Elementární funkce. (Stručný přehled)

Rozměr: px
Začít zobrazení ze stránky:

Download "Elementární funkce. (Stručný přehled)"

Transkript

1 Elementární funkce (Stručný přehled) c Helena Říhová 006

2 Obsah Úvod Mocninné funkce 4. Konstantnífunkce Celočíselnékladnémocnin Mocninskladnýmracionálnímeponentem Mocninsezápornýmeponentem Mocninsiracionálnímeponentem Eponenciální funkce 7 4 Logaritmické funkce 7 5 Goniometrické funkce 8 6 Cklometrické funkce

3 Seznam používaných smbolů D f H f definičníoborfunkce f oborhodnotfunkce f N množina přirozených čísel P P průsečíkgrafufunkcesosou průsečíkgrafufunkcesosou R množina reálných čísel R + množinakladnýchreálnýchčísel,tj.interval(0,+ ) R + o množinanezápornýchreálnýchčísel,tj.interval 0,+ ) Z množina celých čísel velký kvantifikátor znamená: každý, pro všechn... Úvod Název elementární funkce je dán historick. Míní se jím funkce, které bl popsán do konce 8. století. Uvedeme jejich přehled spolu se základními charakteristikami definičním oborem, oborem hodnot, interval monotónnosti, smetrií a doplníme náčrtkem grafu. Než se ale do nich pustíme, zopakujeme si pojm sudá, lichá funkce,(ne)rostoucí,(ne)klesající funkce. Funkce f je sudá, jestliže platí: a)pro D f jetaké D f, b)pro D f je f( )=f(). Grafsudéfunkcejeosověsouměrnýpodleos. Funkce f je lichá, jestliže platí: a)pro D f jetaké D f, b)pro D f je f( )= f(). Graf liché funkce je středově souměrný podle počátku. Pokud je lichá funkce definovaná pro =0,platí f(0)=0,tj.grafprocházípočátkem. Funkce f je rostoucí neklesající nerostoucí klesající jestližepro, D f, <, je f( ) < f( ), f( ) f( ), f( ) f( ), f( ) > f( ). fce sudá fce lichá neklesající fce lichá nerostoucí fce rostoucí fce klesající

4 Mocninné funkce Mocninné funkce jsou dán analtickým předpisem f: = α, α R.. Konstantní funkce Je-li α = 0 dostáváme konstantní funkci f: =. (Obecnákonstantnífunkcejedánapředpisem f: = k, k R.) D f =R, H f = {}. (ProobecnoukonstantnífunkcijeH f = {k}.) P =[0,] Funkce je sudá. obr. 0. Celočíselné kladné mocnin Nní α N,obvkleznačíme α=napříslušnáfunkcejevjádřenavztahem: f: = n. D f =R, H f =R + o pro nsudé, H f =R pro nliché, P =[0,0]= P. Pro nsudéjefunkcesudá,klesajícína(,0),rostoucína(0,+ ),naobr. modrákřivka. Pro nlichéjefunkcelichá,rostoucínacelémd f,naobr.červenákřivkaapřímka. = obr. 4

5 Graf všech celočíselných mocnin procházejí bod[0,0] a[,], sudé mocnin procházejí navíc bodem[-,], liché mocnin bodem[-,-]. Funkce = se nazývá lineární, jejím grafem je přímka(osaprvníhoatřetíhokvadrantu),funkce = senazývákvadratická,grafemje parabola s vrcholem v počátku.. Mocnin s kladným racionálním eponentem Funkce jsou vjádřen vztahem: f: = m n = n m, kde m N, n Napředpokládáme,že m, njsoučíslanesoudělná. D f =R pro nliché, D f =R + o pro nsudé, mliché, H f =R + o pro nliché, msudé,nebopro nsudé, mliché, H f =R pro n, mobělichá, P =[0,0]= P. ( ) m Pro n, mobělichájefunkcelichá,rostoucínacelémd f,naobr.červená n > nebo ( ) m modrá křivka n <.Pro nliché, msudéjefunkcesudá,klesajícína(,0,rostoucína ( ) m 0,+ ),naobr.zelenákřivka n <. Je-li m liché, n sudé, funkce je definována pouze ( ) m pronezáporná,nenítedanisudá,anilichá.jerostoucí,naobr.fialovákřivka n >. a b c d obr. Označíme-li eponent funkcí postupně a, b, c, d, splňují následující nerovnost: a > b >>c>d..4 Mocnin se záporným eponentem Nejprve budeme uvažovat celočíselný záporný eponent, tj. funkce tvaru: f: = n = n, kde n N. 5

6 D f =R \ {0}, H f =R + pro nsudé, H f =R \ {0} pro nliché. Průsečík s osami nejsou. Podobně jako u celočíselných kladných mocnin je funkce sudá pro n sudé, ale tentokrát rostoucína(,0),aklesajícína(0,+ ),naobr.4modrákřivka. Pro nlichéjefunkcelichá(naobr.4červenákřivka),klesajícína(,0)ana(0,+ ),ale nikoliklesajícínacelémd f! obr.4 Mocninné funkce se záporným racionálním eponentem mají podobný průběh jako mocninné funkce s celočíselným záporným eponentem s tím rozdílem, že v některých případech(pilný čtenářsisámdoplnívkterých)jedefiničníoboratímioborhodnotzúžennar +.Graf všech záporných mocnin prochází bodem[;] a osa, resp. tvoří vodorovnou, resp. svislou asmptotu grafu..5 Mocnin s iracionálním eponentem jsou funkce tvaru: f: = α, kde α je iracionální číslo. Jsou definován pomocí eponenciální a logaritmické funkce (viz dále) vztahem α β = α =e αln. D f =R +, H f =R +. Pro α >0funkceroste,pro α <0funkceklesá, graf vžd prochází bodem[; ]. obr.5 γ α >>β >0>γ 6

7 Eponenciální funkce je každá funkce vjádřená vztahem f: = a, kde a >0, a.narozdílodmocninjenníproměnnánikolivzákladu,aleveponentu. D f =R, H f =R +. Pro a >funkceroste,pro0<a<funkceklesá,grafvždprocházíbodem[0;]=p a osa je vodorovná asmptota grafu. e a e b a c obr.6 e > a > b >>c>0 Mezi všemi eponenciálními funkcemi má výsadní postavení tzv. přirozená eponenciální funkce,tj.ta,kterámázákladrovnýeulerovučíslue. = (jdeoiracionální číslo, proto ta tečka nad rovnítkem). Pomocí této funkce se popisuje řada jevů; např. radioaktivní rozpad prvků, pohlcování elektromagnetického záření a další. Má-li eponenciální funkce o základu e složitější argument, používá se pro ni označení ep(). 4 Logaritmické funkce jsoufunkceinverzníkeponenciálním.logaritmickoufunkciozákladu a, a >0, a zapisujeme vztahem: f: =log a, přičemžplatí: =log a =a,tzn.želogaritmusaeponenciálaostejnémzákladujsou vzájemně inverzní funkce. D f =R +, H f =R. Pro a >funkceroste,pro0 < a <funkceklesá,grafvždprocházíbodem P [;0],osa je svislá asmptota grafu. 7

8 log c log b log a ln a e obr.7 e > a > b >>c>0 Logaritmus o základu e se nazývá přirozený logaritmus a značí se ln. Logaritmus resp. eponenciálu o libovolném základu je možno vjádřit pomocí přirozeného logaritmu resp. eponenciál vztah: log a = ln ln a, a =e lna. 5 Goniometrické funkce Ke goniometrickým funkcím řadíme funkce: sinus, kosinus, tangens a kotangens. Nadefinujeme si je pomocí jednotkové kružnice. V kartézské soustavě souřadnic Ouv je dána v jednotková kružnice (tj. poloměr je ) se středemvbodě O.Zvolímesinějakéreálnéčíslo. V M Pakeistujeprávějedenorientovanýúhel UOV, v M který má počáteční rameno OU v kladné poloose uajednazjehovelikostí je (rad).koncové rameno OV protne kružnici v jediném bodě U M[u M ;v M ].Tímjelibovolnémureálnémučíslu u M O u jednoznačněpřiřazenočíslo u M ačíslo v M.Označíme: v M =sin, u M =cos a příslušné funkce nazveme sinus a kosinus. obr.8 Funkce tangens je definována jako podíl sinu a kosinu, funkce kotangens je převrácená hodnota funkce tangens, tj. podíl kosinu a sinu. tg= sin cos, cotg=cos sin. 8

9 Funkce sinus f: =sin, má D f =R, H f = ;. Jelicháaperiodická snejmenšíperiodou.průsečíksosoujsouvceločíselnýchnásobcích,tj. P =[k;0], k Z,průsečíksosou jepočátek. sin obr.9 Všimnětesi,žepřímka = protínágrafsinupouzevpočátku,nikolivetřechbodech,jakse někdkreslí;jetečnougrafuvpočátku.kromjinéhotoznamená,žeproargumentblízké nule platí: sin ( v rad!), čehož se úspěšně vužívá při různých výpočtech. Funkce kosinus f: =cos, mástejnějakosinus D f =R, H f = ; ajeperiodickásperiodou.narozdílodsinutojefunkcesudá.grafkosinuprotínáosu vlichýchnásobcích /, P = [(k+) ] ;0, P =[0;]. cos obr. 0 Funkcef jeperiodická,jestližeeistujekladnéčíslop,kterésplňuje: a)pro D f a k Zjetaké +kp D f, b)pro D f a k Zje f(+kp)=f().číslopsenazýváperiodafunkcef. 9

10 Funkce tangens f: =tg jedefinovánavztahem: =tg= sin cos. To znamená, že z definičního oboru musíme vloučit bod, ve kterých je kosinus roven nule, tj. liché násobk ( /. Definičním oborem je ted sjednocení nekonečně mnoha otevřených intervalů tvaru (k ) ) ;(k+) = ( + k; ) + k, což zapisujeme následovně. D f = ( + k; ) + k, k Z H f =R. Tangens je funkce lichá, periodická s periodou. Na každém z intervalů ( + k; ) + k jerostoucí.průsečíkgrafufunkcesosoujsouvbodech P =[k;0], k Z,osuprotíná graf v počátku. Bod, kde funkce tangens není definována, prochází svislé asmptot grafu. tg obr. Podobnějakotomublousinu,iutangentproargumentblízkénulejetg ;přímka = jeopěttečnougrafuvbodě[0,0]. 0

11 Funkce kotangens f: =cotg jedefinovánavztahem: =cotg= cos sin. Z definičního oboru jsou ted vloučen všechn celočíselné násobk, neboť sin k = 0. D f = (0+k;+ k), k Z H f =R. cotg obr. Kotangensjefunkcelicháaperiodickásperiodou.Nakaždémzintervalů(0+k;+ k) je klesající. Graf funkce má v celočíselných násobcích svislé asmptot, průsečík s osou jsou P = [(k+) ] ;0, průsečík s osou neeistuje. Poznámka: Funkce tangens se též značí tan (např. na kalkulačkách), funkce kotangens bývá též značena ctan. Kotangens na kalkulačkách většinou nenajdete, vjadřuje se pomocí tangent, nebo pomocí sinu a kosinu.

12 Nakonec tabulka hodnot, které není špatné si pamatovat sin 0 cos tg cotg Cklometrické funkce jsou funkce inverzní ke goniometrickým, jejichž definiční obor je zúžen na interval, kde jsou monotónní, ted prosté(jinak b inverzní funkce neeistovala). Uvažujmefunkci = sin sdefiničnímoboremd f = ;.Natomto intervalu je funkce sinus rostoucí(viz obr. 9), takže eistuje inverzní funkce nazývá se arkussinus a značí arcsin. Funkce arkussinus f: =arcsin, má D f = ;, H f = ; aplatí =arcsin =sin.jetofunkcelicháarostoucí.grafprocházípočátkemaje osověsouměrnýsgrafemsinupodleosprvníhoatřetíhokvadrantu(přímk = ). arcsin arcsin obr. obr. 4

13 Funkce arkuskosinus f: =arccos jeinverznífunkcekfunkcicos definovanéna 0;.Platí: =arccos =cos. D f = ;, H f = 0;, Funkceneníanisudáanilicháajeklesající.Grafjeosověsouměrnýsgrafemkosinupodle přímk =,osu protínávbodě P [ 0; ]. arccos arccos obr. 5 obr. 6 Funkce arkustangens f: =arctg je inverzní funkce k funkci tg definované na ( ; ).Platí: =arctg =tg. D f =R ( H f = ; ). Funkce je lichá a rostoucí. Graf(obr. 7) je osově souměrný s grafem tangent podle přímk =,osu iosu protínávpočátku.mávodorovnéasmptot = pro +, = pro. Funkce arkuskotangens f: =arccotg jeinverznífunkcekfunkcicotg definovanéna(0;).platí: =arccotg =cotg. D f =R H f =(0;).

14 arctg obr. 7 arccotg obr. 8 Funkce arkuskotangens je klesající, není[ ani sudá ani lichá. Graf je osově souměrný s grafem funkcecotg podlepřímk =, P = 0, ],vodorovnáasmptotapro + jeosa, pro jetopřímka =. 4

15 Tím je uzavřen přehled základních elementárních funkcí. Ostatní elementární funkce se z těchto základních dostanou aritmetickými operacemi a skládáním funkcí. A ještě malý přídavek. Následující funkce se mezi elementární neřadí, ale často se s nimi můžetesetkat.jetotzv.znaménkováfunkcenebolifunkcesignumafunkce celáčást. Funkce signum je definována předpisem: f: =sgn =, pro >0 0, pro =0, pro <0 D f =R, H f = {,0,}. Signumjefunkcelicháaneklesající,grafjenaobrázku9. 4 [] obr. 9 sgn obr. 0 Funkce celá část se obvkle značí hranatými závorkami kolem proměnné a je definována takto: f: =[]=npro n,n+),kde n Z. D f =R, H f =Z. Funkce[]jeneklesající.Grafemjsou schod,levýkrajníbodpříslušnéúsečkdografu patří(plné kolečko), pravý krajní bod nikoli(prázdné kolečko). Na závěr bch ráda poprosila laskavého čtenáře, ab mne upozornil na případné chb(zpráva autorovi) jakéhokoli druhu, které v tetu nalezne. 5

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že .5. Cíle Uvedeme nní několik unkcí, z nichž většinu studenti znají již ze střední škol. Nazveme je základní elementární unkce. Konečným počtem sčítání, odčítání, násobení, dělení, skládání a případně invertování

Více

Funkce. Vlastnosti funkcí

Funkce. Vlastnosti funkcí FUNKCE Funkce zobrazení (na číselných množinách) předpis, který každému prvku z množiny M přiřazuje právě jeden prvek z množiny N zapisujeme ve tvaru y = f () značíme D( f ) Vlastnosti funkcí 1. Definiční

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. /8 3. Elementární funkce. 3. Elementární funkce. Matematická analýza ve Vesmíru.

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplín společného

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného

Více

FUNKCE, ZÁKLADNÍ POJMY

FUNKCE, ZÁKLADNÍ POJMY MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

FUNKCE, ZÁKLADNÍ POJMY

FUNKCE, ZÁKLADNÍ POJMY MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného

Více

FUNKCE A JEJICH VLASTNOSTI

FUNKCE A JEJICH VLASTNOSTI PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic

Více

P ˇ REDNÁŠKA 3 FUNKCE

P ˇ REDNÁŠKA 3 FUNKCE PŘEDNÁŠKA 3 FUNKCE 3.1 Pojem zobrazení a funkce 2 3 Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic (x, y) A B,

Více

Cyklometrické funkce

Cyklometrické funkce 4 Cyklometrické funkce V minulé kapitole jsme zkoumali první funkci inverzní ke funkci goniometrické (tyto funkce se nazývají cyklometrické) funkci y = arcsin x (inverzní k funkci y = sin x ) Př: Nakresli

Více

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f.

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f. 1. Funkce Deinice 1.1. Zobrazení nazýváme reálná unkce, jestliže H() R. Další speciikaci můžeme provést podle deiničního oboru zobrazení. Deinice 1.2. Reálná unkce se nazývá (1) unkce jedné reálné proměnné,

Více

soubor FUNKCÍ příručka pro studenty

soubor FUNKCÍ příručka pro studenty soubor FUNKCÍ příručka pro studenty 1 Obsah Poznámky 6 lineární funkce mocninné funkce s přirozeným exponentem o sudým o lichým s celým záporným exponentem o sudým o lichým s racionálním exponentem o druhá

Více

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.

Více

4. Funkce Funkce. S pojmem funkce jsme se setkali již v Kapitole 1F Zobrazení. Připomeňme základní pojmy.

4. Funkce Funkce. S pojmem funkce jsme se setkali již v Kapitole 1F Zobrazení. Připomeňme základní pojmy. . Funkce.. Funkce Verze. prosince 6 S pojmem funkce jsme se setkali již v Kapitole F Zobrazení. Připomeňme základní pojm. Zobrazení z množin X do množin Y je formálně podmnožina F kartézského součinu X

Více

27. června Abstrakt. druhá odmocnina a pod. jsou vynechány. Také je vynechán např. tangensu.) 1 x ln x. e x sin x. arcsin x. cos x.

27. června Abstrakt. druhá odmocnina a pod. jsou vynechány. Také je vynechán např. tangensu.) 1 x ln x. e x sin x. arcsin x. cos x. Základní elementární funkce Robert Mařík 7. června 00 ln e sin arcsin cos arccos tg arctg Abstrakt V tomto dokumentu jsou uvedeny základní vlastnosti nejdůležitějších základních elementárních funkcí. (Triviální

Více

Základní elementární funkce

Základní elementární funkce Základní elementární funkce Základní elementární funkce Za základní elementární funkce považujeme funkce: a) eponenciální a logaritmické; b) obecné mocninné; c) goniometrické a cklometrické; d) hperbolické

Více

Matematika 1. Matematika 1

Matematika 1. Matematika 1 5. přednáška Elementární funkce 24. října 2012 Logaritmus a exponenciální funkce Věta 5.1 Existuje právě jedna funkce (značíme ji ln a nazýváme ji přirozeným logaritmem), s následujícími vlastnostmi: D(ln)

Více

2. FUNKCE Funkce 31

2. FUNKCE Funkce 31 Základ matematik FUNKCE 0 Základní vlastnosti Ohraničená a neohraničená funkce Monotónnost funkce, funkce rostoucí a klesající Prostá funkce Sudá a lichá funkce 7 Periodická funkce 9 Inverzní funkce 0

Více

0.1 Funkce a její vlastnosti

0.1 Funkce a její vlastnosti 0.1 Funkce a její vlastnosti Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R

h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R .4. Cíle V této kapitole jsou deinován nejdůležitější pojm týkající se vlastností unkcí. Při dalším studiu budou tto vlastnosti často používán. Je proto nutné si jejich deinice dobře zapamatovat. Deinice.4..

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její

Více

4.2. CYKLOMETRICKÉ FUNKCE

4.2. CYKLOMETRICKÉ FUNKCE 4.. CYKLOMETRICKÉ FUNKCE V této kapitole se dozvíte: jak jsou definovány cyklometrické funkce a jaký je jejich vztah k funkcím goniometrickým; základní vlastnosti cyklometrických funkcí; nejdůležitější

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Elementární funkce. Polynomy

Elementární funkce. Polynomy Elementární funkce 1 Elementární funkce Elementární funkce jsou níže uvedené funkce a jejich složenin : 1. Polnom.. Racionální funkce. 3. Mocninné funkce. 4. Eponenciální funkce. 5. Logaritmické funkce.

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R + Funkce. Vlastnosti funkcí Funkce f proměnné R je zobrazení na množině reálných čísel (reálnému číslu je přiřazeno právě jedno reálné číslo). Z grafu poznáme, zda se jedná o funkci tak, že nenajdeme žádnou

Více

Cyklometrické funkce

Cyklometrické funkce 4..7 Cyklometrické funkce Předpoklady: 46 Cyklometrické funkce: funkce inverzní k funkcím goniometrickým z minulé hodiny známe první cyklometrickou funkci y = arcsin x (inverzní k funkci y = sin x ). Př.

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

Číselné množiny. Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, }

Číselné množiny. Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, } ÚVOD DO MATEMATIKY Číselné množin Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, } Racionální čísla (Q) Čísla která lze vjádřit

Více

4. Funkce Funkce. S pojmem funkce jsme se setkali již v Kapitole 1F Zobrazení. Připomeňme základní pojmy.

4. Funkce Funkce. S pojmem funkce jsme se setkali již v Kapitole 1F Zobrazení. Připomeňme základní pojmy. 4. Funkce 4. 4. Funkce Verze. prosince 06 S pojmem funkce jsme se setkali již v Kapitole F Zobrazení. Připomeňme základní pojm. Zobrazení z množin X do množin Y je formálně podmnožina F kartézského součinu

Více

1. Písemka skupina A...

1. Písemka skupina A... . Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce

Více

Proseminář z matematiky pro fyziky

Proseminář z matematiky pro fyziky Proseminář z matematiky pro fyziky Mgr. Jan Říha, Ph.D. e-mail: riha@prfnw.upol.cz http://www.ictphysics.upol.cz/proseminar/inde.html Katedra eperimentální fyziky Přírodovědecká fakulta UP Olomouc Podmínky

Více

2. FUNKCE JEDNÉ PROMĚNNÉ

2. FUNKCE JEDNÉ PROMĚNNÉ 2. FUNKCE JEDNÉ PROMĚNNÉ Funkce 2.. Definice Říkáme, že na množině D reálných čísel je definována funkce f jedné reálné proměnné, je-li dán předpis, podle kterého je ke každému číslu x D přiřazeno právě

Více

Kapitola 1: Reálné funkce 1/20

Kapitola 1: Reálné funkce 1/20 Kapitola 1: Reálné funkce 1/20 Funkce jedné proměnné 2/20 Definice: Necht M R. Jestliže každému x M je přiřazeno jistým předpisem f právě jedno y R, říkáme, že y je funkcí x. x... nezávisle proměnná (neboli

Více

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí.

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí. Přehled funkcí Martina Hetmerová Gymnázium Přípotoční 1337 Praha 10 Vlastnosti funkcí Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo Zapisujeme: f:y=f(x)

Více

8. Elementární funkce. I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k k!.

8. Elementární funkce. I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k k!. 8. Elementární funkce I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k = k!. Vlastnosti exponenciální funkce: a) řada ( ) konverguje absolutně

Více

Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4.

Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4. ..6 Funkce Arcsin Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = je číslo, jehož druhá mocnina se rovná. - - - - - - y = y = Eponenciální

Více

funkce konstantní (y = c); funkce mocninné (y = x r pro libovolné r R, patří sem tedy i

funkce konstantní (y = c); funkce mocninné (y = x r pro libovolné r R, patří sem tedy i Přednáška č. 6 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 6 29. října 2007 1 / 64 Přehled elementárních funkcí Jde o pojem spíše historický než matematický. Vymezuje se několik (základních)

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální

Více

Funkce arcsin. Některé dosud probírané funkce můžeme spojit do dvojic: 4 - je číslo, které když dám na druhou tak vyjde 4.

Funkce arcsin. Některé dosud probírané funkce můžeme spojit do dvojic: 4 - je číslo, které když dám na druhou tak vyjde 4. .. Funkce arcsin Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = - je číslo, které když dám na druhou tak vyjde - - - - - - y = y = Eponenciální

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

2 Reálné funkce jedné reálné proměnné

2 Reálné funkce jedné reálné proměnné 2 Reálné funkce jedné reálné proměnné S funkcemi se setkáváme na každém kroku, ve všech přírodních vědách, ale i v každodenním životě. Každá situace, kd jsou nějaký jev nebo veličina jednoznačně určen

Více

Úvod, základní pojmy, funkce

Úvod, základní pojmy, funkce Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 69 Obsah 1 Matematická logika 2 Množiny 3 Funkce,

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 1. Elementární funkce 1.2. Přehled elementárních funkcí 2 Lineární funkce - je každá funkce na množině R, která je dána ve tvaru y = a.x + b, kde a,b R. Pokud

Více

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje

Více

(Zavedení pojmu funkce, vlastnosti. Repetitorium z matematiky

(Zavedení pojmu funkce, vlastnosti. Repetitorium z matematiky Funkce Zavedení pojmu unkce, vlastnosti unkcí,lineární, kvadratické a mocninné unkce Repetitorium z matematik Podzim 01 Ivana Medková A Zavedení pojmu unkce V odorných a přírodovědných předmětech se často

Více

Přednáška 1: Reálná funkce jedné reálné proměnné

Přednáška 1: Reálná funkce jedné reálné proměnné Přednáška : Reálná unkce jedné reálné proměnné Pojem unkce Deinice Reálnou unkcí jedné reálné proměnné rozumíme předpis y ( ) na jehož základě je každému prvku množiny D (zvané deiniční obor) přiřazen

Více

Matematika a 2. března 2011

Matematika a 2. března 2011 Přednáška č. 3 Matematika 2 Jiří Fišer 1. a 2. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 3 1. a 2. března 2011 1 / 68 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 3 1.

Více

Funkce kotangens. cotgα = = Zopakuj všechny části předchozí kapitoly pro funkci kotangens. B a

Funkce kotangens. cotgα = = Zopakuj všechny části předchozí kapitoly pro funkci kotangens. B a 4.. Funkce kotangens Zopakuj všechny části předchozí kapitoly pro funkci kotangens. c B a A b C Tangens a kotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá

Více

8. Elementární funkce

8. Elementární funkce Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne

Více

1.1 Funkce 1. Tab. 1: Omezující funkce definičního oboru. 1 V tomto textu se pojmem funkce uvažuje funkce jedné proměnné

1.1 Funkce 1. Tab. 1: Omezující funkce definičního oboru. 1 V tomto textu se pojmem funkce uvažuje funkce jedné proměnné 1.1 Funkce 1 V životě se běžně setkáváme se vztahem závislosti mezi různými proměnnými. Takovým vztahem závislosti může být například cena akciového titulu v závislosti na čase nebo teplota v místnosti

Více

Obecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g

Obecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g Složená funkce Obecnou definici vynecháme Jednoduše řečeno: složenou funkci dostaneme, když do funkce y f dosadíme za argument funkci g Potom y f g Funkce f je vnější složka, funkce g vnitřní složka Pochopitelně

Více

Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov

Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov Protokol SADA DUM Číslo sady DUM: VY_4_INOVACE_MA_ Název sady DUM: Funkce a rovnice I. Název a adresa školy: Střední průmyslová škola, Hronov, Hostovského 90, 549 3 Hronov Registrační číslo projektu: Číslo

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení .. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému

Více

Exponenciální funkce teorie

Exponenciální funkce teorie Eponenciální funkce teorie Eponenciální funkce je dána rovnicí f : = a, a ( 0,) (, ) Poznámka: pokud bchom připustili a =, vznikla b funkce konstantní pokud bchom připustili a < 0, nebla b funkce definována

Více

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.) Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

7. Funkce jedné reálné proměnné, základní pojmy

7. Funkce jedné reálné proměnné, základní pojmy , základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

PRACOVNÍ SEŠIT FUNKCE. 4. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT FUNKCE. 4. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 4. tematický okruh: FUNKCE vytvořila: RNDr. Věra Effenberger epertka na online přípravu na SMZ z matematiky

Více

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu 22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Reálné funkce 1 / 21 Matematika 1 pro PEF PaE 1. Reálné funkce Přemysl Jedlička Katedra matematiky, TF ČZU funkce Reálné funkce Základní pojmy 2 / 21 Zobrazení z množiny A do množiny B je množina f uspořádaných

Více

Funkce pro studijní obory

Funkce pro studijní obory Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

8 Limita. Derivace. 8.1 Okolí bodu. 8.2 Limita funkce

8 Limita. Derivace. 8.1 Okolí bodu. 8.2 Limita funkce 8 Limita Derivace 81 Okolí bodu Okolím bodu a nazveme otevřený interval (a r, a + r), kde a, r jsou reálná čísla Číslo r je poloměr okolí, a jeho střed Okolí bodu a lze zapsat a

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE

INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE. Součin 5 4 je roven číslu: a) 4, b), c), d), e) žádná z předchozích odpovědí není správná. 5 5 5 5 + + 5 5 5 5 + + 4 9 9 4 Správná odpověď je a) Počítání

Více

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost .7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,

Více

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou

Více

Tento text se snaží být takovým atlasem elementárních funkcí podobně jako atlas hub, ptáků či květin.

Tento text se snaží být takovým atlasem elementárních funkcí podobně jako atlas hub, ptáků či květin. A T L A S F U N K C Í Každý absolvent(ka) gynázia či střední odborné školy zaěřené na techniku by si ěl(a) do života po aturitě odnést povědoí o eleentárních funkcích, jejich seznau a vlastností jednotlivých

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená

Více

Určete a graficky znázorněte definiční obor funkce

Určete a graficky znázorněte definiční obor funkce Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro

Více

Inovace a zkvalitnění výuky prostřednictvím ICT

Inovace a zkvalitnění výuky prostřednictvím ICT Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Téma: Název: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Funkce Funkce a její vlastnosti Ing. Vacková Věra

Více

I. Úvod. I.1. Množiny. I.2. Výrokový a predikátový počet

I. Úvod. I.1. Množiny. I.2. Výrokový a predikátový počet I. Úvod I.1. Množiny Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Značení. Symbol x A značí, že element x je prvkem množiny A. Značení x

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Funkce. b) D =N a H je množina všech kladných celých čísel,

Funkce. b) D =N a H je množina všech kladných celých čísel, Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (

Více

a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj.

a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj. @121 12. Mocninné funkce a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj. řekli: 1. Je-li exponent r přirozené číslo, může

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) = Příklad 1 Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3 c) (, ) = d) (, ) = e) (, ) = ln f) (, ) = 1 +1 g) (, ) = arcsin( + ) Poznámka V těchto úlohách máme nalézt největší

Více

Matematika I Reálná funkce jedné promìnné

Matematika I Reálná funkce jedné promìnné Matematika I Reálná funkce jedné promìnné RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Reálná funkce Def. Zobrazení f nazveme

Více

Kapitola1. Lineární lomená funkce Kvadratická funkce Mocninná funkce s obecným reálným exponentem Funkce n-tá odmocnina...

Kapitola1. Lineární lomená funkce Kvadratická funkce Mocninná funkce s obecným reálným exponentem Funkce n-tá odmocnina... Kapitola1 Základní soubor funkcí v R Lineární funkce.......................................................... 1-1 Kvadratická funkce...................................................... 1-2 Mocninná

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace

Více

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0. Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo

Více

Zadání. Goniometrie a trigonometrie

Zadání. Goniometrie a trigonometrie GONIOMETRIE A TRIGONOMETRIE Zadání Sestrojte graf funkce. Určete definiční obor R, obor hodnot H, určete interval, v němž funkce roste, v němž klesá. Určete souřadnice průsečíků s osou x a s osou y. )

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 2. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 17. února 2010 Jan Tomeček, tomecek@inf.upol.cz

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Petr Hasil. c Petr Hasil (MUNI) Množiny, číselné obory, funkce MA I (M1101) 1 / 125

Petr Hasil. c Petr Hasil (MUNI) Množiny, číselné obory, funkce MA I (M1101) 1 / 125 Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce MA I (M1101) 1 / 125 Obsah 1 Množiny a číselné obory Množinové operace Reálná

Více

Úvod, základní pojmy, funkce

Úvod, základní pojmy, funkce Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 80 Obsah 1 Matematická logika 2 Množiny 3 Funkce,

Více

Matematick y semin aˇ r RNDr. Edita Kol aˇ rov a USTAV MATEMATIKY

Matematick y semin aˇ r RNDr. Edita Kol aˇ rov a USTAV MATEMATIKY Matematický seminář RNDr. Edita Kolářová ÚSTAV MATEMATIKY Matematický seminář Obsah Přehled použité symboliky 4 Základní pojmy matematické logiky a teorie množin 5. Elementy matematické logiky.........................

Více

Funkce tangens. cotgα = = B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá.

Funkce tangens. cotgα = = B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá. 4..0 Funkce tangens c B a A b C Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá cotgα = = a protilehlá Pokud chceme definici pro všechna x R nemůžeme

Více

a základ exponenciální funkce

a základ exponenciální funkce Předmět: Ročník: Vtvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 5. červenec 0 Název zpracovaného celku: EXPONENCIÁLNÍ A LOGARIMICKÁ FUNKCE EXPONENCIÁLNÍ FUNKCE Eponenciální unkce o základu a je každá

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více