758 Středová rovnice elips Předpokld: 7501, 7507 Př 1: Vrchol elips leží v odech A[ 1;1], [ 3;1], [ 1;5], [ 1; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele, nkreslíme si orázek: [1;5] A[-1;1] [3;1] - - x - - [1;-3] elips je svisle orientovná ohnisk neleží n přímce A le n přímce Střed elips = střed úsečk A: S 1 + 3 1 1 ; + = [ 1;1] Vodorovná poloos (nní vedlejší) = SA = Svislá poloos (nní hlvní) = S = Výstřednost: = + e e = = = 3 Ohnisk (posunutá od středu o e ve svislém směru) F 1 3;1, E 1 + 3;1 Př : Je dán elips se středem v počátku soustv souřdnic, hlvní poloosou, vedlejší poloosou výstředností e Urči souřdnice jejích ohnisek vrcholů N zákldě rovnosti z definice elips, pozntků o vzájemných vztzích prmetrů,, e odvoď rovnici této elips Stejný příkld jko předchozí, jenom máme písmenk místo čísel S 0;0 Střed elips je v počátku [ ] 1
[0; ] [- ;0] e E[- e;0] S[0;0] F[ e;0] A[ ;0] [0; -] Hlvní vrchol (posunuté od středu o ve vodorovném směru): A[ ;0], [ ;0] Vedlejší vrchol (posunuté od středu o ve svislém směru): [ 0; ]; [ 0; ] Ohnisk (posunutá od středu o e ve vodorovném směru): F [ e ;0], E [ e;0] od X [ x; ] leží n elipse, pokud vhovuje podmínce XE + XF = 1 1 x e + e + x f + f = osdíme do rovnice: osdíme souřdnice odů E [ e;0] F [ e ;0]: ( ( )) ( ) x e + 0 + x e + 0 = x + e + + x e + = / x + e + + x + e + x e + + x e + = x + ex + e + + x + e + x e + + x ex + e + = ( + ) + ( ) + + ( + + ) = ( x + e) + ( x e) + = ( x + e + ) x e x e x e / : / ( x + e) + ( x e) + = ( x + e + ) ( x + e) ( x e) + ( x + e) + ( x e) + = ( x + e + ) + ( x + e + ) Přestává to ýt únosné, necháme se rdši podt, rovnici je možné uprvit do tvru: e x + = e použijeme e = x + = / : + = 1 (rovnice elips) Zývá dokázt, že získná rovnice je ekvivlentní s původní rovnicí Tomu se vhneme stejně, jko jsme se vhnuli uprvování rovnice, spolehneme se n práci jiných, kteří to dokázli před námi Elips, jejíž os jsou shodné s osmi soustv souřdnic ( jejíž střed ted leží v počátku soustv souřdnic), je popsán rovnicí + = 1 Podle vzájemné velikost prmetrů, mohou nstt tři možnosti:
E e F A S x E=S=F A x E S e A x F > e = = < e = ležtá elips kružnice x + = stojtá elips ohod o znčení: Existují různé způso znčení poloos vrcholů elips Neexistuje žádný mtemtický důvod, proč se mohl používt pouze jeden z nich M udeme dodržovt nepsnou úmluvu v gmnziální sdě mtemtických učenic Písmenem znčíme vodorovnou poloosu (ez ohledu n to, zd je hlvní neo vedlejší), písmenem znčíme svislou poloosu (opět ez ohledu n to, zd je hlvní neo vedlejší) Stejně tk písmen A, používáme pro vrchol n vodorovné ose písmen, pro vrchol n svislé ose (opět ez ohledu n to, zd jsou hlvní neo vedlejší) Oznčení ted vážeme n souřdnici (směr), ne n význm V Petákové se používá opčný přístup, kd písmen A, ptří vžd hlvním vrcholům ez ohledu n orientci elips Podoně je hlvní poloos vžd znčen jko, ez ohledu n její orientci (zd je svislá neo vodorovná) Ani jeden z přístupů nijk neovlivňuje výsledk příkldů, jde vžd o to správně rozhodnout, jký význm od v konkrétní situci mjí Jejich pojmenování sice usndňuje orientci, le podsttu prolému nemění Už vůec pk v textu netrvám n tom, vrchol ležel n horní hrnici elips Př 3: Elips je dán rovnicí ohnisk + = 1 Urči její tp, poloos, výstřednost, vrchol 9 Z rovnice vidíme: = =, = 9 = 3 jde o stojtou elipsu Výstřednost: = + e e = = 3 = 5 Střed v počátku S [ 0;0] Vedlejší vrchol (posunuté od středu o ve vodorovném směru): A [ ;0], [ ;0] Hlvní vrchol (posunuté od středu o ve svislém směru): [ 0;3] ; [ 0; 3] Ohnisk (posunutá od středu o e ve svislém směru): F 0; 5, E 0; 5 Ztím známe pouze rovnici elips se středem v počátku soustv souřdnic Vzpomínk n kružnice: x + = 9 kružnice se středem v počátku ( x ) + ( + 1) = 9 kružnice se středem v odě [ ; 1] S 3
Př : Npiš rovnici elips, která je shodná s elipsou [ ; 1] + = 1 jejíž střed leží v odě 9 Podle nlogie s rovnicí kružnice půjde zřejmě o rovnici ( x ) ( + 1 ) + = 1 9 Př 5: Npiš rovnici elips se středem v odě S [ m; n ] s hlvní poloosou vedlejší poloosou Podle předchozího příkldu jde zřejmě o rovnici ( x m ) ( n ) + = 1 Elips, jejíž os jsou rovnoěžné s osmi soustv souřdnic jejíž střed leží v odě S [ m; n ] je popsán rovnicí ( x m ) ( n + ) = 1 Rovnici udeme podoně jko u kružnice říkt středová Poznámk: Pozornější si určitě všimli, že rovnice, které máme k dispozici, popisují pouze elips, jejichž os jsou rovnoěžné se souřdnými osmi Rovnice elips, která je ntočená, je podsttně složitější proto se jí nezýváme Př 6: Njdi střed, vrchol ohnisk elips dné rovnicí ( x ) ( + 1 ) Z rovnice víme: S [ ; 1], =, = 5 stojtá elips Excentricit: e = = 5 = 3 Hlvní vrchol: [ ;], [ ; 6] Vedlejší vrchol: A[ 6; 1], [ ; 1] Ohnisk: E [ ;], F [ ; ] + = 1 16 5 Př 7: Npiš středovou rovnici elips, jejíž os jsou rovnoěžné se souřdnými osmi, ; 1 E 1;1 pokud znáš souřdnice vedlejšího vrcholu [ ] jednoho ohnisk [ ] Nkreslíme si orázek:
E[-1;1] - - x - [;-1] - Os elips jsou rovnoěžné se souřdnými osmi vedlejší os prochází odem je svislá hlvní os musí ýt vodorovná přímk procházející ohniskem S ;1 Průsečík os je středem elips [ ] Výstřednost elips: e = SE = 3 Vedlejší poloos: = S = Hlvní poloos: = + e = + e = + 3 = 13 Rovnice elips: ( x ) ( 1 ) + = 1 13 Shrnutí: Středová rovnice elips je podoná středové rovnici kružnice 5