Analytická geometrie v rovině

Podobné dokumenty
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

14 Kuželosečky v základní poloze

III.4. Fubiniova (Fubiniho) věta pro trojný integrál

Analytická geometrie v E 3 - kvadriky

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,

Funkce dvou proměnných

ROTAČNÍ KVADRIKY V PŘÍKLADECH

DUM č. 11 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

je pravoúhlý BNa ose y najděte bod, který je vzdálený od bodu A = [ 4;

Popis jednotlivých kvadrik

Matematické metody v kartografii

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie

Výpočet obsahu rovinného obrazce

7.5.8 Středová rovnice elipsy

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Elementární plochy-základní pojmy

II. 5. Aplikace integrálního počtu

6. ANALYTICKÁ GEOMETRIE

8 Mongeovo promítání

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

4.2. Graf funkce více proměnných

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b b2 2.

Diferenciální počet. Spojitost funkce

MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Kuželosečky

Základní topologické pojmy:

Obsah a průběh zkoušky 1PG

Hledání hyperbol

Digitální učební materiál

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Kuželosečky. ( a 0 i b 0 ) a Na obrázku 1 je zakreslena elipsa o poloosách 3 a 7. Pokud střed elipsy se posunul do bodu S x 0

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení

Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha.

Analytická geometrie lineárních útvarů

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

8. Elementární funkce

Stereometrie metrické vlastnosti 01

10. Analytická geometrie kuželoseček 1 bod

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

1.6 Singulární kvadriky

7.5.8 Středová rovnice elipsy

9.6. Odchylky přímek a rovin

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.

Cyklografie. Cyklický průmět bodu

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)

Středová rovnice hyperboly

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

14. přednáška. Přímka

5.2. Určitý integrál Definice a vlastnosti

Michal Zamboj. December 23, 2016

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

x + F F x F (x, f(x)).

Rovinná napjatost a Mohrova kružnice

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI

prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného

Vlastní čísla a vlastní vektory

Michal Zamboj. January 4, 2018

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

Stereometrie metrické vlastnosti

Hyperbola a přímka

Deg2-Kvadriky. Světlana Tomiczková

Elementární křivky a plochy

MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.

17 Křivky v rovině a prostoru

Další plochy technické praxe

a a Posloupnost ( ) je totožná s posloupností: (A) 9 (B) 17 (C) 21 (D) 34 (E) 64 (B) (C) (E)

Konstruktivní geometrie

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.

ROTAČNÍ PLOCHY. 1) Základní pojmy

PŘÍMKOVÉ PLOCHY. Přednáška DG2*A

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ

Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1

4. cvičení z Matematiky 2

14. cvičení z Matematické analýzy 2

Odraz na kulové ploše Duté zrcadlo

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Parametrický popis křivek

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

MONGEOVO PROMÍTÁNÍ - 2. část

= 1, (2.3) b 2 + z2. c2 se nazývá imaginární elipsoid. Jedná se o regulární kvadriku, která, jak vidíme z rovnice (2.3), neobsahuje žádný reálný bod.

1.13 Klasifikace kvadrik

Diferenciáln. lní geometrie ploch

JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH KUŽELOSEČKY. Pavel Pech

Digitální učební materiál

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

Transkript:

nltická geometrie v rovině Souřdnicová soustv v rovině Zvolme v rovině dvě nvájem kolmé přímk číselné os. růsečík O těchto přímek nveme počátek souřdnic. Vodorovnou přímku ončíme osou svislou ončíme osou orientujeme je tk že vžd jednu polopřímek n osách s počátkem O prohlásíme kldnou poloosu druhou ápornou poloosu. Zvolíme-li n vájemně kolmých osách růné jednotkové úsečk mluvíme o prvoúhlé souřdnicové soustvě. Zvolíme-li n obou osách stejnou jednotku délk mluvíme o krtéské souřdnicové soustvě. Krtéské souřdnice v rovině. Kždému bodu v rovině přiřujeme v prvoúhlé souřdnicové soustvě uspořádnou dvojici reálných čísel tv. prvoúhlých souřdnic bodu tkto obr. : odem vedeme kolmici k ose její průsečík s osou je n této číselné ose přiřen reálnému číslu které nýváme první -ovou souřdnicí bodu v dné souřdnicové soustvě. odem vedeme kolmici k ose její průsečík s osou je n této číselné ose přiřen reálnému číslu které nýváme druhou -ovou souřdnicí bodu v dné souřdnicové soustvě. Souřdnice bodu v krtéské souřdnicové soustvě se nývjí krtéské souřdnice. 0 Obr. Tímto působem je bodu jednončně přiřen uspořádná dvojice což pisujeme. Zvedením souřdnicové soustv v rovině jsme sestrojili prosté obrení množin bodů rovin n množinu R R. Množinu všech uspořádných dvojic reálných čísel budeme nývt dvojroměrným prostorem nebo rovinou. Je-li v rovině jkožto dvojroměrném prostoru definován pro kždé dvod jejich vdálenost přičemž pltí právě kdž 3 4 C C tv. trojúhelníková nerovnost pk se tento dvojroměrný prostor nývá metrický. Je-li vdálenost bodů definován vorcem budeme dvojroměrný metrický prostor nývt dvojroměrným euklidovským prostorem. Znčíme jej E. Obdobně b se definovl víceroměrný euklidovský prostor En. V následujícím tetu budeme uvžovt poue euklidovské prostor. Kromě krtéské souřdnicové soustv používáme v prostoru E ještě dlší souřdnicovou soustvu. Je to polární souřdnicová soustv.

olární souřdnice v rovině. olárními souřdnicemi bodu v rovině roumíme uspořádnou dvojici čísel r přiřených jednončně bodu tk že r je délk úsečk O 0 je úhel který svírá polopřímk O s kldnou částí os. Je-li bod dný krtéskými souřdnicemi jsou-li r jeho polární souřdnice pk pltí mei těmito souřdnicemi vth r cos nebo nopk r tg. rsin r 0 Obr. Rovnice rovinné čár přímk v rovině Implicitní rovnicí rovinné čár roumíme rovnici tvru F které vhovují bod ležící n uvžovné rovinné čáře. okud le v této rovnici osmosttnit proměnnou ískáme eplicitní vjádření rovinné čár ve tvru f. rmetrickými rovnicemi rovinné čár roumíme rovnice tvru t t kde t b přičemž uvedeným rovnicím vhovují t bod t t které leží n uvžovné rovinné čáře. roměnnou t nýváme prmetrem. římk Obecná rovnice přímk. římku p v rovině E je možné vjádřit rovnicí tvru c kde b c jsou vhodné konstnt. řitom vektor n b je kolmý k přímce p nýváme ho normálovým vektorem této přímk. Kždý vektor s který je kolmý k normálovému vektoru se nývá směrový vektor přímk. Je to vektor rovnoběžný s dnou přímkou p. Jestliže normálový vektor n b má kždý směrový vektor tvr s kb k kde k 0 je libovolné číslo. směrnicový tvr přímk : k q kde k tg se nývá směrnice přímk úsekový tvr přímk : kde p 0 je úsek vťtý přímkou n ose q 0 je úsek vťtý přímkou n p q ose rmetrické rovnice přímk. římk jdoucí bodem rovnoběžně se směrovým vektorem s s s s s kde t je prmetr. má prmetrické rovnice

3 Úhel dvou přímek. Dvě přímk o rovnicích b c b c 0 svírjí úhl pltí vth n. n bb cos. n. n Vájemná poloh dvou přímek. Dvě přímk o rovnicích b c b c 0 jsou rovnoběžné právě kdž pro jejich normálové vektor pltí n kn nvíc c kc jsou tto přímk totožné růnoběžné právě kdž pro jejich normálové vektor pltí n kn ; jsou tto přímk n sebe kolmé. kde k 0 je vhodná konstnt; pokud pokud nvíc sklární součin n. n Vdálenost bodu od přímk. b c ro vdálenost d bodu od přímk o rovnici c 0 pltí d 0. 3 Křivk druhého stupně kuželosečk Křivkou druhého stupně kuželosečkou nýváme rovinnou křivku jejíž rovnici le psát ve tvru 0 kde ij jsou reálná čísl. 3 3 33 Kružnice. Kružnice je geometrické místo bodů dále jen g.m. v rovině které mjí od pevného bodu S střed kružnice stále stejnou vdálenost r poloměr kružnice. Kružnice se středem S m n poloměrem r má : obecnou rovnici prmetrické rovnice m n r m n r. cost r. sint kde t. Elips. Elips je g.m. bodů v rovině které mjí od dvou pevných bodů F F ohnisk stále stejný součet vdáleností. Elips se středem S m n osmi rovnoběžnými se souřdnicovými osmi má : m n obecnou rovnici prmetrické rovnice m. cost n b. sint kde t. je délk hlvní vedlejší poloos Hperbol. Hperbol je g.m. bodů v rovině které mjí od dvou pevných bodů F F ohnisk stále stejný rodíl vdáleností. Hperbol se středem S m n osmi ležícími n souřdnicových osách má : m n obecnou rovnici je délk hlvní vedlejší poloos rbol. rbol je g.m. bodů v rovině které mjí od pevného bodu F ohnisk od pevné přímk d řídící přímk stále stejnou vdálenost. rbol s vrcholem v bodě V m n osu rovnoběžnou s osou popř. má obecnou rovnici n p m popř. m p n

4 nltická geometrie v prostoru Souřdnicová soustv v prostoru Zvolme soustvu tří os v prostoru nvájem kolmých procháejících bodem O který nveme počátkem souřdnicové soustv. Řekneme že tto soustv je prvotočivá v prostoru E 3 jsou-li jednotlivé os orientován tk že poorujeme-li os některého bodu kldné části os musel kldná část os opst úhel proti směru otáčení hodinových ručiček b poprvé splnul s kldnou částí os obr. 3; při áměně os b vnikl levotočivá souřdnicová soustv. Kždé dvě e souřdnicových os tvoří jednu e tří souřdnicových rovin to které dělí celý prostor E 3 n osm stejných částí nývných oktnt. Zvolme dále n kldných částech všech tří os jednotk délk. Jsou-li tto jednotk n všech třech osách stejné mluvíme o krtéské souřdnicové soustvě v opčném přípdě o prvoúhlé souřdnicové soustvě. Kždému bodu v prostoru E 3 přiřujeme v krtéské souřdnicové soustvě uspořádnou trojici reálných čísel tv. krtéských souřdnic bodu vi obr. 3. Vdálenost bodů v prostoru E 3 je určen vthem. 0 Obr. 3 Kromě krtéských souřdnic v prostoru E 3 používáme ještě dlší souřdnicové soustv. Je to především clindrická válcová soustv souřdnic. Clindrické válcové souřdnice v prostoru. Mějme dánu krtéskou souřdnicovou soustvu libovolný bod jeho kolmý průmět 0 do rovin. Clindrickými souřdnicemi bodu v prostoru E 3 roumíme uspořádnou trojici čísel r přiřených jednončně bodu tk že r je délk úsečk O 0 0 je úhel o který se musí otočit kldná část os proti směru hodinových ručiček b splnul s polopřímkou O 0 ted dvojice r vjdřuje polární souřdnice bodu 0 v rovině je třetí souřdnice bodu v dné krtéské souřdnicové soustvě. odům ležícím n ose přiřujeme libovolně volený úhel. Mei krtéskými souřdnicemi bodu jeho clindrickými souřdnicemi pltí vth r cos r sin nebo obráceně r tg. 0 r 0 Obr. 4

5 Rovnice ploch rovin prostorové čár přímk v prostoru Implicitní rovnicí ploch S roumíme rovnici tvru F které vhovují bod ležící n uvžovné ploše. okud le v této rovnici osmosttnit proměnnou ískáme eplicitní vjádření ploch ve tvru f. rmetrickými rovnicemi ploch S roumíme rovnice : f u v f u v f3 u v v nichž funkce f f f3 jsou definován ve všech bodech určitého dvojroměrného oboru. Množinu všech bodů f u v f u v f3 u v kde u v nýváme prostorovou plochou dnou prmetrick ý- mi rovnicemi. roměnné u v nýváme prmetr. Implicitní rovnice prostorové čár. Nechť dvě ploch o rovnicích F G 0 se protínjí v prostorové čáře L. k říkáme že prostorová čár L je určen těmito rovnicemi ploch tto rovnice nýváme implicitními rovnicemi prostorové čár L. rmetrické rovnice prostorové čár. Nechť jsou dán tři rovnice f t f t f 3 t kde funkce f f f3 jsou spojité pro t b. Množinu všech bodů f t f t f3 t pro t b v prostoru nýváme prostorovou črou dnou prmetrickými rovnicemi. roměnnou t nýváme prmetr. růsečík dné čár s dnou plochou jsou t bod které vhovují součsně rovnicím ploch i čár. Njdeme je jko společné řešení všech těchto rovnic. Rovin Rovnice rovin. Rovin procháející bodem kolmo k nenulovému vektoru n b c b c 0. Uvedenou rovnici nýváme obecnou rovnici rovin. má rovnici rmetrické rovnice rovin. Rovin procháející bodem která je rovnoběžná se dvěm lineárně neávislými vektor s b c s b c má prmetrické rovnice: u v b u bv cu cv kde uv jsou prmetr. Vektor s s nýváme směrové vektor rovin. Rovin která je určená třemi bod C neležícími n přímce má rovnici C C C 0. C C C Vtíná-li rovin n souřdnicových osách úsek p q r růné od nul můžeme ji vjádřit v tv. úsekovém tvru. p q r

6 Úhel dvou rovin. Rovin b c d 0 b c d 0 svírjí úhl přičemž pltí n. n bb cc cos n n b c b c kde n b n b jsou normálové vektor obou rovin. c c Vdálenost bodu od rovin. Vdálenost v bodu od rovin c d 0 je dán vorcem v b b c c d. Vájemná poloh dvou rovin. Rovin b c d 0 b c d 0 jsou rovnoběžné právě kdž jejich normálové vektor jsou lineárně ávislé ted právě kdž je k b kb c kc kde k 0 je vhodné číslo; pokud nvíc pltí d kd jde o rovin splývjící růnoběžné právě kdž jejich normálové vektor jsou lineárně neávislé ted právě kdž je n kn ; pokud nvíc pltí n jsou dné rovin vájemně kolmé.. n římk rmetrické rovnice přímk. římk p která procháí bodem je rovnoběžná s nenulovým vektorem s s s s3 prmetrické rovnice s s s 3 kde t je prmetr. Vektor s nýváme směrovým vektorem přímk p proměnnou t jejím prmetrem. má římk jko průsečnice dvou rovin. římk dná jko průsečnice dvou růnoběžných rovin b c d b c d 0 má implicitní rovnice b c d b c d 0. ro směrový vektor s i j k tkto dné přímk pltí s n n c. b c Knonické rovnice přímk. římku p která je určená bodem směrovým vektorem s s s s3 není rovn nule je možné vjádřit pomocí knonických rovnic. s s s3 jehož žádná souřdnice Vájemná poloh dvou přímek. Dvě přímk p q dné svými prmetrickými rovnicemi p : q : b b c c

7 jsou rovnoběžné právě kdž jejich směrové vektor jsou lineárně ávislé ted právě kdž pltí s k k růnoběžné právě kdž sq ks p determinnt b c c q s p kde 3 mimoběžné právě kdž sq ks p determinnt c b c okud nvíc v bodech 3 pltí s p s. q jsou přímk p q n sebe kolmé. Vájemná poloh přímk rovin. římk p rovin jsou rovnoběžné právě kdž s p.n 0; pokud nvíc po dosení prmetrických rovnic přímk p do obecné rovnice rovin dostneme identitu leží přímk p v rovině mjí jediný společný bod právě kdž s p.n 0; pokud nvíc vektor s p n jsou lineárně ávislé je přímk p kolmá k rovině. Úhel přímk s rovinou. Úhlem přímk p s rovinou roumíme úhel 0 který svírá přímk p její prvoúhlý průmět do n. s p rovin. ltí sin kde n je normálový vektor rovin s p je směrový vektor přímk p. n s p loch druhého stupně loch jejichž rovnici le psát ve tvru 33 3 3 4 4 34 44 kde ij i j 34 jsou dná reálná čísl přičemž 33 3 3 0 se nývjí ploch druhého stupně neboli kvdrik. loch válcové. Válcovou plochou roumíme plochu vtvořenou pohbující se přímkou která protíná dnou křivku je stále rovnoběžná s dným vektorem. Tuto přímku nýváme vtvořující přímkou nebo površkou dnou křivku řídící křivkou válcové ploch. Jestliže vtvořující přímk je kolmá k rovině řídící křivk mluvíme o přímé válcové ploše svírá-li s ní jiný úhel jde o šikmou válcovou plochu. Npř. přímá válcová ploch s řídící křivkou F 0 má rovnici F 0. Konkrétně přímá válcová ploch o rovnici má řídící křivku elipsu o stejné rovnici ležící v rovině 0 vtvořující přímk jsou rovnoběžné s osou. Je-li jde o přímou kruhovou válcovou plochu pro jde o přímou eliptickou válcovou plochu Obr. 5.

8 Obr. 5 římá válcová ploch hperbolická má rovnici její řídící křivkou je hperbol o stejné rovnici v rovině 0. římá válcová ploch prbolická má rovnici p její řídící křivkou je prbol o stejné rovnici v rovině 0. loch kuželové. Kuželovou plochou roumíme plochu vtvořenou pohbující se přímkou která protíná řídící křivkou procháí dným bodem V vným vrcholem. Je-li řídící křivk středově souměrná podle bodu S přímk procháející bod S V je kolmá k rovině řídící křivk mluvíme o přímé kuželové ploše svírá-li s ní jiný úhel jde o šikmou kuželovou plochu. Npříkld přímý kužel eliptický který má vrchol v počátku O jehož řídící křivkou je elips v rovině c má rovnici 0. c Obr. 6 Elipsoid. loch o rovnici se nývá elipsoid Obr. 7. Její střed leží v počátku O. c Rolišujeme tto tp elipsoidů: trojosý kdž poloos b c mjí růnou délku b rotční kdž dvě poloos jsou stejně dlouhé c kulová ploch kdž c.

9 Obr. 7 Vlstnosti elipsoidu: Elipsoid je ohrničená ploch jeho průsečík s osmi souřdnic jsou vrchol elipsoidu. Souřdnicové rovin jsou rovinmi souměrnosti počátek O je středem souměrnosti elipsoidu. 3 Rovin protínjící elipsoid jej protíná v elipse popř. v kružnici. Hperboloid. loch o rovnici c se nývá jednodílný hperboloid Obr. 8. loch o rovnici c se nývá dvojdílný hperboloid Obr. 8b. Obr. 8 Obr. 8b Vlstnosti hperboloidu: Hperboloid jsou neohrničené ploch. Souřdnicové rovin jsou rovinmi souměrnosti počátek O je středem souměrnosti hperboloidu. 3 Rovin k procháející osou protínjí hperboloid v hperbolách rovin k k R v elipsách u dvojdílného hperboloidu jsou tto elips reálné mjí-li tto rovin od rovin vdálenost větší než c. 4 ro dostneme rotční hperboloid s osou rotce v ose. Ře kolmé n osu jsou kružnice. rboloid. loch určená rovnicí se nývá eliptický prboloid Obr. 9. loch určená rovnicí se nývá hperbolický prboloid Obr. 9b.

0 Obr. 9 Obr. 9b Vlstnosti eliptického prboloidu: Ře rovinmi k R jsou elips. Ře rovinmi k R jsou prbol. 3 Ře rovinmi k R jsou prbol. 4 ro dostneme rotční prboloid. Vlstnosti hperbolického prboloidu: Ře rovinmi k 0 k R jsou hperbol ře rovinou 0 tvoří dvě přímk. Ře rovinmi k R jsou prbol. 3 Ře rovinmi k R jsou prbol. Jestliže v rovnicích popsných kvdrik bude místo postupně dostneme rovnice 0 0 ploch se středem posunutým počátku O do bodu s osmi rovnoběžnými se souřdnicovými osmi. 0 0 0 Mei kvdrik ptří tké ploch o rovnici: což jsou dvě růnoběžné rovin 0 0 což jsou dvě rovnoběžné rovin 3 což je tv. dvojná rovin 0. Kvdrik ted ploch. stupně rodělujeme buď n regulární elipsoid hperboloid prboloid singulární válcové kuželové ploch dvojice rovin nebo n středové elipsoid hperboloid kuželové ploch nestředové prboloid válcové ploch dvojice rovin.