. Změře, jak dlouho rvá rozpušění jedné abley v závislosi

Více

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ Auoři: Ing. Radek Jandora, Honeywell spol s r.o. HTS CZ o.z., e-mail: radek.jandora@honeywell.com Anoace: V ovládacím mechanismu

Více

Analýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA

Analýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA 4 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 11-12 září 2008 Analýza rizikových fakorů při hodnocení invesičních projeků dle kriéria

Více

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D

Více

Diferenciální rovnice 1. řádu

Diferenciální rovnice 1. řádu Kapiola Diferenciální rovnice. řádu. Lineární diferenciální rovnice. řádu Klíčová slova: Obyčejná lineární diferenciální rovnice prvního řádu, pravá srana rovnice, homogenní rovnice, rovnice s nulovou

Více

2.2.9 Jiné pohyby, jiné rychlosti II

2.2.9 Jiné pohyby, jiné rychlosti II 2.2.9 Jiné pohyby, jiné rychlosi II Předpoklady: 020208 Pomůcky: papíry s grafy Př. 1: V abulce je naměřeno prvních řice sekund pohybu konkurenčního šneka. Vypoči: a) jeho průměrnou rychlos, b) okamžié

Více

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut. 21. konference Klimaizace a věrání 14 OS 01 Klimaizace a věrání STP 14 NÁVRH CHLADIČ VNKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakula srojní, Úsav echniky prosředí Vladimir.Zmrhal@fs.cvu.cz ANOTAC

Více

4. Střední radiační teplota; poměr osálání,

4. Střední radiační teplota; poměr osálání, Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění

Více

XI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny...

XI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny... XI- Nesacionární elekromagneické pole... XI- Rovinná harmonická elekromagneická vlna...3 XI- Vlasnosi rovinné elekromagneické vlny...5 XI-3 obrazení rovinné elekromagneické vlny v prosoru...7 XI-4 Fázová

Více

FAKULTA APLIKOVANÝCH VĚD

FAKULTA APLIKOVANÝCH VĚD FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro

Více

Popis obvodů U2402B, U2405B

Popis obvodů U2402B, U2405B ASICenrum s.r.o. Novodvorská 99, Praha Tel. (0) 0 78, Fax: (0) 7 6, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = Popis obvodů U0B, U0B Funkce inegrovaných

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly.

listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly. 6. cvičení z PSI 7. -. lisopadu 6 6. kvanil, sřední hodnoa, rozpyl - pokračování příkladu z minula) Náhodná veličina X má disribuční funkci e, < F X ),, ) + 3,,), a je směsí diskréní náhodné veličiny U

Více

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka

Více

Vzorce na integrování. 1. x s dx = xs+1. dx = ln x +C 3. e x dx = e x +C. 4. a x dx = ax. 14. sinhxdx = coshx+c. 15. coshxdx = sinhx+c.

Vzorce na integrování. 1. x s dx = xs+1. dx = ln x +C 3. e x dx = e x +C. 4. a x dx = ax. 14. sinhxdx = coshx+c. 15. coshxdx = sinhx+c. Vzorce na inegrování. s d s+ s+. d ln. e d e. a d a lna, s 5. sind cos 6. cosd sin 7. cos d g 8. d cog sin 9. d arcsin arccos+k 0. + d arcg arccog+k. a + d a arcg a. + d ln(+ +. d ln +. sinhd cosh 5. coshd

Více

73-01 KONEČNÝ NÁVRH METODIKY VÝPOČTU KAPACITU VJEZDU DO OKRUŽNÍ KOMENTÁŘ 1. OBECNĚ 2. ZOHLEDNĚNÍ SKLADBY DOPRAVNÍHO PROUDU KŘIŽOVATKY

73-01 KONEČNÝ NÁVRH METODIKY VÝPOČTU KAPACITU VJEZDU DO OKRUŽNÍ KOMENTÁŘ 1. OBECNĚ 2. ZOHLEDNĚNÍ SKLADBY DOPRAVNÍHO PROUDU KŘIŽOVATKY PŘÍLOHA 73-01 73-01 KONEČNÝ NÁVRH METODIKY VÝPOČTU KAPACITU VJEZDU DO OKRUŽNÍ KŘIŽOVATKY Auor: Ing. Luděk Baroš KOMENTÁŘ Konečný návrh meodiky je zpracován ormou kapioly Technických podmínek a bude upřesněn

Více

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 Vniřní jednoka pro sysém epelných čerpadel vzduch-voda EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 EKHBRD011ACV1 EKHBRD014ACV1 EKHBRD016ACV1 EKHBRD011ACY1 EKHBRD014ACY1

Více

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou

Více

Schéma modelu důchodového systému

Schéma modelu důchodového systému Schéma modelu důchodového sysému Cílem následujícího exu je názorně popsa srukuru modelu, kerý slouží pro kvanifikaci příjmové i výdajové srany důchodového sysému v ČR, a o jak ve varianách paramerických,

Více

Výpočty teplotní bilance a chlazení na výkonových spínacích prvcích

Výpočty teplotní bilance a chlazení na výkonových spínacích prvcích Výpočy eploní bilance a chlazení na výkonových spínacích prvcích Úvod Při provozu polovodičového měniče vzniká na výkonových řídicích prvcích zráový výkon. volňuje se ve ormě epla, keré se musí odvés z

Více

Přednáška kurzu MPOV. Klasifikátory, strojové učení, automatické třídění 1

Přednáška kurzu MPOV. Klasifikátory, strojové učení, automatické třídění 1 Přednáška kurzu MPOV Klasifikáory, srojové učení, auomaické řídění 1 P. Peyovský (email: peyovsky@feec.vubr.cz), kancelář E530, Inegrovaný objek - 1/25 - Přednáška kurzu MPOV... 1 Pojmy... 3 Klasifikáor...

Více

Fyzikální praktikum II - úloha č. 4

Fyzikální praktikum II - úloha č. 4 Fyzikální prakikum II - úloha č. 4 1 4. Přechodové jevy v obvodech s kapaciory Úkoly 1) 2) 3) 4) Sesave obvod pro demonsraci jevu nabíjení a vybíjení kondenzáoru. Naměře průběhy napěí a proudů na vybraných

Více

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Základní ransformace časových řad Veškeré násroje základní korelační analýzy, kam paří i lineární regresní (ekonomerické) modely

Více

VYUŽITÍ MATLABU PRO ČÍSLICOVÉ ZPRACOVÁNÍ SIGNÁLU PŘI ZJIŠŤOVÁNÍ OKAMŽITÉ FREKVENCE SÍTĚ

VYUŽITÍ MATLABU PRO ČÍSLICOVÉ ZPRACOVÁNÍ SIGNÁLU PŘI ZJIŠŤOVÁNÍ OKAMŽITÉ FREKVENCE SÍTĚ VYUŽITÍ MATLABU PRO ČÍSLICOVÉ ZPRACOVÁNÍ SIGNÁLU PŘI ZJIŠŤOVÁNÍ OKAMŽITÉ FREKVENCE SÍTĚ Jan Blaška, Miloš Sedláček České vysoké učení echnické v Praze Fakula elekroechnická, kaedra měření 1. Úvod Jak je

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Indexy základní, řeězové a empo přírůsku Aleš Drobník srana 1 7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU V kapiole Indexy při časovém srovnání jsme si řekli: Časové srovnání vzniká, srovnáme-li jednu

Více

Demografické projekce počtu žáků mateřských a základních škol pro malé územní celky

Demografické projekce počtu žáků mateřských a základních škol pro malé územní celky Demografické projekce poču žáků maeřských a základních škol pro malé územní celky Tomáš Fiala, Jika Langhamrová Kaedra demografie Fakula informaiky a saisiky Vysoká škola ekonomická v Praze Pořebná daa

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Úloha VI.3... pracovní pohovor

Úloha VI.3... pracovní pohovor Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

7.4.1 Parametrické vyjádření přímky I

7.4.1 Parametrické vyjádření přímky I 741 Paramerické vyjádření přímky I Předpoklady: 7303 Jak jsme vyjadřovali přímky v rovině? X = + D Ke všem bodů z roviny se z bod dosaneme posním C o vekor Pokd je bod na přímce, posováme se o vekor, E

Více

SLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC

SLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ..0/.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol SLOVNÍ ÚLOHY VEDOUCÍ

Více

V EKONOMETRICKÉM MODELU

V EKONOMETRICKÉM MODELU J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům

Více

FREQUENCY SPECTRUM ESTIMATION BY AUTOREGRESSIVE MODELING

FREQUENCY SPECTRUM ESTIMATION BY AUTOREGRESSIVE MODELING FEQUENCY SPECU ESIAION BY AUOEGESSIVE ODELING J.ůma * Summary: he paper deals wih mehods for frequency specrum esimaion by auoregressive modeling. Esimae of he auoregressive model parameers is he firs

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Volba vhodného modelu trendu

Volba vhodného modelu trendu 8. Splinové funkce Trend mění v čase svůj charaker Nelze jej v sledovaném období popsa jedinou maemaickou křivkou aplikace echniky zv. splinových funkcí: o Řadu rozdělíme na několik úseků o V každém úseku

Více

Měření výkonnosti údržby prostřednictvím ukazatelů efektivnosti

Měření výkonnosti údržby prostřednictvím ukazatelů efektivnosti Měření výkonnosi údržby prosřednicvím ukazaelů efekivnosi Zdeněk Aleš, Václav Legá, Vladimír Jurča 1. Sledování efekiviy ve výrobní organizaci S rozvojem vědy a echniky je spojena řada požadavků kladených

Více

Reologické modely měkkých tkání

Reologické modely měkkých tkání Reologické modely měkkých kání Tomas Mares 1. Úvod Výchozím principem mechaniky měkkých kání (j. kůže, cév, pojivových kání, kání vniřních orgánů, šlach, vazů, chrupavek, sinoviální ekuiny) je reologie.

Více

Práce a výkon při rekuperaci

Práce a výkon při rekuperaci Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava

Více

7. Funkce jedné reálné proměnné, základní pojmy

7. Funkce jedné reálné proměnné, základní pojmy , základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:

Více

INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY

INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY Jana Soukopová Anoace Příspěvek obsahuje dílčí výsledky provedené analýzy výdajů na ochranu živoního prosředí z

Více

PJS Přednáška číslo 2

PJS Přednáška číslo 2 PJS Přednáška číslo Jednoduché elekromagnecké přechodné děje Předpoklady: onsanní rychlos všech očvých srojů (časové konsany delší než u el.-mg. dějů a v důsledku oho frekvence elekrckých velčn. Pops sysému

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha. Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní

Více

Aplikace analýzy citlivosti při finačním rozhodování

Aplikace analýzy citlivosti při finačním rozhodování 7 mezinárodní konference Finanční řízení podniků a finančních insiucí Osrava VŠB-U Osrava Ekonomická fakula kaedra Financí 8 9 září 00 plikace analýzy cilivosi při finačním rozhodování Dana Dluhošová Dagmar

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

6.3.6 Zákon radioaktivních přeměn

6.3.6 Zákon radioaktivních přeměn .3. Zákon radioakivních přeměn Předpoklady: 35 ěkeré nuklidy se rozpadají. Jak můžeme vysvěli, že se čás jádra (například čásice 4 α v jádře uranu 38 U ) oddělí a vyleí ven? lasická fyzika Pokud má čásice

Více

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY - 54-10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY (V.LYSENKO) Základní princip analogově - číslicového převodu Analogové (spojié) y se v nich ransformují (převádí) do číslicové formy. Vsupní spojiý (analogový) doby

Více

P Ř Í K L A D Č. 2 OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE

P Ř Í K L A D Č. 2 OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE P Ř Í K L A D Č. OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE Projek : FRVŠ 0 - Analýza meod výpoču železobeonových lokálně podepřených desek Řešielský kolekiv : Ing. Marin Tipka Ing. Josef

Více

Stochastické modelování úrokových sazeb

Stochastické modelování úrokových sazeb Sochasické modelování úrokových sazeb Michal Papež odbor řízení rizik 1 Sochasické modelování úrokových sazeb OBSAH PŘEDNÁŠKY Úvod do problemaiky sochasických procesů Brownův pohyb, Wienerův proces Ioovo

Více

Úloha IV.E... už to bublá!

Úloha IV.E... už to bublá! Úloha IV.E... už o bublá! 8 bodů; průměr 5,55; řešilo 42 udenů Změře účinno rychlovarné konvice. Údaj o příkonu naleznee obvykle na amolepce zepodu konvice. Výkon určíe ak, že zjiíe, o kolik upňů Celia

Více

ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV

ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV VŠB TU Osrava, Fakula elekroechniky a informaiky, Kaedra měřící a řídící echniky ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV Pavel Nevřiva 007 PŘEDMLUVA Too skripum je věnováno základním meodám, používaným při analýze

Více

Analýza citlivosti NPV projektu na bázi ukazatele EVA

Analýza citlivosti NPV projektu na bázi ukazatele EVA 3. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6.-7. září 2006 Analýza cilivosi NPV projeku na bázi ukazaele EVA Dagmar Richarová

Více