Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Podobné dokumenty
= 0,1 1,3. je oblast ohraničená přímkami =, =, =0 :0 1, : =2, =, =1

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 12. a) 3 +1)d. Vypočítejte určité integrály: b) 5sin 4 ) d. c) d. g) 3 d. h) tg d. k) 4 arctg 2 ) d.

je omezena + =,,0 1 je omezena,0 2,0 2,0 je horní polovina koule + + je omezena + =1, + + =3, =0

Seznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat.

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.

Substituce ve vícenásobném integrálu verze 1.1

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE

Příklad 1. a) lim. b) lim. c) lim. d) lim. e) lim. f) lim. g) lim. h) lim. i) lim. j) lim. k) lim. l) lim ŘEŠENÉ PŘÍKLADY Z M1 ČÁST 7

x 2 +1 x 3 3x 2 4x = x 2 +3

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

13. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET

Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5

2. DVOJROZMĚRNÝ (DVOJNÝ) INTEGRÁL

Význam a výpočet derivace funkce a její užití

6. URČITÝ INTEGRÁL Výpočet určitého integrálu Úlohy k samostatnému řešení... 68

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

Zimní semestr akademického roku 2014/ prosince 2014

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

VKM/IM /2015. Zintegrujte. f (x, y) dx dy = f (x, y) = (y x) 2, Ω : x 2 + y 2 4, x 0.

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.

ˇ EDNA SˇKA 9 DALS ˇ I METODY INTEGRACE

Teorie. kuncova/

1 Integrální počet. 1.1 Neurčitý integrál. 1.2 Metody výpočtů neurčitých integrálů

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Laboratorní cvičení - Integrální počet v R

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a

dx se nazývá diferenciál funkce f ( x )

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Integrální počet - I. část (neurčitý integrál a základní integrační metody)

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE

Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

Kapitola 7: Neurčitý integrál. 1/14

Řešení 1a Budeme provádět úpravu rozšířením směřující k odstranění odmocniny v čitateli. =lim = 0

Management rekreace a sportu. 10. Derivace

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA NEURČITÝ INTEGRÁL

MATEMATIKA II V PŘÍKLADECH

12 Trojný integrál - Transformace integrálů

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

1. Definiční obor funkce dvou proměnných

y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1

PROGRAMU 2. Obvod D je dán součtem velikostí všech tří stran D=a+b+c= =23.07

Matematika II. (LS 2009) FS VŠB-TU Ostrava. Bud te. A = a + 1 2, B = 1. b + 1. y = x 2 + Bx 3A. a osou x.

Diferenciální rovnice separace proměnných verze 1.1

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Matematika I A ukázkový test 1 pro 2014/2015

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

I. 7. Diferenciál funkce a Taylorova věta

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

Diferenciální rovnice 1

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

F (x) = f(x). Je-li funkce f spojitá na intervalu I, pak existuje k funkci f primitivní funkce na intervalu I.

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.

Maturitní témata z matematiky

Parametrická rovnice přímky v rovině

( ) ( ) Vzorce pro dvojnásobný úhel. π z hodnot goniometrických funkcí. Předpoklady: Začneme příkladem.

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

16. Goniometrické rovnice

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

METODICKÝ NÁVOD MODULU

2. Kinematika bodu a tělesa

Katedra aplikované matematiky, VŠB TU Ostrava.

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Integrální počet funkcí jedné proměnné

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2

II. 3. Speciální integrační metody

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =

1 Neurčitý integrál 1.1 NEURČITÝ INTEGRÁL

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2

Integrální počet funkcí jedné proměnné

4.3.4 Základní goniometrické vzorce I

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g.

4.3.2 Goniometrické nerovnice

Neurčitý integrál. Robert Mařík. 4. března 2012

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu

11. cvičení z Matematické analýzy 2

Matematická analýza ve Vesmíru. Jiří Bouchala

4.3.3 Goniometrické nerovnice

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

4.3.3 Základní goniometrické vzorce I

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.

Transkript:

Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = + 6,=0, 3;3 n) 4 +9 =36 o) + =6, =6, 0 Poznámka Je velmi vhodné udělat si před řešením každého z těchto příkladů obrázek, aby bylo jasné, co vlastně integrujeme. Integraci pak provedeme podle jednoho ze vzorců pro výpočet plochy: = ; = Zde ; je interval, přes který integrujeme. Všechny úlohy budeme řešit obdobně. Vyjádříme si křivku omezující plochu shora jako funkci a křivku omezující plochu zdola jako funkci. Poté v případě, že integrační meze nejsou explicitně zadány, nalezneme průsečíky těchto funkcí. Tak získáme interval ;, přes který budeme integrovat. Výpočet standardně povedeme podle druhého vzorce, jen v některých případech (dolní omezení je shodné s osou ) použijeme první vzorec. Řešení a Máme určit obsah rovinné plochy ohraničené křivkami: =0,=,= Zobrazíme si tyto křivky na obrázku.

Ze zadání, z obrázku a případně z výpočtu průsečíků křivek je zřejmé, že můžeme označit == ==0 == ==0 Nyní můžeme dosadit do druhého vzorce (i když v tomto případě by postačoval ten první, protože dolní křivka je shodná s osou x), integrovat a vypočítat tak velikost zadané plochy. = ) ) = 0) = = 3 0 =0 3 3 =0 3 3 =0 3 = 3 Řešení b Máme určit obsah rovinné plochy ohraničené křivkami: =4,=0 Zobrazíme si tyto křivky na obrázku. Ze zadání, z obrázku a případně z výpočtu průsečíků křivek je zřejmé, že můžeme označit 4 0 Nyní můžeme dosadit do druhého vzorce (i když v tomto případě by postačoval ten první, protože dolní křivka je shodná s osou x), integrovat a vypočítat tak velikost zadané plochy.

4 0 4 4 3 4 3 4 3 88 3 88 6 3 6 3 6 3 6 3 3 3 3 48 3 48 3 Řešení c Máme určit obsah rovinné plochy ohraničené křivkami:,,3,0 První křivku vyjádříme ve standardním tvaru Zobrazíme si tyto křivky na obrázku.,,3,0 Ze zadání, z obrázku a případně z výpočtu průsečíků křivek je zřejmé, že můžeme označit 0 3 Nyní můžeme dosadit do druhého vzorce (i když v tomto případě by postačoval ten první, protože dolní křivka je shodná s osou x), integrovat a vypočítat tak velikost zadané plochy. 0 ln30ln3 ln 3 ln 3 ln ln3ln Řešení d Máme určit obsah rovinné plochy ohraničené křivkami:,0 Obě křivky vyjádříme ve standardním tvaru, přičemž musíme dát pozor u první křivky, kterou musíme vyjádřit jako dvě funkce 3

,, Zobrazíme si tyto křivky na obrázku. Ze zadání, z obrázku a případně z výpočtu průsečíků křivek je zřejmé, že je výpočet celkové plochy nutné rozdělit na součet dvou ploch. Můžeme označit (ve dvou sloupcích pro obě plochy) = = = = = = = = = =0 = =0 = =4 Nyní můžeme dvakrát dosadit do druhého vzorce, integrovat a vypočítat tak velikost zadané plochy. = = 0 3 0 3 0 3 4 3 0 4 0 4 0 4 3 0 4 0 4 0 4 3 3 4 0 40 4 0 3

3 0 3 9 3 3 4 0 40 První dva integrály byly počítány substitucí 3 09 3 8040 3 56 3 =; d=d; d=d Řešení e Máme určit obsah rovinné plochy ohraničené křivkami:, První křivku vyjádříme ve standardním tvaru, Zobrazíme si tyto křivky na obrázku. Ze zadání, z obrázku a případně z výpočtu průsečíků křivek je zřejmé, že můžeme označit Nyní můžeme dosadit do druhého vzorce, integrovat a vypočítat tak velikost zadané plochy. 5 arctg 3 arctgarctg 3 3 4 4 3 3 4 4 3 3 3

Řešení f Máme určit obsah rovinné plochy ohraničené křivkami: 4, Druhou křivku napíšeme ve standardním tvaru 4, Zobrazíme si tyto křivky na obrázku. Ze zadání, z obrázku a případně z výpočtu průsečíků křivek je zřejmé, že můžeme označit 4 4 Nyní můžeme dosadit do druhého, integrovat a vypočítat tak velikost zadané plochy. 4 54 3 5 44 4 3 54 4 4 3 5 4 4 64 3 56 6 3 5 464 3 56 6 3 5 4 63 3 55 75 75 3375 66 9 Řešení g Máme určit obsah rovinné plochy ohraničené křivkami: arcsin,0, Zobrazíme si tyto křivky na obrázku. Je zřejmé, že není zadána křivka pro dolní omezení plochy. Tou tedy zřejmě má být osa. 6

Ze zadání, z obrázku a případně z výpočtu průsečíků křivek je zřejmé, že můžeme označit arcsin 0 Nyní můžeme dosadit do prvního vzorce, integrovat a vypočítat tak velikost zadané plochy. arcsin arcsin 0 arcsin 0 0 arcsin 0 0 arcsin0arcsin0 0 0 0 0 00 Integrace byla provedena metodou per partes při volbě arcsin; ; ; Vnitřní integrace byla provedena metodou substituce při volbě ; d d; d Řešení h Máme určit obsah rovinné plochy ohraničené křivkami: sin,0, 0; 7

Zobrazili jsme si tyto křivky na obrázku. Ze zadání, z obrázku a případně z výpočtu průsečíků křivek je zřejmé, že můžeme označit sin 0 0 Nyní můžeme dosadit do druhého vzorce (i když v tomto případě by postačoval ten první, protože dolní křivka je shodná s osou x), integrovat a vypočítat tak velikost zadané plochy. sin0 cos 0 sincos 0 coscos 0 sin 0 cos cos0cos0sinsin00 00 000 Integrace byla provedena metodou per partes při volbě ; sin; cos; Řešení i Máme určit obsah rovinné plochy ohraničené křivkami: První křivku si přepíšeme do standardního tvaru 4,,4,0 Zobrazíme si tyto křivky na obrázku. 4,,4,0 Ze zadání, z obrázku a případně z výpočtu průsečíků křivek je zřejmé, že je výpočet celkové plochy nutné rozdělit na součet dvou ploch. Můžeme označit (ve dvou sloupcích pro obě plochy) = =4 = = = = 4 = = = = = =4 8

= =0 = = Nyní můžeme dvakrát dosadit do druhého vzorce, integrovat a vypočítat tak velikost zadané plochy. = 3 = 4 4 4 3 0 4ln 4 4 3 3 04ln 4 4ln 4 304ln 4 ln44 ln4 08ln Řešení j Máme určit obsah rovinné plochy ohraničené křivkami:, První z těchto křivek si přepíšeme do standardního tvaru,, Jak se ukáže dále, variantu s minusem nebudeme potřebovat. Zobrazíme si tyto křivky na obrázku. Ze zadání, z obrázku a případně z výpočtu průsečíků křivek je zřejmé, že můžeme označit 0 Nyní můžeme dosadit do druhého vzorce, integrovat a vypočítat tak velikost zadané plochy. 3 0 3 0 3 0 3 0 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 0 3 9

Řešení k Máme určit obsah rovinné plochy ohraničené křivkami: 6, 54 Zobrazíme si tyto křivky na obrázku. V tomto případě je na místě provést výpočet průsečíků těchto dvou křivek. 6 54 600 300 50 Ze zadání, z obrázku a případně z výpočtu průsečíků křivek je zřejmé, že můžeme označit 54 6 5 Nyní můžeme dosadit do druhého vzorce, integrovat a vypočítat tak velikost zadané plochy. 54 6 60 3 6 0 5 5 3 65 0 5 6 0 3 5 3 3 5008 3 3 440 5 3 75008 3 4050 3 756 3 8 50 3 756 3 866 3 0366 3 609 3 343 3 Řešení l Máme určit obsah rovinné plochy ohraničené křivkami: 4,5 0

Obě křivky si přepíšeme do standardního tvaru Zobrazíme si tyto křivky na obrázku. 4,5 Vypočteme si průsečíky těchto křivek 4 5 45 540 40 Ze zadání, z obrázku a případně z výpočtu průsečíků křivek je zřejmé, že můžeme označit 5 4 4 Nyní můžeme dosadit do druhého vzorce, integrovat a vypočítat tak velikost zadané plochy. 5 4 5 4ln 4 5 4 4 4ln 4 5 4ln 0 6 4ln45 4ln084ln 5 4 0 7 8ln5 8ln Řešení m Máme určit obsah rovinné plochy ohraničené křivkami: 6,0, 3;3 Zobrazíme si tyto křivky na obrázku.

Ze zadání, z obrázku a případně z výpočtu průsečíků křivek je zřejmé, že můžeme označit 6 0 3 3 Nyní můžeme dosadit do druhého vzorce (i když v tomto případě by postačoval ten první, protože dolní křivka je shodná s osou x), integrovat a vypočítat tak velikost zadané plochy. 60 4 3 6 3 3 4 3 6 3 3 3 4 3 3 63 3 3 6 3 4 3 8 4 7 3 69 8 4 7 3 69 8 4 978 4 978 Řešení n Máme určit obsah rovinné plochy ohraničené křivkami: 4 9 36 Křivku si vyjádříme standardně Zobrazíme si tyto křivky na obrázku. 364 ; = 36 4 9 9 Ze zadání, z obrázku a případně z výpočtu průsečíků křivek je zřejmé, že můžeme označit

=)= 364 9 364 9 49 9 49 9 9 9 9 9 == 3 ==3 3 3 3 3 Nyní můžeme dosadit do druhého vzorce, integrovat a vypočítat tak velikost zadané plochy. = = 3 3 3 3 4 3 4 3 Výpočet tohoto integrálu popíšeme dále v poznámce. V tuto chvíli výsledek jeho výpočtu již využijeme k určení velikosti zkoumané plochy. =4 3 =4 3 3 arcsin 3 3 3 3 6arcsin 3 3 3 3 3 3 6arcsin 3 3 3 3 3 6arcsin 3 3 6 +6arcsin 6 ) +6arcsin ) =6 +6 6 +6 =6 0+36 0+ 3 0+30 333336 Poznámka Integraci jsme provedli kombinací metod substituce, per partes a podle vzorce. Nejprve jsme použili substituci, abychom zjednodušili integrovaný výraz. 3 ; d= d; 3 d=d 3 = 3 d=3 d=3 d=3 Další krok integrace jsme provedli metodou per partes = = ) ; =; =; = ) )= ) = = d= ) d= d= Poslední integrál vypočteme metodou podle vzorce po některých již poměrně snadných úpravách. 3

= d= d= d= d = d d= d arcsin= arcsin V tuto chvíli jsme si povšimli, že ve výsledcích výpočtu se nám objevil výraz, který se snažíme vypočítat. Pro tento výraz tedy můžeme postupně sestavit rovnici a vyřešit ji. Nyní můžeme provést zpětnou substituci = d= = d= arcsin = arcsin = arcsin = +arcsin = +arcsin = 3 3 +arcsin 3 A nakonec vyjádříme ten integrál, kterým jsme integraci zahájili = 3 d=3 = 3 3 3 +arcsin 3 = 3 + 3 arcsin 3 Poznámka Uvedené řešení popisuje výpočet pro celou plochu vcelku. Bylo by samozřejmě možné vést výpočet jen pro horní polovinu plochy a výsledek zdvojnásobit. Ještě dalšího zjednodušení bychom dosáhli, kdybychom výpočet vedli jen pro pravou polovinu horní poloviny a výsledek vynásobit čtyřmi. Řešení o Máme určit obsah rovinné plochy ohraničené křivkami: 6, =6, 0 Obě první křivky si přepíšeme od standardního tvaru =+6 ; = 6 ; = 6; = 6 Vypočteme si x-ovou souřadnici průsečíků těchto křivek. + =6 a současně =6 +6=6 +6 6=0 4

80 S respektováním podmínky v zadání je x-ovou souřadnicí průsečíků daných křivek hodnota. Zobrazíme si tyto křivky na obrázku. Ze zadání, z obrázku a případně z výpočtu průsečíků křivek je zřejmé, že je nutné plochu rozdělit na dvě části. Můžeme označit (ve dvou sloupcích pro obě plochy) = )=+ 6 = = 6 = =0 = = = =6 = = 6 = = = =4 Nyní můžeme dvakrát dosadit do druhého vzorce, integrovat a vypočítat tak velikost zadané plochy. = = 6 6 = 6 = 6 = 4 6 3 0 4 6 + 6 + +6 6 + 6 = 6 = 6 3 + 6 0 + 6 + 6 6 = 4 6 3 0 + 6 4 3 80)+ 4 4 6 3 3 8 4 4 6 8 3 4 4 Výpočet tohoto posledního integrálu popíšeme dále v poznámce. V tuto chvíli výsledek jeho výpočtu již využijeme k určení velikosti zkoumané plochy. 5

= 6 3 3 8 4 6 3 8 3 4 arcsin 4 4 6 3 8 4 3 4 4 arcsin 4 4 arcsin 4 4 6 3 8 3 +arcsin arcsin 6 3 8 + 3 4 6 = 6 3 8 0+ 3 3 4 3 6 3 3 8 0+ 3 3 6 3 8 3 3 3 6 3 3 8 3 8 3 6 3 3 6 3 4 3 = 6 3 6 3 3 3 = 4 3 3 3 6 3 Poznámka Integraci jsme provedli kombinací metod substituce, per partes a podle vzorce. Nejprve jsme použili substituci, abychom zjednodušili integrovaný výraz. 4 ; d= d; 4 d=d 4 = 4 d=4 d=4 d=4 Další krok integrace jsme provedli metodou per partes = = ) ; =; =; = ) )= ) = = d= ) d= d= Poslední integrál vypočteme metodou podle vzorce po některých již poměrně snadných úpravách. = d= d= d= d = d d= d arcsin= arcsin V tuto chvíli jsme si povšimli, že ve výsledcích výpočtu se nám objevil výraz, který se snažíme vypočítat. Pro tento výraz tedy můžeme postupně sestavit rovnici a vyřešit ji. = d= 6

Nyní můžeme provést zpětnou substituci = d= arcsin = arcsin = arcsin = +arcsin = +arcsin = 4 4 +arcsin 4 A nakonec vyjádříme ten integrál, kterým jsme integraci zahájili = 4 d=4 = 4 4 4 +arcsin 4 = 4 + 4 arcsin 4 = 4 +arcsin 4 7

Příklad Určete délku oblouku rovinné křivky: a) = arcsin, 0; b) sin,cos, 0; c) cos,sin, 0; d) lnsin), ; Poznámka Je velmi vhodné udělat si před řešením každého z těchto příkladů obrázek, aby bylo jasné, co vlastně integrujeme. Integraci pak provedeme podle jednoho ze vzorců pro výpočet délky křivky: d pro křivku =,, = d pro křivku =,=,, Zde ;, respektive ; je interval, přes který integrujeme. Pro konkrétní vzorec se rozhodneme podle toho, zda máme křivku zadanou v přímém či parametrickém vyjádření. Řešení a Máme určit délku oblouku rovinné křivky: arcsin, 0; Zobrazíme si tuto křivku na obrázku. Ze zadání a z obrázku je zřejmé, že můžeme označit arcsin 0 Funkce je v přímém vyjádření. Vypočteme derivaci 8

Funkce je v přímém vyjádření. Můžeme tedy nyní dosadit do prvního vzorce, integrovat a vypočítat tak délku zadané křivky. d d d d d d 0 0 0 0 0 Řešení b Máme určit délku oblouku rovinné křivky: sin,cos, 0; Zobrazíme si tuto křivku na obrázku. Ze zadání a z obrázku je zřejmé, že můžeme označit sin cos 0 Funkce je v parametrickém vyjádření. Vypočteme derivace sin cos cos 0sinsin Funkce je v parametrickém vyjádření. Můžeme tedy nyní dosadit do druhého vzorce, integrovat a vypočítat tak délku zadané křivky. cos d cos sin d cosd d coscos sin d 9

sin d sin d sin d sin d4cos 0 4cos 4cos0 4 04 044 Řešení c Máme určit délku oblouku rovinné křivky: cos,sin, 0; Zobrazíme si tuto křivku na obrázku. Podle zadání se jedná o horní polovinu. Ze zadání a z obrázku je zřejmé, že můžeme označit cos sin 0 Funkce je v parametrickém vyjádření. Vypočteme derivace cos 3cos sin sin 3sin cos Funkce je v parametrickém vyjádření. Můžeme tedy nyní dosadit do druhého vzorce, integrovat a vypočítat tak délku zadané křivky. Naprosto vyhovující je ale počítat délku této křivky jen v prvním kvadrantu pro 0; a vynásobit ji dvěma. Vyhneme se tak potížím při závěrečném výpočtu, kdy by nám zcela proti očekávání vycházela nula. 0

d 3cos sin 3sin cos d 9cos sin 9sin cos d 9sin cos cos sin d 9sin cos d 9sin cos d 3sincosd 3sincosd3 sin 3sin 0 3 sin 0 3 30 3 30 3 03 Délka horní poloviny křivky je tedy 3, délka celé křivky je 6. Řešení d Máme určit délku oblouku rovinné křivky: Zobrazíme si tuto křivku na obrázku. lnsin, 3 ; Ze zadání a z obrázku je zřejmé, že můžeme označit lnsin 3 Funkce je v přímém vyjádření. Vypočteme derivaci cos sin Funkce je v přímém vyjádření. Můžeme tedy nyní dosadit do prvního vzorce, integrovat a vypočítat tak délku zadané křivky.

= + ) d = + cos sin d= + cos sin d= sin cos sin d = sin d= lntg d= sin sin d=lntg 3 lntg 3 lntg 4 lntg 6 =ln ) ln 3 0 ln 3 0 ln 3 ln ln 3ln+ln 30+ln3 ln3 Poslední integrál jsme řešili substitucí. Ta je ovšem poněkud neprůhledná a je před ní nutná jistá náročnější úprava integrandu. sin sin sin cos tg sin cos cos cos sin cos tg tg cos tg cos +tg +tg tg Substituce tedy bude Odtud převodem diferenciálu tg ; d= cos d d=cos d= +tg d Nyní lze substituci dokončit sin d=+tg cos tg +tg d= + d + =d d =ln lntg

Příklad 3 Určete objem tělesa, které vznikne rotací rovinného obrazce kolem osy, je-li: a) :=4,,4,0 b :, c) :=,, d) :=sin, 0; e :,,0 Poznámka Je velmi vhodné udělat si před řešením každého z těchto příkladů obrázek, aby bylo jasné, co vlastně integrujeme. Integraci pak provedeme podle vzorce pro výpočet objemu rotačního tělesa vzniklého rotací plochy kolem osy : d Zde ; je interval, přes který integrujeme. Je dobré si uvědomit, že v příkladu e jde o prstenec vzniklý rotací plochy. Objem tohoto prstence tedy budeme počítat jako rozdíl objemů dvou těles. Řešení 3a Máme určit objem tělesa, které vznikne rotací rovinného obrazce kolem osy, je-li: :4,,4,0 Zobrazíme si tento obrazec na obrázku. Ze zadání a z obrázku je zřejmé, že můžeme označit 4 0 4 Nyní můžeme dosadit do vzorce, integrovat a vypočítat tak objem zadaného tělesa. 3

d 4 d 6 d6 d6 4 6 4 6 4 3 4 6 Řešení 3b Máme určit objem tělesa, které vznikne rotací rovinného obrazce kolem osy, je-li: :, Zobrazíme si tento obrazec na obrázku. Ze zadání a z obrázku je zřejmé, že můžeme označit Nyní můžeme dosadit do vzorce, integrovat a vypočítat tak objem zadaného tělesa. d d 4 8 4 d 4 8 4 d d 3 6 3d 3 5 6 3 3 3 5 3 3 5 3 3 3 5 d 3 5 3 3 5 3 3 5 33 5 36 5 6 5 4

Řešení 3c Máme určit objem tělesa, které vznikne rotací rovinného obrazce kolem osy, je-li: :,, Zobrazíme si tento obrazec na obrázku. Ze zadání a z obrázku je zřejmé, že můžeme označit Nyní můžeme dosadit do vzorce, integrovat a vypočítat tak objem zadaného tělesa. d d d arctg Poznámka arctg arctg 4 4 8 8 4 8 4 8 4 8 4 8 4 8 4 4 4 4 Výpočet integrálu je v tomto případě náročnější. Pro tento typ integrálů lze odvodit rekurentní vzorec. V našem konkrétním případě podle rekurentního vzorce (který se dá najít v různých učebnicích a skriptech) platí d arctg My si ale tento integrál vypočteme. d d d d d darctg d 5

Poslední integrál budeme počítat metodou per partes. Označíme ; ; ;??? Pro výpočet zavedeme substituci Odtud ;dd; dd d d Můžeme se tedy vrátit k per partes Nyní můžeme psát ; d ; ; arctan d d Tento výsledek konečně můžeme dosadit do našeho výpočtu darctg darctg arctan arctg arctan arctan Tím máme dokončeno odvození vzorce, na který jsme na začátku poznámky odkazovali. Řešení 3d Máme určit objem tělesa, které vznikne rotací rovinného obrazce kolem osy, je-li: :sin, 0; Zobrazíme si tento obrazec na obrázku. Ze zadání a z obrázku je zřejmé, že můžeme označit sin 0 6

Nyní můžeme dosadit do vzorce, integrovat a vypočítat tak objem zadaného tělesa. d sin d sincos 0 sincos 0sin0cos0 0 00 0 00 0 0 Integrál jsme vypočítali kombinací metod per partes a podle vzorce takto sin dsincoscos d Odtud již snadno sin dcos dcos d sin d sincos Řešení 3e Máme určit objem tělesa, které vznikne rotací rovinného obrazce kolem osy, je-li: :,,0 Zobrazíme si tento obrazec na obrázku. Ze zadání a z obrázku je zřejmé, že můžeme označit 0 Nyní můžeme dosadit do vzorce, integrovat a vypočítat tak objem zadaného tělesa. 7

= ) d ) d= ) d= d= 5 0 5 0 0 5 = 5 0 0 5 =5 0 00 3 0 03 0 0 3 0 8

Příklad 4 Určete obsah pláště tělesa, které vznikne rotací rovinného obrazce kolem osy, je-li: a) : =4,0,3 b :4, 4; c) : Poznámka Je velmi vhodné udělat si před řešením každého z těchto příkladů obrázek, aby bylo jasné, co vlastně integrujeme. Integraci pak provedeme podle vzorce pro výpočet obsahu rotační plochy vzniklé rotací křivky kolem osy : d rotuje křivka =,, = d rotuje křivka =,=,, Zde ;, respektive ; je interval, přes který integrujeme. Pro konkrétní vzorec se rozhodneme podle toho, zda máme křivku zadanou v přímém či parametrickém vyjádření. Je dobré si uvědomit, že v příkladu e jde o prstenec vzniklý rotací křivky. Řešení 4a Máme určit obsah pláště tělesa, které vznikne rotací rovinného obrazce kolem osy, je-li: : 4,0,3 Zobrazíme si tento obrazec na obrázku. Ze zadání a z obrázku je zřejmé, že můžeme označit Vypočteme si derivaci funkce. 4 0 3 4 4 4 4 Nyní můžeme dosadit do vzorce, integrovat a vypočítat tak obsah pláště zadaného tělesa. 9

4 4 d 4 4 4 4 4 4 4 4 3 3 0 8 3 3 0 8 3 3 0 8 3 4 8 3 856 3 Řešení 4b Máme určit obsah pláště tělesa, které vznikne rotací rovinného obrazce kolem osy, je-li: :4, 4; Zobrazíme si tento obrazec na obrázku. Ze zadání a z obrázku je zřejmé, že můžeme označit 4 4 Vypočteme si derivaci funkce. 4 0 Nyní můžeme dosadit do vzorce, integrovat a vypočítat tak obsah pláště zadaného tělesa. 4 d 4 4 4 4 4 4 444 84 66 868 08 836 30

Řešení 4c Máme určit obsah pláště tělesa, které vznikne rotací rovinného obrazce kolem osy, je-li: : Zobrazíme si tento obrazec na obrázku. Ze zadání a z obrázku je zřejmé, že můžeme označit Vypočteme si derivaci funkcí. 0 0 Je zřejmé, že obsah pláště zadaného tělesa je třeba počítat jako součet obsahu plášťů vytvořeného oběma křivkami (horní a dolní polovinou kružnice). Téhož výsledku bychom dosáhli, kdybychom vypočítali dvojnásobek jen jednoho z těchto povrchů. Nyní můžeme dosadit do vzorce, integrovat a vypočítat tak obsah pláště zadaného tělesa. d d d d d d d d 3

= d d d d d d 4 d d d d d d d d d d d d d d d d d04arcsin 4arcsinarcsin 4 4 4 3