MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii



Podobné dokumenty
{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou

c ÚM FSI VUT v Brně 20. srpna 2007

Označení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

Seminární práce z matematiky

PRŮBĚH FUNKCE - CVIČENÍ

Definice derivace v bodě

FUNKCE, ZÁKLADNÍ POJMY

FUNKCE, ZÁKLADNÍ POJMY

MATEMATIKA I - vybrané úlohy ze zkoušek v letech

Aplikace derivace ( )

Rolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b

[ 5;4 ]. V intervalu 1;5 je funkce rostoucí (její první derivace je v tomto intervalu

Digitální učební materiál

Diferenciální počet funkcí jedné proměnné

Limita a spojitost funkce

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

Univerzita Karlova v Praze Pedagogická fakulta

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

7.1 Extrémy a monotonie

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat?

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

Kapitola 4: Průběh funkce 1/11

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce

Kapitola 4: Průběh funkce 1/11

Bakalářská matematika I

IX. Vyšetřování průběhu funkce

METODICKÝ NÁVOD MODULU

Funkce základní pojmy a vlastnosti

Diferenciální počet funkce jedné proměnné 1

NMAF 051, ZS Zkoušková písemná práce 17. února ( sin (π 2 arctann) lim + 3. n 2. π 2arctan n. = lim + 3.

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Derivace a monotónnost funkce

Funkce základní pojmy a vlastnosti

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009

Univerzita Karlova v Praze Pedagogická fakulta

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu,

Konvexnost, konkávnost

Cvičení 1 Elementární funkce

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

NMAF 051, ZS Zkoušková písemná práce 4. února 2009

Aplikace derivace a průběh funkce

Zlín, 23. října 2011

(Zavedení pojmu funkce, vlastnosti. Repetitorium z matematiky

Funkce a lineární funkce pro studijní obory

Funkce. Vlastnosti funkcí

Diferenciální počet funkcí jedné reálné proměnné LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Stručný přehled učiva

Derivace a průběh funkce příklady z písemných prací

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)

MATEMATIKA I. Diferenciální počet funkcí jedné proměnné

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0216.

Pavlína Matysová. 5. listopadu 2018

Prbh funkce Jaroslav Reichl, 2006

Mocninná funkce: Příklad 1

Základy matematiky pro FEK

Kapitola 1: Reálné funkce 1/13

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

Ukázka závěrečného testu

Funkce - pro třídu 1EB

x 2(A), x y (A) y x (A), 2 f

Obsah. Derivace funkce. Petr Hasil. L Hospitalovo pravidlo. Konvexnost, konkávnost a inflexní body Asymptoty

Kapitola 1: Reálné funkce 1/20

MATEMATICKÁ ANALÝZA STUDIJNÍ OPORA PRO KOMBINOVANÉ

Matematika I (KMI/PMATE)

Limita a spojitost LDF MENDELU

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH

Průběh funkce II (hledání extrémů)

7B. Výpočet limit L Hospitalovo pravidlo

Funkce základní pojmy a vlastnosti

2. FUNKCE JEDNÉ PROMĚNNÉ

Přijímací zkouška na navazující magisterské studium 2014

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Funkce. Vlastnosti funkce. Text a příklady.

Průběh funkce pomocí systému MAPLE.

Matematika B 2. Úvodní informace

1 Množiny, výroky a číselné obory

Průběh funkce pomocí systému MAPLE.

Funkce pro studijní obory

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

Číselné množiny. Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, }

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je

PŘEDNÁŠKA 2 POSLOUPNOSTI

Transkript:

MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008

Prohlášení: Prohlašuji, že jsem svou bakalářskou práci Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii vpracovala samostatně pod vedením RNDr. Jana Osičk, CSc. a uvedla v seznamu literatur všechn použité zdroje. V Brně dne 30.5.008 Veronika Kruttová 1

Poděkování: Ráda bch poděkovala vedoucímu bakalářské práce RNDr. Janu Osičkovi, CSc za metodické vedení, cenné rad při jejím vpracování a čas strávený při konzultacích.

Obsah Úvod 4 1 Teorie 5 Řešené příklad na lokální a absolutní etrém 9 3 Etrém v ekonomii 14 4 Řešené příklad na průběh funkce 15 4.1 Polnom........... 15 4. Racionálnílomenéfunkce... 17 4.3 Goniometrickéacklometrickéfunkce....... 3 4.4 Eponenciálníalogaritmickéfunkce........ 7 4.5 Mocninnéfunkce....... 30 Literatura 34 3

Úvod Hledání etrémů a všetřování průběhu funkcí je jednou ze základních aplikací diferenciálního počtu. Proto se student matematick zaměřených oborů seznamuje s řešením úloh na etrém a průběh funkcí zpravidla již v prvním semestru. Tato oblast matematik bývá probírána i na ekonomických oborech z důvodů širokého vužití etrémů v ekonomii. Tato práce je zaměřena pouze na všetřování funkcí jedné reálné proměnné. U čtenářů se předpokládá znalost diferenciálního počtu. V první kapitole naleznete tvrzení a definice užívané při řešení úloh na etrém a průběh funkcí. Použila jsem znění ze základní literatur[1], vět jsemuvádělabezdůkazůjensodkazemnaknihu,kdemůžepřípadnýzájemce důkaz nalézt. Druhá a čtvrtá kapitola obsahují řešené příklad na lokální a absolutní etrém a průběh funkcí. Zaměřila jsem se na složitější příklad ze zadání bakalářskýchzkoušekzminulýchletadoplnilajsemjepříkladz[1]a[]. Čtvrtá kapitola je rozdělena podle tpů všetřovaných funkcí. Třetí kapitola je věnována užití etrémů v ekonomii. Graf funkcí jsou vtvořen v programu MAPLE. Celá práce je vsázena sstémeml A TEXε. 4

Kapitola 1 Teorie V této kapitole budou uveden základní definice a tvrzení týkající se všetřování etrémů a průběhu funkce. Věta1.NechťmáfunkcefnaotevřenémintervaluIvlastníderivaci.Pak platí: 1.FunkcefjeneklesajícínaIprávětehd,kdž f () 0naI..FunkcefjerostoucínaIprávětehd,kdž f () 0naI,přičemž rovnost f ()=0neplatínažádnémpodintervaluintervaluI. Analogická tvrzení platí pro nerostoucí a klesající funkce Důkaz. Důkaz naleznete v[1] na straně 113. Důsledek. Nechť f má konečnou derivaci na otevřeném intervalu I. (a)je-li f () >0prokaždé I,pakjefrostoucínaI. (b)je-li f () <0prokaždé I,pakjefklesajícínaI. Definice3.Řekneme,žefunkce fmávbodě 0 : lokálnímaimum,eistuje-li O( 0 )tak,žeprokaždé O( 0 )je f() f( 0 ), lokálníminimum,eistuje-li O( 0 )tak,žeprokaždé O( 0 )je f() f( 0 ), ostrélokálnímaimum,eistuje-li O( 0 )tak,žeprokaždé O( 0 ) \ { 0 } je f() < f( 0 ), ostrélokálníminimum,eistuje-li O( 0 )tak,žeprokaždé O( 0 ) \ { 0 } je f() > f( 0 ). Lokální maima a minima nazýváme souhrnně lokální etrém. 5

Věta4.Nechťmáfunkce fvbodě 0 lokálníetrémanechť f ( 0 )eistuje. Pak f ( 0 )=0. Důkaz. Důkaz naleznete v[1] na straně 116. Věta5.Nechťjefunkce f spojitávbodě 0 amávlastníderivacivnějakémrzímokolí O( 0 ) \ { 0 }.Jestližeprovšechna O( 0 ), < 0,je f ( 0 ) > 0aprovšechna O( 0 ), > 0,je f ( 0 ) <0,pakmáfunkce fvbodě 0 ostrélokálnímaimum.(obdobnétvrzeníplatíproostrélokální minimum). Důkaz. Důkaz naleznete v[1] na straně 117. Věta6.Nechť f ( 0 )=0.Je-li f ( 0 ) >0,pakmáfunkce fvbodě 0 ostré lokálníminimum.je-li f ( 0 ) <0,pakmáfunkce fvbodě 0 ostrélokální maimum. Důkaz. Důkaz naleznete v[1] na straně 118. Definice7.Buďfunkce fdefinovanánamnožině M.Eistuje-lina Mnejvětší(nejmenší) hodnota funkce f, nazýváme ji absolutním maimem(absolutním minimem) funkce f na M. Absolutní minima a maima souhrnně nazýváme absolutními etrém. Jestližeted 0 Maplatí f() f( 0 )provšechna M,říkáme,že funkce f mána Mabsolutnímaimumvbodě 0.Podobněproabsolutní minimum. Definice8.Řekneme,žefunkce fjekonvenínaintervalui,jestližeprolibovolnétřibod 1,, 3 Itakové,že 1 < < 3,platí f( ) f( 1 )+ f( 3) f( 1 ) 3 1 ( 1 ). Řekneme, že funkce f je konkávní na intervalu I, jestliže pro libovolné tři bod 1,, 3 Itakové,že 1 < < 3,platí f( ) f( 1 )+ f( 3) f( 1 ) 3 1 ( 1 ). Pokud v definici nahradíme neostré nerovnosti ostrými, dostáváme definice pojmů ostré konvenosti a ostré konkávnosti na intervalu I. 6

Věta9.Nechť f mávlastníderivacinaotevřenémintervalu I.Pakje f konvení(ostřekonvení)na I právětehd,kdžjefunkce f neklesající (rostoucí) na I. Analogickétvrzeníplatípro fkonkávní(ostřekonkávní)na Ia f nerostoucí (klesající) na I. Důkaz. Důkaz naleznete v[1] na straně 14. Důsledek10.Nechť Ijeotevřenýintervalafmávlastnídruhouderivaci na I. (a)je-li f () >0prokaždé I,pakje fostřekonvenína I. (b)je-li f () <0prokaždé I,pakje fostřekonkávnína I. Definice11.Nechťmáfunkce fderivacivbodě 0 R.Je-litatoderivace nevlastní,předpokládámenavíc,žeje fspojitávbodě 0. Řekneme,že 0 jeinflenímbodemfunkce f,jestližeeistujeokolí O δ ( 0 ) takové,žefunkce f jeostřekonkávnínaintervalu( 0 δ, 0 )ajeostře konvenínaintervalu( 0, 0 +δ)anebonaopak.stručněříkáme,žefunkce f mávbodě 0 inflei. Věta 1. 1.Nechť 0 jeinfleníbodanechťeistuje f ().Pak f ()=0..Nechť f () =0aeistujeokolí O δ ( 0 )takové,žeplatí f () <0 prokaždé ( 0 δ, 0 )af () >0prokaždé ( 0, 0 + δ),nebo naopak.pakje 0 inflenímbodemfunkce f. 3.Nechť f ()=0af () 0.Pakje 0 inflenímbodemfunkce f. Důkaz. Důkaz naleznete v[1] na straně 17. Definice13.Buď 0 R.Přímka = 0 senazýváasmptotoubezsměrnice funkce f,jestližemá fv 0 alespoňjednujednostrannoulimitunevlastní,tj. lim f()=± nebo lim f()=±. + 0 0 Přímka =a+b, a, b Rsenazýváasmptotousesměrnicífunkce f, jestliže platí lim (f() (a+b))=0nebo lim (f() (a+b))=0. + 7

Věta14.Přímka = a+bjeasmptotoufunkce fpro tehd, kdž + právě f() lim + = a a lim (f() a)=b. + Analogickétvrzeníplatípro. Důkaz. Důkaz naleznete v[1] na straně 19. Důsledek15.Přímka = bjeasmptotoufunkce fpro + právě tehd, kdž lim f()=b.analogickétvrzeníplatípro. + 8

Kapitola Řešené příklad na lokální a absolutní etrém Příklad.1. Najděte lokální etrém funkce f: =lncos. Řešení:Funkcejedefinovánanamnožině,kdecos ( >0.Jednáseointerval π +kπ, π+kπ) pro k Z. Prvníderivacefunkce fje = sin. cos Bod,vekterýchbmohlnastatlokálníetrém,jsou =k π,kde k Z. Všetříme monotónnost funkce f- stačí na intervalu(0, π), funkce je totiž periodická. ( ( 0, π π ), π) ( ) ( π, 3π 3π,π) + + klesající klesající rostoucí rostoucí Lokálníetrémtedmohounastatvbodech =kπ, k Z.Pro klichéale není funkce definována, proto jsou lokální etrém pouze v bodech = kπ, k Z.Jdeolokálnímaimaajejichfunkčníhodnota f(kπ)=lncoskπ=0. 9

Příklad.. Najděte lokální a absolutní etrém funkce f na intervalu [ 3,3], f: =( )e. Řešení:Funkcejedefinovánanacelém R,jeteddefinovánainazkoumaném intervalu. Prvníderivacefunkceje = e (+1)( ).Nulovébodderivace jsou = 1a=.Všetřímeznaménkaderivacenazadanémintervalu: ( 3, 1) ( 1,) (,3) + klesající rostoucí klesající Lokálníetrémnastávajívbodech = 1a=.Jejichfunkčníhodnot jsou f( 1)= e. = 7,389(lokálníminimum)af()=e 4. =0,037 (lokální maimum). Abchom nalezli absolutní etrém, musíme vpočítat funkční hodnot v krajních bodech intervalu a porovnat je s nalezenými funkčními hodnotami lokálních etrémů. f( 3)=7e 6. =84 a f(3)=7e 6. =0,017 Absolutnímaimumfunkce fjevbodě = 3aabsolutníminimumfunkce fjevbodě = 1. Příklad.3.Najděteabsolutníetrémfunkce fnaintervalu[1,e], f: = ln. Řešení:Definičnímoboremfunkce fjemnožina D(f)=(0, ). Prvníderivacefunkce fje = (ln+1).nulovébodderivacejsou =0 a =e 1.Prvníztěchtobodůneležívdefiničnímoborufunkce fadruhý není ve zkoumaném intervalu. Funkčníhodnotvkrajníchbodechjsou f(1)=0af(e)=e.absolutní minimumnastávávbodě =1aabsolutnímaimumvbodě =e. 10

Příklad.4. Najděte lokální a absolutní etrém funkce f na intervalu [0,5], f: = 5 5 4 +5 3 +1. Řešení: Funkce je definována v každém bodě intervalu. Prvníderivacefunkce fje =5 ( 1)( 3).Bod,vekterých =0, jsou =0, =1a=3.Nnívšetřímemonotónnostfunkce f : (0,1) (1,3) (3,5) + + rostoucí klesající rostoucí Vbodě = 1jelokálnímaimum, jehožfunkční hodnota f(1) =,a vbodě =3jelokálníminimum,jehožfunkčníhodnota f(3)= 6.Zbývá vpočítat funkční hodnot v krajních bodech: f(0)=1 a f(5)=66. Absolutnímaimumnastávávbodě =5aabsolutníminimumvbodě =3. Příklad.5. Najděte lokální a absolutní etrém funkce f na intervalu [ 1,6], 3 f: = +. Řešení: Definičním oborem funkce je množina R \ { }. První derivace funkce f je rovna = (4 ) 3 3 (+). Bod,vekterýchjeprvníderivacerovna0nebonenídefinovaná,jsou =0 a = 4. Všetříme znaménka derivace: ( 1,0) (0,4) (4,6) + klesající rostoucí klesající Vbodě =0jelokálníminimumsfunkčníhodnotou f(0)=0.vbodě =4jelokálnímaimum,jehofunkčníhodnotaje f(4). =0,4. V krajních bodech intervalu nabývá funkce hodnot: f( 1)=1 a f(6). =0,41. 11

Absolutnímmaimemfunkcenazadanémintervalujebod[, ]=[ 1,1] aabsolutnímminimemjebod[0,0]. Příklad.6. Najděte lokální a absolutní etrém funkce f na intervalu [,], f: =(+1) 3 +( 1) 3. Řešení: Definičním oborem funkce f je celá množina R. Funkce je sudá, protože f( )=( +1) 3+( 1) 3=( 1) 3( 1) 3+( 1) 3(+1) 3= =( 1) 3+(+1) 3= f(). První derivace funkce je rovna = 3 (+1) ( 1)+ 3 ( 1) (+1). 3 (+1)( 1) Bod,vekterýchjeprvníderivacerovna0nebonenídefinovaná,jsou = 1, =0a=1.Všetřímeznaménkaderivace: (, 1) ( 1,0) (0,1) (1,) + + klesající rostoucí klesající rostoucí Vbodech = 1a=1jsoulokálníminimaseshodnýmifunkčnímihodnotami f( 1)=f(1)= 3 4. =1,59.Vbodě =0jelokálnímaimum,jehož funkčníhodnotajerovna f(0)=. Zbývá vpočítat funkční hodnot v krajních bodech zadaného intervalu. Protože je funkce sudá, budou obě hodnot stejné. f( )=f(). =3,08. Funkcemáabsolutnímaimavbodech = a=aabsolutníminima vbodech = 1a=1. Příklad.7. Najděte lokální a absolutní etrém funkce f na intervalu [ 3,4], f: = 3 3 +3+1. 1 Řešení: Definičním oborem funkce je množina R \ {1}. První derivace funkce f je rovna = ( )( +1) ( 1). Nulovýmbodempředchozírovnicejenazadanémintervalupouzebod =. 1

Všetříme znaménka derivace: ( 3,) (,4) + klesající rostoucí Bod =jelokálnímminimemfunkce f.jehofunkčníhodnotajerovna f()=3. Nní vpočítáme hodnot funkce v krajních bodech intervalu: f( 3 )=4,5 a f(4). =9,67. Z vpočítaných hodnot snadno určíme, že absolutní minimum funkce f na intervalu[ 3,4]jevbodě =aabsolutnímaimumjevbodě =4. Příklad.8. Najděte lokální a absolutní etrém funkce f na intervalu [ 5, 1], f: = 1 3. Řešení: Definičním oborem funkce je množina R \ {0}. První derivace funkce f je rovna = 3 3. Nulovým bodem předchozí rovnice je na zadaném intervalu pouze bod = 3. = 1,6.Všetřímeznaménkaderivace: ( 5, 3 ) ( 3, 1) + klesající rostoucí Vbodě = 3 jelokálníminimumsfunkčníhodnotou f( 3 ). =1,89. Zbývá vpočítat hodnot funkce v krajních bodech: f( 5)=5,04 a f( 1)=. Lokálníminimumvbodě = 3 jezároveňabsolutnímminimem.absolutnímaimumnastávávbodě = 5. 13

Kapitola 3 Etrém v ekonomii Modelovým příkladem užití etrémů v ekonomii může být problém maimalizace užitku spotřebitele. Každého spotřebitele lze podle jeho preferencí charakterizovat nějakou užitkovou funkcí, která vjadřuje, jaký užitek mu přináší různé kombinace spotřebních statků. Jeho cílem je tento užitek maimalizovat. Ale spotřeba statkůjespojenaisurčitouújmou(obětí)veforměplatbzatentostatek. Množství peněžních prostředků spotřebitele je přitom omezené. Formální zápis této úloh b mohl vpadat například takto: ma[u( 1,..., n ); n p i i M, i 0], i=1 1,..., n množstvíjednotlivýchspotřebníchstatků u( 1,..., n ) užitkováfunkcespotřebitele p i jednotkovácenai téhostatku M množství peněžních prostředků spotřebitele Řešenímtétoúlohbblakombinacestatků 1,..., n,kterábudespotřebiteli při daném rozpočtovém omezení přinášet největší užitek. Eistuje mnoho dalších problémů k řešení- např. minimalizace nákladů firm, maimalizace zisku společnosti atd. V těchto úlohách jsou vesměs všetřován funkce více reálných proměnných, navíc s určitými podmínkami, tzn. jde o vázané etrém. Tto úloh se řeší jinými metodami, které přesahují rámec mé bakalářské práce, jež je primárně zaměřena na hledání etrémů a průběhu funkcí jedné reálné proměnné. Proto zde nebudu uvádět konktrétní řešené příklad. 14

Kapitola 4 Řešené příklad na průběh funkce V této kapitole budou řešen některé obtížnější úloh na průběh funkce. Pro přehlednost budou dělen podle tpu funkce. 4.1 Polnom Příklad 4.1. Všetřete průběh funkce Řešení: f: = ( 4) 3. 1.Definičníobordanéfunkceje D(f)=R.Snadnourčímeprůsečíkgrafu funkcesosami a.jezřejmé,žefunkceprocházípočátkem[0,0]a bodem[4,0].protože f( )= ( 4) 3 = (+4) 3,funkcenení ani sudá ani lichá.. Pro počítání derivací je vhodné zadanou funkci upravit = ( 4) 3 = 4 1 3 +48 64. První derivace funkce potom bude =4 3 36 +96 64=4( 1)( 4), odtudplne =0pro =1a=4.Všetřímeznaménkoderivace: (,1) (1,4) (4, ) + + klesající rostoucí rostoucí 15

Lokálníetrémnastávápouzevbodě =1,jdeolokálníminimuma jehofunkčníhodnota f(1)= 7. 3. Dále budeme všetřovat konvenost, konkávnost a hledat inflení bod. K tomu je potřeba vpočítat druhou derivaci. =1 7+96=1( 6+8)=1( )( 4). Všetříme znaménka derivace: (,) (,4) (4, ) + + konvení konkávní konvení Infleníbodjsouvbodech =a=4,jejichfunkčníhodnotjsou f()= 16af(4)=0. 4. Funkce nemá žádné asmptot. 5.Graffunkceje: 30 0 10 6 5 4 3 1 1 3 4 5 6 10 0 30 16

4. Racionální lomené funkce Příklad 4.. Všetřete průběh funkce f: = (+1)(4 3) + 3. Řešení: 1.Definičním oboremfunkce jemnožina R \ { 1,1} = (, 1) ( 1,1) (1, ).Průsečíksosou jsou [ 1,0] a [ 3,0] aprůsečík 4 sosou jebod[0,1].. V zadání funkce se vsktuje absolutní hodnota, proto je nutné funkcivšetřovatsohledemnato,zdaje 0nebo 0. (a)pro 0a 1mámefunkci Její derivace f 1 : = (+1)(4 3). + 3 = 6(3 7+) ( + 3). Bod,vekterýchjeprvníderivacerovnanule,jsou = 1 3 a =. Všetříme znaménka derivace: (0, 1) 3 (1,) (, ) 3 + + rostoucí klesající rostoucí Vidíme,ževbodě = 1nastáválokálnímaimum,jehožfunkční 3 hodnota f( 1)= 5,avbodě =nastáválokálníminimum,jehož 3 4 funkčníhodnotaje f()=5. (b)pro 0, 1mámefunkci Její derivace f : = (+1)(4 3). 3 = 14(+3) ( 3). Bod,vekterýchmůženastatlokálníetrém,jsou = 3a=0. 17

Opět všetříme znaménka derivace: (, 3) ( 3,0) + klesající rostoucí Vbodě = 3tednastáválokálníminimumsfunkčníhodnotou f( 3)= 5 4. 3. Pro všetřování infleních bodů, konvenosti a konkávnosti je rovněž potřeba rozlišovat, zda jsme na intervalu(, 0] nebo[0, ). (a)pro 0jedruháderivace = 6 63 1 +1 13 ( + 3) 3. Bod,vekterýchmůženastatinflee,jsou =1a = 1 6 ( 3 5 +5 3 5+7). =3,08.Znaménkaderivace: (0,1) (1, 1 6 ( 3 5 +5 3 5+7)) ( 1 6 ( 3 5 +5 5+7), ) + konkávní konvení konkávní (b)pro 0jedruháderivace = 14(3 +9 +9) ( 3) 3. Bod,vekterýchmůženastatinflee,jsou = 1a = 1 ( 3 3 +3 3 3+3). = 4,7.Znaménkaderivace: (, 1 ( 3 3 +3 3 3+3)) ( 1 ( 3 3 +3 3 3+3), 1) ( 1,0) + konkávní konvení konkávní 18

4.Vzhledemkdefiničnímuoborufunkce,kterýje(, 1) ( 1,1) (1, ), je jasné, že funkce bude mít dvě asmptot bez směrnice ato = 1, =1.Průběhfunkcevokolítěchtoasmptotvšetříme pomocí limit: lim f()=, 1 lim f()=, 1 + lim f()=, 1 lim f()=. 1 + Zbývázjistit,zdamáfunkceasmptotsesměrnicí =a+b: lim ± f() lim ± Asmptotasesměrnicíjeted =8. 5. Nní můžeme sestrojit graf: =0=a, [ f() a]= lim f()=8=b. ± 10 8 6 4 10 8 6 4 0 4 6 8 10 4 19

Příklad 4.3. Všetřete průběh funkce Řešení: f: = 3 (+). 1. Definičním oborem funkce je množina R \ { }, funkce prochází počátkem.. Ve funkci se vsktuje absolutní hodnota, proto ji musíme všetřovat naintervalech(,0]a(0, )zvlášť. (a)pro >0mámefunkci Její první derivace je f 1 : 3 (+). = (+6) (+) 3. Bod,vekterýchjeprvníderivacerovna0nebobod,vekterých prvníderivaceneeistuje,jsou = 6, = a=0.protože anijedenztěchtobodůnesplňujepodmínku >0,budederivace na celém intervalu(0, ) buď pouze záporná nebo pouze kladná. Dosazenímlibovolnéhočíslaztohotointervaluzjistíme,že >0, zčehožplne,žefunkce fbudenaintervalu(0, )rostoucí. (b)pro 0mámefunkci Její první derivace je f : 3 (+). = (+6) (+) 3. Bod,vekterýchjeprvníderivacerovna0nebobod,vekterých prvníderivaceneeistuje,jsou = 6, = a=0.všetříme znaménka derivace: (, 6) ( 6, ) (,0] + klesající rostoucí klesající 0

Lokálníetrémnastávávbodě = 6.Jetolokálníminimum, jehožfunkčníhodnotaje f( 6)= 16 =13,5.Vbodě = 16 lokální etrém nastat nemůže, protože funkce f není v tomto bodě definovaná.vbodě = 0nastáválokálníminimumsfunkční hodnotou f(0)=0. 3. Nní budeme všetřovat konvenost, konkávnost a inflení bod. (a)pro >0jedruháderivacefunkce = 4 (+) 4. Bod,vekterýchjedruháderivacerovna0nebobod,vekterých druháderivaceneeistuje,jsou = a=0.protožetto bodnespadajídointervalu(0, ),budefunkce fnacelémtomto intervalu buď pouze konkávní nebo pouze konvení. To zjistíme dosazením libovolného čísla z tohoto intervalu do druhé derivace funkce.jelikož >0,budefunkce fnaintervalu(0, )konvení. (b)pro 0mámedruhouderivacifunkce = 4 (+) 4. Bod,vekterýchjedruháderivacerovna0nebobod,vekterýchdruháderivaceneeistuje,jsou = a=0.všetříme znaménka derivace: (, ) (,0) + + konvení konvení 4. Asmptotou bez směrnice bude vzhledem k definičnímu oboru funkce přímka =. Všetříme chování funkce v okolí této přímk: lim f()=, lim f()=. + Zbývázjistit,zdamáfunkceasmptotsesměrnicí =a+b. Pro vpočítámelimit: lim f() lim =1=a, [ f() ]= 4=b. 1

Takžeasmptotasesměrnicípro jepřímka = 4. Pro vpočítámelimit: f() lim = 1=a, lim [ f()+]=4=b. Asmptotasesměrnicípro jepřímka = +4. 5. Nní můžeme sestrojit graf: 0 15 10 5 0 10 0 10 0

4.3 Goniometrické a cklometrické funkce Příklad 4.4. Všetřete průběh funkce Řešení: f: =sin3 3sin. 1. Definičním oborem funkce je R, funkce je periodická s periodou π, protože f(+π)=sin(3+6π) 3sin(+π)=sin3 3sin=f(). Funkce je lichá, protože f( )=sin( 3) 3sin( )= sin3+3sin= f(). Průsečíksosou jsouvbodech =kπpro k Z.. První derivace funkce je =3cos3 3cos. Nulovébodtétorovnicejsou =k π derivace(stačí na intervalu(0, π)): pro k Z.Všetřímeznaménka ( ( 0, π π ), π) ( ) ( π,3 π 3 π,π) + + klesající rostoucí rostoucí klesající Takželokálníminimanastanouvbodech = π +kπ, k Z,jejich funkčníhodnota f( π +kπ)= 4alokálnímaimanastanouvbodech = 3π+kπ, k Z,jejichfunkčníhodnota f(3π+kπ)=4. 3. Druhá derivace funkce je = 9sin3+3sin. Nulovébodtétorovnicejsou =kπpro k Zabod,prokteréplatí sin =± 3,cožjsounaintervalu(0,360 )bod =55., =15., =35., =305.. 3

Všetříme znaménka derivace: (0,55 ) (55,15 ) (15,180 ) (180,35 ) (35,305 ) (305,360 ) + + + konkávní konvení konkávní konvení konkávní konvení Funkčníhodnotinfleníchbodůjsou f(k180 )=0,kde k Z, f(55 )=f(15 ). =,0, f(35 )=f(305 ). =,0. 4. Funkce f nemá žádné asmptot. 5. Nní můžeme sestrojit graf: 6 4 π π π π 4 6 4

Příklad 4.5. Všetřete průběh funkce Řešení: f: = +arccotg. 1.Definičnímoboremfunkceje R,průsečíksosou jebod[0, π].. První derivace funkce je =1 +1, bod,vekterýchjeprvníderivacerovna0,jsou = 1a = 1. Všetříme znaménka derivace: (, 1) ( 1,1) (1, ) + + rostoucí klesající rostoucí Vidíme,ževbodě =1nastáválokálníminimum,jehožhodnotaje f(1)=1+ π,avbodě = 1nastáválokálnímaimum,jehožhodnota je f( 1)= 1+ 3π. 3. Druhá derivace funkce je = 4 ( +1), rovnicejerovnanulepouzevbodě =0. (,0) (0, ) + konkávní konvení Bod =0jeinflenímbodem,zároveňiprůsečíkemsosou,jeho funkční hodnotu jsme spočítali výše. 4.Nníbudemezjišťovat,zdamáfunkceasmptot.Pro vpočítáme limit: lim f() lim =1=a, [ f() ]=0=b. 5

Takžeasmptotasesměrnicípro jepřímka =. Pro vpočítámelimit: lim f() lim =1=a, [ f() ]=π= b. Asmptotasesměrnicípro jepřímka = +π. 5. Nní sestrojme graf: 6 4 6 4 0 4 6 6

4.4 Eponenciální a logaritmické funkce Příklad 4.6. Všetřete průběh funkce Řešení: f: = ln. 1. Definičním oborem funkce je množina(0, ), funkce prochází bodem [1,0].. První derivace funkce je =ln +ln =ln (ln +). Jejínulovébodjsou =e. =0,14a=1.Všetřímeznaménka derivace na definičním oboru funkce: (0,e ) (e,1) (1, ) + + rostoucí klesající rostoucí Vbodě =e. =0,14nastáválokálnímaimum,jehofunkčníhodnota je f(e )=4e.Vbodě =1jelokálníminimum,jehožfunkční hodnotajerovna f(1)=0. 3. Druhá derivace funkce je rovna = 1 (ln +1). Předchozírovnicenabývánulvbodě = e 1. = 0,37.Všetříme konvenost a konkávnost: (0,e 1 ) (e 1, ) + konkávní konvení 4. Funkce nemá žádné asmptot. K sestrojení funkce je vhodné všetřit její chování v krajním bodě definičního oboru. Vpočteme proto limitu funkcepro 0zprava: lim ln =0. 0 + 7

5. Nní můžeme sestrojit graf: 4 3 1 1 0 1 3 4 1 Příklad 4.7. Všetřete průběh funkce Řešení: f: =( )e 1. 1.Definičnímoboremfunkcemnožina R\{0}.Průsečíksosou jevbodě =.. První derivace funkce je rovna =e 1 +. Nulovébodjsou = a = 1.Všetřímeznáménkaderivace nadefiničnímoborufunkce f: (, ) (,0) (0,1) (1, ) + + rostoucí klesající klesající rostoucí 8

Lokálnímaimumnastávávbodě =,jehofunkčníhodnotaje f( )= 4e 1. = 6,6.Vbodě =1jelokálníminimumsfunkční hodnotou f(1)= e 1. = 0,4. 3.Druháderivacefunkce fje = 1 4e 1 (5 ). Nulovýboddruhéderivaceje = 5.Všetřímeznáménkaderivace nadefiničnímoborufunkce f: Vbodě = 5 nastáváinflee. (,0) (0, 5 ) ( 5, ) + konkávní konkávní konvení 4.Budemehledatasmptotsesměrnicívetvaru = a+b: lim ± f() lim ± =1=a, [ f() ]= 3=b. Asmptotasesměrnicífunkce fje = 3.Zbývávšetřitchování funkcevbodě =0,vekterémnenífunkce fdefinovaná. lim f()=0, 0 + lim f()=. 0 9

5. Nní můžeme sestrojit graf: 4 10 8 6 4 4 6 8 10 0 4 6 8 10 1 14 4.5 Mocninné funkce Příklad4.8.Všetřeteprůběhfunkce fnaintervalu[0,3], Řešení: f: =(3 ). 1.Funkcemádvaprůsečíksosou atobod =0a=3.Funkceje spojitávkaždémboděintervalu[0,3].. První derivace funkce je tvaru = 3(1 ). Bod,vekterémmůženastatnazadanémintervaluetrém,je =1. 30

Všetříme monotónnost funkce: (0,1) (1,3) + rostoucí klesající Vbodě =1jelokálnímaimumsfunkčníhodnotou f(1)=. 3. Druhá derivace funkce je rovna = 3 4 (+1). Předchozí rovnice nemá na všetřovaném intervalu žádné nulové bod. Dosazenímlibovolnéhočíslazintervalu[0,3]zjistíme,že <0.To znamená,žefunkce fbudenacelémintervalu[0,3]konkávní. 4. Funkce nemá žádné asmptot. 5. Nní můžeme sestrojit graf: 3.5 1.5 1 0.5 0 0.5 1 1.5.5 3 31

Příklad 4.9. Všetřete průběh funkce 3 f: =. Řešení: 1.Vpočítámedefiničníoborfunkce f.vjdemeztoho,ževýrazpododmocninou musí být nezáporný a jmenovatel ve zlomku se nesmí rovnat nule.definičníoborbudemnožina(,0] (, ).. První derivace funkce je tvaru = ( 3) ( ) ( ). Bod, ve kterých je první derivace nulová nebo ve kterých není definovaná,jsoukrajníboddefiničníhooboru =0a=abod =3. Všetříme monotónnost funkce na D(f): (,0) (,3) (3, ) + klesající klesající rostoucí V bodě = 3 nastává lokální minimum. Jeho funkční hodnota je. f(3) = 5,. 3. Druhá derivace funkce je rovna = 3 ( ) 5. Druhá derivace není definovaná v krajních bodech definičního oboru. Všetříme znaménka derivace na D(f): (,0) (, ) + + konvení konvení 3

4.Budemehledatasmptotsesměrnicífunkce fvetvaru = a+b: Pro vpočítámelimit: lim f() lim =1=a, [ f() ]=1=b. Takžeasmptotasesměrnicípro jepřímka = +1. Pro vpočítámelimit: f() lim = 1=a, lim [ f()+]= 1=b. Asmptotasesměrnicípro jepřímka = 1. Nní všetříme, jak se bude funkce f chovat v krajních bodech definičníhooboru D(f): lim f()=0, 0 lim f()=. + Z poslední počítané limit plne, že funkce f bude mít asmptotu bezsměrnicevetvaru =. 5. Nní můžeme sestrojit graf: 10 8 6 4 6 4 0 4 6 33

Literatura [1] Došlá Z., Kuben J.: Diferenciální počet funkcí jedné proměnné, Masarkova univerzita, Brno 004 [] Jirásek F., Kriegelstein E., Tichý Z.: Sbírka řešených příkladů z matematik, 3.vdání, SNTL, Praha 1987, s. 473-491 [3] Studijní materiál předmětu Kvantitativní ekonomie vučovaného na Přírodovědecké fakultě pod kódem E5340. [4]RbičkaJ.:L A TEXprozačátečník,3.vdání,KONVOJ,Brno003 [5]LomtatidzeL.,PlchR.:SázímevL A TEXudiplomovouprácizmatematik, 1.vdání, Masarkova univerzita, Brno 003 34