Funkce. b) D =N a H je množina všech kladných celých čísel,

Podobné dokumenty
Příklady k přednášce 3

1. Písemka skupina A...

h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R

Cyklometrické funkce

Kapitola 1: Reálné funkce 1/20

Exponenciální funkce. Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí. Číslo a je kladné číslo, různé od jedničky a xεr.

Funkce základní pojmy a vlastnosti

Zadání. Goniometrie a trigonometrie

0.1 Funkce a její vlastnosti

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

Matematika I (KMI/PMATE)

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu,

Kapitola 1: Reálné funkce 1/13

Funkce. Obsah. Stránka 799

Matematika (KMI/PMATE)

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Funkce kotangens. cotgα = = Zopakuj všechny části předchozí kapitoly pro funkci kotangens. B a

Opakování k maturitě matematika 4. roč. TAD 2 <

0.1 Úvod do matematické analýzy

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)

FUNKCE, ZÁKLADNÍ POJMY

Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.

Ukázka závěrečného testu

Funkce základní pojmy a vlastnosti

FUNKCE, ZÁKLADNÍ POJMY

Funkce kotangens

Soubor příkladů z Matematické analýzy 1 (M1100) 1

Cyklometrické funkce

Matematika I A ukázkový test 1 pro 2014/2015

Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou

Funkce. Vlastnosti funkcí

Modelové úlohy přijímacího testu z matematiky

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

Funkce základní pojmy a vlastnosti

Otázky z kapitoly Stereometrie

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e)

Proseminář z matematiky pro fyziky

Diferenciální počet funkcí jedné proměnné

2. Vlastnosti elementárních funkcí, složené, inverzní a cyklometrické funkce,

Modelové úlohy přijímacího testu z matematiky

Očekávaný výstup Pracovní list se skládá ze dvou částí teoretické, kde si žák připomene vlastnosti funkcí a praktické, kde tyto funkce určuje.

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že

GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Bakalářská matematika I

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0

Elementární funkce. Polynomy

Katedra aplikované matematiky, VŠB TU Ostrava.

Repetitorium matematiky (pomocný učební text soubor testů s výsledky) KMA/P113, KMA/K113

Exponenciální a logaritmická funkce

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

1. Písemka skupina A1..

Maturitní nácvik 2008/09

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je

4.2.9 Vlastnosti funkcí sinus a cosinus

7. Funkce jedné reálné proměnné, základní pojmy

Funkce - pro třídu 1EB

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí.

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Určete a graficky znázorněte definiční obor funkce

Diferenciální počet funkcí jedné proměnné

Matematická analýza I pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz

Funkce tangens. cotgα = = B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá.

3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE

Kapitola 1: Reálné funkce 1/13

3. ledna list a odevzdejte tento zvláštní list (listy) i všechny ostatní listy, které jste při řešení

Opakovací kurs středoškolské matematiky podzim

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

13. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET

Exponenciální funkce teorie

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

CVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina

30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Funkce tangens. cotgα = = Předpoklady: B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá

Základy matematiky pracovní listy

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Funkce arcsin. Některé dosud probírané funkce můžeme spojit do dvojic: 4 - je číslo, které když dám na druhou tak vyjde 4.

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza pro informatiky I.

Úvod, základní pojmy, funkce

Univerzita Karlova v Praze Pedagogická fakulta

Transkript:

Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f ( ) je objem otevřené krabice která je vyrobena z obdélníkového kartonu 0 8cm tak že se v rozích vyřízly čtverce o straně a vzniklé obdélníky po stranách se ohnuly nahoru. ) Najděte alespoň jednu funkci s definičním oborem D a oborem hodnot H tak aby platilo: D R a H { } b) D N a H je množina všech kladných celých čísel D R \ a H je libovolný. c) { } ) V následujícím obrázku jsou nakresleny křivky. Ve kterém případě se může jednat o graf nějaké funkce a ve kterém ne? 4) Zjistěte které z následujících funkcí f g resp. h (s přirozeným definičním oborem) se sobě rovnají: f ( ) g( ) b) f ( ) g( ) c) f ( ) g( ) + + f ( ) ln g( ) ln e) f g ( ) h ( ) ( ) ( ). ) Najděte zúžení funkcí z předchozího příkladu tak aby se takto vzniklé funkce sobě rovnaly. ) Najděte (přirozené) definiční obory následujících funkcí f je-li f ( ) rovno: 7 + + b) + + + 4 f) ( ) e) + h) ( )( + ) i)

j) k) + l) 4 4 m) 4 4 p) ln ( ) n) ( ) r) ln ( e e ) + o) s) t) tg u) ln ( cos ) v) ) sin ln + y) sin z) + ln + + sin + 9 + sin 7) Doplňte chybějící sloupce v následující tabulce (znak N znamená že funkce není definovaná): f ( ) g( ) ( f + ( ) ( f ( ) ( f ( ) a b 0 c d N e N 8) Pro zadané funkce f a g najděte f f + g f g fg g / f : f ( ) g( ) b) f ( ) g( ) c) f ( ) + g( ) + 0 pro 0 0 pro 0 f ( ) g( ). pro > 0 pro > 0 9) Pro funkci f platí f ( + ) f ( ) + f () + R. Čemu se rovná f (0)? b) Je-li navíc f () najděte f () f () f ( ). 0) Pro funkci f platí f ( + y) f ( ) + f ( y) y R. Čemu se rovná f (0)? b) Ukažte že platí f ( ) f ( ) f ( ) f ( ) R. c) Je-li navíc f () najděte f () f () f ( ). ) Nechť funkce f je definovaná předpisem + b) f ( ) ( f ( ) ) f ( ) f ( ) f ( ) + f ( + ) e) ( ) f ( ). Ověřte zda platí c) f +. f ( ) + g / f ( ) ( f f g + )( ) f ( ) f ( )

) Najděte funkce f g pro které platí f ( ) a + b f () f ( ) 4 b) g a b c g g g ( ) + + (0) ( ) () 8. f f () g g (). Vypočítejte ( ) ( ) ) Najděte alespoň tři příklady funkce f pro kterou platí f ( + y) f ( ) + f ( y) f ( a ) a f ( ). Pokuste se formulovat obecný předpis pro funkce s těmito vlastnostmi. 4) Pomocí grafu funkce y nakreslete grafy funkcí f ( ) g( ) ( + ) h( ) k( ) ( ) +. ) Pomocí grafu funkce f ( ) nakreslete grafy funkcí ( ) ( ) + ( ) + ( ) + f g h ) Nakreslete graf funkce f ( ) +. 7) Pomocí grafu funkce ( ) f nakreslete grafy funkcí g( ) + h( ) k( ). 8) Nakreslete graf funkce + f ( ). 9) Známe-li graf funkce f jak sestrojíme graf funkce g pro kterou platí c a R : ( ) g( ) f ( ) b) g( ) f ( ) c) g( ) f ( + c) g( ) f ( ) + c e) g( ) a f ( ) f) g( ) f ( a ) g( ) f ( ) h) g( ) f ( )? Postup. vysvětlete obecně. demonstrujte na grafu funkce f v obrázku. 0) Pomocí známých grafů funkcí y b) y c) y sin y ln a y funkcí y y + y y + y y + y ; b) e sestrojte grafy y 4 y y y y + y y ( + ) y ( ) 4 ( ) ( ) 4 4 8 ; y y + y + + y + + c) y sin y sin y sin y sin( + ) y sin ; e) y y y y ln( ) ln ln ln ; 0 y e y e y e y + e y e y e. ) Znázorněte graficky řešení rovnic s absolutní hodnotou příklady ) 7) a 9) ) Znázorněte graficky řešení nerovnic s absolutní hodnotou příklady 4) ) a ).

) Pro která platí 7 b) 8 + 49 e) + 4 c) 4 8 f) + 4 4 8? 4) Řešte eponenciální rovnice 9 + 0 b) 4 + c) + 4 90 0 +. ) Pro která platí log b) log ( ) <? ) Řešte logaritmické rovnice ln( ) ln(4 ) b) log( + ) + log( ) log + log( + ) c) log(4 + ) log( ) log( + ) log + e) ln( ) + ln( + ) ln f) log. log 7 77 49 7) Určete sin( π ) b) tg( π ) c) cos( π ) sin( π ) e) tg( π ) f) cotg( π ). 8) Pro která R platí sin > 0 cos > 0 b) sin 0 cos 0 c) sin 0 cos < 0? π 9) Pro ( π ) platí sin. Vypočítejte cos tg a cotg. 8 0) Najděte všechna Rpro která platí: sin b) cos c) cos cotg e) tg. ) Najděte všechna R pro která platí: sin b) sin. ) Zjednodušte následující výrazy: 4 4 cos sin cos b) cos sin cotg tg c) sin cos e) ( + tg ) + tg f) sin cotg + + cos cotg + cotg y. tg + tg y ) Je-li funkce f rostoucí je nutně funkce f rostoucí b) funkce f klesající c) funkce f rostoucí funkce f klesající (pro všude nenulovou funkci f)? 4) Nechť funkce f a g jsou definovány na stejném intervalu. Jsou-li funkce f i g rostoucí je i funkce f + g rostoucí? b) Najděte rostoucí funkci f a klesající funkci g tak aby funkce f + g byla rostoucí. ) Nechť f je lichá funkce která je definovaná pro 0. Jakou zde má funkční hodnotu? ) Najděte konstantu k tak aby f ( ) + k + byla sudá b) f ( ) k + byla lichá.

7) Ukažte že pro libovolnou funkci f definovanou na intervalu ( a f ( ) + f ( ) je sudá a f ( ) f ( ) je lichá funkce. a > 0 platí že 8) Zjistěte které z uvedených funkcí jsou sudé resp. liché: f ( ) b) f ( ) c) f ( ) f ( ) e) f ( ) f) f ( ) + f ( ) h) f ( ) i) f ( ) 4 + 4 j) 4 f ( ) + k) f ( ) + sin l) f ( ) cos ( π ) m) sin f ( ) n) f ( ) 4 + cotg o) f ( ) sin cos p) f ( ) cos r) + tg + sin f ( ) s) f ( ) + cos cos e + e a + t) f ( ) u) f ( ) v) f ( ) a ) f ( ) ln y) f ( ) ln + f ( ) ln ( ). 9) Nechť jsou funkce f a g periodické se stejnou periodou. Ukažte že funkce f + g f g f / g jsou také periodické. 40) Nechť funkce f je periodická s periodou p. Je-li a 0 jakou periodu má funkce f ( a )? 4) Zjistěte které z následujících funkcí jsou periodické a najděte jejich periodu. f ( ) b) f ( ) sin c) f ( ) + cos + cos f ( ) sin e) π f) f ( ) sin ( ) f ( ) cos + f ( ) sin h) f ( ) cos π i) f ( ) cos sin j) f ( ) ln(cos + sin ) k) f ( ) sin + tg l) + sin f ( ). 4) Ukažte že platí: Všechny konstantní funkce jsou ohraničené. b) Je-li funkce f ohraničená na intervalu I je také - f ohraničená na tomto intervalu. c) Jsou-li funkce f a g ohraničené na intervalu I je také funkce f + g ohraničená na I. 4) Ukažte že inverzní funkce k prosté liché funkci je opět lichá. Co můžeme říci o inverzní funkci k prosté sudé funkci? 44) Zjistěte které z následujících funkcí jsou prosté a najděte k nim inverzní funkce: f ( ) b) f ( ) ( )( + ) c) f ( ) + f ( ) e) f ( ) + f) f ( ) + sin f ( ) 4 h) f ( ) i) f ( ) + + e

j) f ( ) + ln k) f ( ) log ( ) + + l) f ( ). > 4) Ve druhém sloupci najděte funkce inverzní k funkcím v prvním sloupci. f( ) g + ( ) f ( ) g ( ) f( ) + g( ) f4 ( ) g4 ( ) f ( ) g + ( ) + 4 4) Může být funkce sama k sobě inverzní? 47) Ukažte že každá z následujících funkcí je sama k sobě inverzní a nakreslete jejich grafy (v př. pro a b ). f ( ) b) f ( ) c) f ( ) + f ( ) e) f ( ) + f) ( ) f + a + b f ( ) h) f ( ) pro 0. a 48) Následující složené funkce rozložte na jednotlivé složky. Určete (přirozené) definiční obory daných funkcí pomocí definičních oborů jednotlivých složek. f ( ) b) + f ( ) cotg ( ) e f ( ) + + e) f ( ) sin ( sin(sin ) ) h) f ( ) ln ( sin ) c) f ( ) 4 ( 4 ) + f) f ( ) sin ( cos ) i) ( ) 49) Ověřte zda následující funkce splňují vztah ( ( )) f f f : f ( ) b) f ( ) c) f ( ) a + b kde a + b. 0) Najděte funkce f ( t ) pro které platí: f ( ) b) f ( + ) c) f ( ) f) f ( ) 4 f ( ) 4 f ( ) i) f ( ) + h) f ( ) 4 sin f ( ) ln. + sin f ( ) + e) f ( ) 4 j) ( ) 4 f.