Prùbìh funkce. d) f(x) = x sin x [rostoucí v R] d) f(x) =ln 1+x [nemá lokální extrém] x = 1 inexní body

Rozměr: px
Začít zobrazení ze stránky:

Download "Prùbìh funkce. d) f(x) = x sin x [rostoucí v R] d) f(x) =ln 1+x [nemá lokální extrém] x = 1 inexní body"

Transkript

1 Urèete, kde je unkce rostoucí a kde klesající: Prùbìh unkce a) () =ln 0; e klesající ; e ; + rostoucí b) () =+ [( ; 0) [ (0; ) klesající ; ( ; ) [ (; +) rostoucí] c) () =e jj [ ( ; 0) rostoucí ; (0; +) klesající] d) () = sin [rostoucí v R] Urèete lokální etrémy unkce: a) () = e [= 0 lokální minimum; = lokální maimum] = arctg + (k +); kzlokální minimum b) () =e cos = arctg + k ; k Zlokální maimum c) () = [= lokální minimum; = 0 lokální maimum] d) () =ln + [nemá lokální etrém] Urèete, ve kterých intervalech je unkce konvení a ve kterých jekonkávní a najdìte inení body: ; [ a) () = ++ 6 ; + konvení ; konkávní 75 = inení body b) () = ( ; ) konvení + ( ; +) konkávní ( j j ; 0) [ (0; ) [ (; +) konvení c) () = (; ) konkávní 5 =;= inení body 0; konvení d) () =ln( + ) ( ; 0) [ ; + konkávní5 =0;= inení body Urèete inení body unkce: a) () = arctg [nemá inení body] b) () =sin(ln ) =e =+k ;kz a) () = 8 +; h ;i [() = nejvìt¹í ; () = nejmen¹í] b) () =tg ; D E ; 6 " = nejmen¹í ; # = 6 nejvìt¹í 6 c) () = arccos ; h;+) [() = 0 nejmen¹í ; nejvìt¹í hodnoty nenabývá] d) () =ln ; (0; i (e )=e nejvìt¹í ; () = 0 nejmen¹í Urèete nejvìt¹í a nejmen¹í hodnotu unkce v uvedeném oboru: e) () =+e ; ( ; +) [(0) = nejmen¹í ; nejvìt¹í hodnoty nenabývá] Tyeset by AMS-T E X

2 Urèete asymtoty grau unkce : a) () = [svislé = ;=; vodorovná y =0] b) () = [svislé = ;= ; ¹ikmé y = v + y = v ] c) () = +ln [svislá =0] d) () =ln e+ svislá = e ; ¹ikmé y = +e v e) () =+ arctg h¹ikmé y =+ v +;y= i v ) ()=e [vodorovná y =0 v +] Urèete rùbìh unkce () =. D =( ; ) [ ( ; ) [ (; +) ; 0 () = + ( ) ; 00 () = ( +) ( ) & & & _ in.bod _ asym. y =0 = = y =0 Urèete rùbìh unkce () =ln D =(0;+); 0 ()=ln +ln; 00 () = (ln +) 0 e e + 0 e e % lok.ma. & lok.min. % _ in.bod asym. nemá Urèete rùbìh unkce () = arctg + D =( ; ) [ (; +) ; H ; ; 0 () = + ; 00 () = ( + ) 0 + = 0 = = = = 0 = = = & & _ in.bod asym. y = = y = =

3 Urèete rùbìh unkce () = e = D =( ; 0) [ (0; +) ; 0 () =e = ( ) ; 00 () =e + = 0 = e = & & lok.min. % asym. nemá =0 nemá Urèete rùbìh unkce () = arccos D = h ; i ; 0 () = arccos ; 00 () = = + 0 % 00 _ Urèete rùbìh unkce () =+e D =( ; +) ; 0 () = e ; 00 () =e & lok.min. % 00 + asym. nemá y = Urèete rùbìh unkce () = ln D =(0;) [ (; +) ; 0 () = ln ln ; 00 () = ln ln 0 e e e e = & & lok.min. % _ in.bod _ asym. = nemá Urèete rùbìh unkce () = arccos + D =( ; +) ; H (0;); 0 ()= jj( + ) ; 00 () = ( + ) ;>0; 00 () = ( + ) ;<0

4 & lok.min. % 00 asym. y = y = Pro které èíslo je souèet s jeho druhou mocninou minimální? [ =] Urèete rozmìry kvádru s ètvercovou základnou, který má øi daném objemu V nejmen¹í ovrch. hkrychle a = V;S=6 V i Na hyerbole dané rovnicí y = naleznìte bod, který je nejblí¾e bodu A = [; 0]. [B = [; ] ;B = [; ]] Urèete intervaly monotonie daných unkcí: a) () = [( ; ) rostoucí ; (; +) klesající] b) () = 6 [(; +) rostoucí ; ( ; ) klesající] c) () = + [( ;0) [ (; +) rostoucí ; ( ; ) [ (0; ) klesající] d) () = [( ; =) rostoucí ; (=; +) klesající] e) () = [( ;) rostoucí ; ( ; ) [ (; +) klesající] + ) ()= + [(=; ) [ (; +) rostoucí ; ( ; 0) [ (0; =) klesající] g) () = e [(0; ) rostoucí ; ( ; 0) [ (; +) klesající] h) () =ln+ [(; +) rostoucí ; (0; ) klesající] Urèete lokální etrémy unkce: " =+k ; maima a) () = cos sin 7 k Z# +k ; =6+k minima 6 b) () = arcsin [lokální maimum v =0] =+k ; maima c) () =je sin j k Z k ; minima d) () =ln + [lokální minimum v =0] lokální maimum v =e e) () =ln lokální minimum v = ) ()=+e [lokální minimum v = ln ] g) () = ln ( + e ) [ unkce nemá lokální etrémy] h) () = arccos + [lokální minimum v =0] Urèete intervaly, ve kterých je unkce konkávní, ve kterých jekonvení a inení body unkce: (; +) konvení a) () = ( ; ) konkávní = inení bod 5

5 b) () = + +e [konvení v R] (=; +) konvení c) () = +ln (0; =) konkávní 5 == inení bod d) () = ( ;) konvení ( ; ) [ (; +) konkávní ( ; =) [ ( =; +) konvení e) () =e ( =; =) konkávní 5 = = inení body ( ; 0) [ (8; +) konvení ) ()=e (0; 8) konkávní 5 =0a= 8 inení body Urèete inení body unkce: a) () =+ sin [ k = k ; k Z] b) () =e = [ = ] c) () =e ( +) [ = ; = ] d) () = ln =e 8= Urèete nejvìt¹í hodnotu (M ) a nejmen¹í hodnotu (m) unkce na daném intervalu: a) () = ; h0;i [M=() = ;m=(=) = =] b) () = +; ( ;) [M = (0) = ;m nenabývá] c) () = ; ( ;) [nenabývá M ani m] d) () = arctg + ; (; i [m = () = arctg ;M nenabývá] e) () = e = ; (0; +) m = (=)=e =;Mnenabývá ) ()=e ; (0; +) M = () = e ;mnenabývá g) () = arctg ; ( ;=i [m = (0)= 0;M nenabývá] h) () = e ; ( ; +) [m = (0)=0;M nenabývá] Urèete asymtoty grau unkce: a) () =e = [y = + v ; =0] b) () = [y= v ; =] c) () = arccos [y = = v ] d) () = ln [nemá asymtoty] e) () =lnr e [y=0 v +;=0] e ) ()=ln [= ; =] + g) () =e + [y= v ] h) () = ln ( + e ) [y =0 v +;y= v ] Urèete rùbìh unkce () = ln. D =(0;) ; 0 () = ( ) ; 00 () = ( ) 5

6 0 = = ln % _ in.bod asym. =0 = Urèete rùbìh unkce () = arccos. D =( ; i[h;+); 0 ()= jj ; 00 () = jj + = 0 = % % 00 + _ asym. y = = y = = Urèete rùbìh unkce () =ln +. D =( ;);; 0 ()= ; 00 () = ( + ) ( ) & min. % 00 + asym. = = Urèete rùbìh unkce () =lnr e e. D =(0;+); 0 e ()= e ; 00 () = ( e ) & 00 + asym. =0 y=0 Urèete rùbìh unkce () =ln +. D =( ;) ; 0 () = ; 00 () = ( ) 6

7 % _ in.bod asym. = = Urèete rùbìh unkce () =ln +. D =( ;+); 0 ()= + ; 00 () = ( ) ( + ) ln % _ in.bod in.bod _ asym. = Urèete rùbìh unkce () = + arcsin D = h0; i ; 0 () =r. ; 00 () = % 00 _ asym. nemá = Urèete rùbìh unkce () =e. D =( ; +) ; 0 () =( )e ; 00 () =( )e e e e % lok.ma. & _ in.bod asym. y =0 Urèete rùbìh unkce () = ln ( + e ). D =( ; +) ; 0 () = e +e ; 00 () = ( + e ) & 00 + asym. y = y =0 7

8 Urèete rùbìh unkce () = e +. D =( ; ) [ ( ; +) ; 0 () = e ( + ) ; 00 ( + ) () = e ( + ) & & lok.min. % 00 + _ asym. y =0 = Urèete rùbìh unkce () =+ ln. D =(0;+); 0 ()= + ln ; 00 () = ln 0 e = % _ in.bod asym. =0 y = Urèete rùbìh unkce () =ln+. D =(0;+); 0 ()= ; 00 () = = + & lok.min. % in.bod _ asym. =0 Urèete rùbìh unkce () = arctg. D =( ; +) ; 0 () = arctg + + ; 00 () = ( + ) & lok.min. % 00 + asym. y = y = Pro které kladné èíslo je jeho souèet s jeho øevrácenou hodnotou minimální? [ = ; s = ] Pro které kladné èíslo je jeho rozdíl s jeho druhou mocninou maimální? = ; r = Do kru¾nice o olomìru R vei¹te obdélník, který má nejvìt¹í obsah a tento obsah urèete. 8

9 ètverec o stranì a = R ;P=R Který obdélník vesaný do ùlkruhu o olomìru R má nejvìt¹í obsah a jaký? a = R ;b= R ;P=R Do koule o olomìru R vei¹te válec, který má nejvìt¹í objem, a který má nejvìt¹í lá¹». r = Rr ;h=r ;V= R 6 ro lá¹» bez odstav r = R ;h=r ;S=R 5+ ro lá¹» s odstavami r = Rr 5 5 ;h=rr5 ; S = R Do rotaèního ku¾ele s vý¹kou v a olomìrem odstavy R vei¹te válec s nejvìt¹ím objemem. r = R; h= v; V = vr 7 Který kvádr se ètvercovou odstavou má øi daném objemu V nejmen¹í ovrch? Který válec má øi daném objemu V minimální ovrch? i hkrychle a = V;v= V;S=6 V " r r V V # r = ;v= ;S= V 75 9

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu,

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu, Příklad Najděte intervaly monotonie a lokální etrémy funkce f() = +. ( + ) ( rostoucí v intervalech (, ) a 7, + ) klesající v intervalu ( ), 7 5 5 v bodě = 7 5 je lokální minimum 4. Najděte intervaly monotonie

Více

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Dierenciální počet unkcí jedné reálné proměnné - 5 - PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Cílem vyšetřování průběhu unkce je umět nakreslit její gra Obvykle postupujeme tak že nalezneme její maimální deiniční

Více

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce MATA P1 Užití derivací Funkce rostoucí a klesající: Deinice rostoucí a klesající unkce Funkce je rostoucí v intervalu (a,b), právě když platí: ( ) ( ) ( ), a, b : 1 1 1 Funkce je klesající v intervalu

Více

Katedra aplikované matematiky, VŠB TU Ostrava.

Katedra aplikované matematiky, VŠB TU Ostrava. SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY JIŘÍ BOUCHALA Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala 3 Předmluva Cílem této sbírky je poskytnout studentům vhodné

Více

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost .7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,

Více

Příklady z matematiky(pro ITS)

Příklady z matematiky(pro ITS) Příklady z matematikypro ITS) František Mošna Definiční obor: Zjistěte maimální definiční obor funkce:. f)=ln 2 8 9 ) + +2 Df= 2, ) 9, ).2 f)=ln 2 4 5 ) 36 2 Df= 6, ) 5,6.3 f)=ln 2 7 8 ) 00 2 Df= 0, 9)

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

27. června Abstrakt. druhá odmocnina a pod. jsou vynechány. Také je vynechán např. tangensu.) 1 x ln x. e x sin x. arcsin x. cos x.

27. června Abstrakt. druhá odmocnina a pod. jsou vynechány. Také je vynechán např. tangensu.) 1 x ln x. e x sin x. arcsin x. cos x. Základní elementární funkce Robert Mařík 7. června 00 ln e sin arcsin cos arccos tg arctg Abstrakt V tomto dokumentu jsou uvedeny základní vlastnosti nejdůležitějších základních elementárních funkcí. (Triviální

Více

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0. Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo

Více

Funkce. Vlastnosti funkcí

Funkce. Vlastnosti funkcí FUNKCE Funkce zobrazení (na číselných množinách) předpis, který každému prvku z množiny M přiřazuje právě jeden prvek z množiny N zapisujeme ve tvaru y = f () značíme D( f ) Vlastnosti funkcí 1. Definiční

Více

Seminární práce z matematiky

Seminární práce z matematiky Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro

Více

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017 Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

NMAF 051, ZS Zkoušková písemná práce 4. února 2009

NMAF 051, ZS Zkoušková písemná práce 4. února 2009 Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 4 4

Více

10. Derivace, průběh funkce

10. Derivace, průběh funkce Moderní technologie ve studiu aplikované yziky CZ..07/..00/07.008 0. Derivace, průběh unkce Před mnoha lety se matematici snažili o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici

Více

1. Písemka skupina A...

1. Písemka skupina A... . Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce

Více

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, ) Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(

Více

Výsledky úloh. 1. Úpravy výrazů + x 0, 2x 1 2 2, x Funkce. = f) a 2.8. ( ) ( ) 1.6. , klesající pro a ( 0, ) ), rostoucí pro s (, 1)

Výsledky úloh. 1. Úpravy výrazů + x 0, 2x 1 2 2, x Funkce. = f) a 2.8. ( ) ( ) 1.6. , klesající pro a ( 0, ) ), rostoucí pro s (, 1) Výsledky úloh. Úpravy výrazů.. +, + R.., a 0, a b.., a ± b, a b a b a +.. + a +, 0, a.., a 0; ± ; n + a.. a + b 9, > 0.7., a ± b a b m n.8., m 0, n 0, m n.9. a, a > 0 m + n.0., ;0; ;;.., k.. tg, k sin.

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

MATEMATIKA I - vybrané úlohy ze zkoušek v letech

MATEMATIKA I - vybrané úlohy ze zkoušek v letech MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné

Více

1. Písemka skupina A1..

1. Písemka skupina A1.. 1. Psemka skupina A1.. Nartněte grafy funkc (v grafu oznate všechny průseky funkce s osami) 3 y y sin( ) y y log ( 1) 1 y 1 y = arccotg - 1) Urete, jestli je funkce y = - + 1 omezená zdola nebo shora?

Více

Rolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b

Rolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b Průběh unkce Rolleova věta Mějme unkci, která má tto vlastnosti : a) je spojitá v a, b b) v každém bodě a,b má derivaci c) (a) = (b). b Potom eistuje v a, alespoň jeden bod c, v němž ( c) : 1, 3 0 1 1

Více

7. DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH... 83. 7.1. Definiční oblasti... 83 Úlohy k samostatnému řešení... 83

7. DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH... 83. 7.1. Definiční oblasti... 83 Úlohy k samostatnému řešení... 83 Sbírka úloh z matematik 7 DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH 8 7 Definiční oblasti 8 Úloh k samostatnému řešení 8 7 Parciální derivace 8 Úloh k samostatnému řešení 8 7 Tečná rovina a normála 8

Více

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.) Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor

Více

h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R

h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R .4. Cíle V této kapitole jsou deinován nejdůležitější pojm týkající se vlastností unkcí. Při dalším studiu budou tto vlastnosti často používán. Je proto nutné si jejich deinice dobře zapamatovat. Deinice.4..

Více

NMAF 051, ZS Zkoušková písemná práce 17. února ( sin (π 2 arctann) lim + 3. n 2. π 2arctan n. = lim + 3.

NMAF 051, ZS Zkoušková písemná práce 17. února ( sin (π 2 arctann) lim + 3. n 2. π 2arctan n. = lim + 3. Jednotlivé kroky při výpočtech stručně ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 Celkem bodů Bodů 5 7 0

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Označení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).

Označení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x). 9 Využití derivace 9.1 Derivace vyšších řádů Definice 1. Nechť funkce má derivaci v nějakém okolí bodu c D(f). Nechť funkce ϕ() =f () máderivacivboděc. Pak hodnotu ϕ (c) nazýváme derivací 2. řádu (2. derivací)

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

Diferenciální počet funkcí jedné reálné proměnné LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY

Diferenciální počet funkcí jedné reálné proměnné LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY Diferenciální počet funkcí jedné reálné proměnné - 4.1 - LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY Při hledání lokálních etrémů postupujeme podle následujícího programu Nalezneme

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =

Více

Příklady k přednášce 3

Příklady k přednášce 3 Příklad k přednášce 3 1. Určete, zda závislost a daná uvedeným vztahem je funkce = f(). V případě záporné odpovědi stanovte, kterými funkcemi je možné příslušnou závislost popsat. 1. =3 2, (, + ) je funkcí,

Více

Aplikace derivace ( )

Aplikace derivace ( ) Aplikace derivace Mezi aplikace počítáme:. LHospitalovo pravidlo. Etrémy funkce (růst a pokles funkce) 3. Inflee (konávnost a konvenost). Asymptoty funkce (se i bez směrnice) 5. Průběh funkce 6. Ekonomické

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce

Více

Obsah. Derivace funkce. Petr Hasil. L Hospitalovo pravidlo. Konvexnost, konkávnost a inflexní body Asymptoty

Obsah. Derivace funkce. Petr Hasil. L Hospitalovo pravidlo. Konvexnost, konkávnost a inflexní body Asymptoty Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) MA I (M0) / 46 Obsah Základní vlastnosti derivace Geometrický význam derivace Věty o střední hodnotě L Hospitalovo pravidlo 2 Etrémy Konvenost,

Více

Matematika 1. Matematika 1

Matematika 1. Matematika 1 5. přednáška Elementární funkce 24. října 2012 Logaritmus a exponenciální funkce Věta 5.1 Existuje právě jedna funkce (značíme ji ln a nazýváme ji přirozeným logaritmem), s následujícími vlastnostmi: D(ln)

Více

Cyklometrické funkce

Cyklometrické funkce 4 Cyklometrické funkce V minulé kapitole jsme zkoumali první funkci inverzní ke funkci goniometrické (tyto funkce se nazývají cyklometrické) funkci y = arcsin x (inverzní k funkci y = sin x ) Př: Nakresli

Více

Diferenciální počet funkce jedné proměnné 1

Diferenciální počet funkce jedné proměnné 1 Diferenciální počet funkce jedné proměnné Limita funkce Pojem limita můžeme česk vjádřit jako mez, případně hranice Zavedení pojmu limita si objasníme na příkladu Příklad : Funkce f ( ) Obr 6: Graf funkce

Více

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že .5. Cíle Uvedeme nní několik unkcí, z nichž většinu studenti znají již ze střední škol. Nazveme je základní elementární unkce. Konečným počtem sčítání, odčítání, násobení, dělení, skládání a případně invertování

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Ukázka závěrečného testu

Ukázka závěrečného testu Okruhy otázek pro závěrečný test ) Vlastnosti funkce ) Graf funkce ) Definiční obor funkce ) imita funkce ) Derivace funkce 6) Užití derivace 7) Matice 8) Řešení soustavy lineárních rovnic 9) Určitý integrál

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická akulta DRUHÁ SEMINÁRNÍ PRÁCE Z DIFERENCIÁLNÍHO POČTU PRŮBĚH FUNKCE 000/001 Cirik, M-ZT Zadání: Vyšetřete průběh unkce ( ) : y Vypracování: ( ) : y Předně určíme deiniční

Více

Příklady ke cvičením z matematické analýzy- ZS 2008/2009- Série I.

Příklady ke cvičením z matematické analýzy- ZS 2008/2009- Série I. Příklady ke cvičením z matematické analýzy- ZS 008/009- Série I. Jako slunce zastiňuje hvězdy svým jasem, tak i vzdělaný člověk může zastínit slávu druhých lidí ze společnosti, bude-li předkládat matematické

Více

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina Instrukce: Příklady řešte výhradně elementárně, bez použití nástrojů z diferenciálního a integrálního počtu. Je-li součástí řešení úlohy podmnožina reálných čísel, vyjádřete ji jako disjunktní sjednocení

Více

Průběh funkce pomocí systému MAPLE.

Průběh funkce pomocí systému MAPLE. Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.

Více

Průběh funkce pomocí systému MAPLE.

Průběh funkce pomocí systému MAPLE. Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.

Více

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x Příkad Nalezněte definiční obor funkce f(x) = ln arcsin + x x Určete definiční obor funkce f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech [;?] a Určete definiční obor

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

MATEMATICKÁ ANALÝZA STUDIJNÍ OPORA PRO KOMBINOVANÉ

MATEMATICKÁ ANALÝZA STUDIJNÍ OPORA PRO KOMBINOVANÉ MATEMATICKÁ ANALÝZA STUDIJNÍ OPORA PRO KOMBINOVANÉ STUDIUM MATEMATICKÁ ANALÝZA RNDr. Vladimíra MÁDROVÁ, CSc., RNDr. Vratislava MOŠOVÁ, CSc., Moravská vysoká škola Olomouc, o.p.s., 8 Moravská vysoká škola

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f.

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f. 1. Funkce Deinice 1.1. Zobrazení nazýváme reálná unkce, jestliže H() R. Další speciikaci můžeme provést podle deiničního oboru zobrazení. Deinice 1.2. Reálná unkce se nazývá (1) unkce jedné reálné proměnné,

Více

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou

Více

Cyklometrické funkce

Cyklometrické funkce 4..7 Cyklometrické funkce Předpoklady: 46 Cyklometrické funkce: funkce inverzní k funkcím goniometrickým z minulé hodiny známe první cyklometrickou funkci y = arcsin x (inverzní k funkci y = sin x ). Př.

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika AA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2005 () Jsou dány matice A = AB BA. [ AB BA

Více

v trojúhelníku P QC sestrojíme vý¹ky na základnu a jedno rameno, patu vý¹ky na rameno oznaèíme R a patu na základnu S

v trojúhelníku P QC sestrojíme vý¹ky na základnu a jedno rameno, patu vý¹ky na rameno oznaèíme R a patu na základnu S Øe¹ení 5. série IV. roèníku kategorie JUNIOR RS-IV-5-1 Pro na¹e úvahy bude vhodné upravit si na¹í rovnici do tvaru 3 jx 1 4 j+2 = 5 + 4 sin 2x: Budeme uva¾ovat o funkci na pravé stranì na¹í rovnice, tj.

Více

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4 Přednáška z MA Michal Tuláček 6. prosince 004 Obsah IV.7 Průběhy funkce 3 Vyšetřování průběhu funkce- KUCHAŘKA 4 3 Vzorový příklad na průběh funkce ze cvičení 4 4 Příkladynadobumezikapremahusou 7 Definice:

Více

Průběh funkce II (hledání extrémů)

Průběh funkce II (hledání extrémů) .. Průběh funkce II (hledání etrémů) Předpoklad: Pedagogická poznámka: Poslední příklad v běžné vučovací hodině nestíháme. Rchlost postupu je možné značně ovlivnit tím, kolik času dáte studentům na výzkumné

Více

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M06, GA01 M05 DERIVACE FUNKCE

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M06, GA01 M05 DERIVACE FUNKCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M06, GA0 M05 DIFERENCIÁLNÍ POČET I DERIVACE FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset by L

Více

Derivace vyšších řádů, aplikace derivací

Derivace vyšších řádů, aplikace derivací Derivace vyšších řádů, aplikace derivací Značení derivací vyšších řádů Máme funkci f: y = f x f x druhá derivace funkce y = f x f k x k-tá derivace funkce y = f x Derivace vyšších řádů počítáme opakovaným

Více

Funkce. b) D =N a H je množina všech kladných celých čísel,

Funkce. b) D =N a H je množina všech kladných celých čísel, Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (

Více

soubor FUNKCÍ příručka pro studenty

soubor FUNKCÍ příručka pro studenty soubor FUNKCÍ příručka pro studenty 1 Obsah Poznámky 6 lineární funkce mocninné funkce s přirozeným exponentem o sudým o lichým s celým záporným exponentem o sudým o lichým s racionálním exponentem o druhá

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

(Zavedení pojmu funkce, vlastnosti. Repetitorium z matematiky

(Zavedení pojmu funkce, vlastnosti. Repetitorium z matematiky Funkce Zavedení pojmu unkce, vlastnosti unkcí,lineární, kvadratické a mocninné unkce Repetitorium z matematik Podzim 01 Ivana Medková A Zavedení pojmu unkce V odorných a přírodovědných předmětech se často

Více

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat?

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat? Vyšetřování průběhu funkce pomocí programu MatLab K práci budeme potřebovat následující příkazy pro 1. Co budeme potřebovat? (a) zadání jednotlivých výrazů symbolicky (obecně) (b) řešení rovnice f()=0,

Více

Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body

Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body Zkouška ze Základů vyšší matematiky ZVTA (LDF, 8.2.202) 60 minut 2 3 4 5 6 7 Jméno:................................. Součet Koeficient Body. [6 bodů] a) Definujte pojem primitivní funkce. Co musí platit,

Více

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

f jsou osově souměrné podle přímky y = x. x R. Najdi

f jsou osově souměrné podle přímky y = x. x R. Najdi Nechť je prostá unkce v pořád klesá) a zobrazuje D na H deinovaná vztahem: D = a) b) Gra unkcí a H, H = D INVERZNÍ FUNKCE D (tj. v celém svém deiničním oboru pořád roste nebo. Pak k této unkci eistuje

Více

Logika. 1. cvičení. Matematika 1, NMMA701, Ondřej Bouchala

Logika. 1. cvičení. Matematika 1, NMMA701, Ondřej Bouchala Logika 1. cvičení Teorie: Konjunkce A B A B 1 1 1 1 0 0 0 1 0 0 0 0 Disjunkce A B A B 1 1 1 1 0 1 0 1 1 0 0 0 Implikace A B A B 1 1 1 1 0 0 0 1 1 0 0 1 Ekvivalence A B A B 1 1 1 1 0 0 0 1 0 0 0 1 Příklady:

Více

Derivace a průběh funkce příklady z písemných prací

Derivace a průběh funkce příklady z písemných prací Derivace a průběh funkce příklady z písemných prací Vyšetřete průběh následuících funkcí. Příklad. = x +arctg( x ). D(f) =R.. Funkce e spoitá na R. 3. Funkce není lichá, sudá, ani periodická.. lim x ±

Více

IX. Vyšetřování průběhu funkce

IX. Vyšetřování průběhu funkce IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde

Více

x 2(A), x y (A) y x (A), 2 f

x 2(A), x y (A) y x (A), 2 f II.10. Etrém funkcí Věta (nutná podmínka pro lokální etrém). Necht funkce f(, ) je diferencovatelná v bodě A. Má-li funkce f v bodě A lokální etrém, pak gradf(a) = 0. Onačme hlavní minor matice druhých

Více

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 1, varianta A Příklad 1 (5 bodů) Koule o poloměru R1 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční

Více

6. URČITÝ INTEGRÁL Výpočet určitého integrálu Úlohy k samostatnému řešení... 68

6. URČITÝ INTEGRÁL Výpočet určitého integrálu Úlohy k samostatnému řešení... 68 Sbírka úloh z matematik 6. URČITÝ INTEGRÁL... 68 6.. Výpočet určitého integrálu... 68 Úloh k samostatnému řešení... 68 6.. Geometrické aplikace... 69 6... Obsah rovinného obrazce... 69 Úloh k samostatnému

Více

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem

Více

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)

Více

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R + Funkce. Vlastnosti funkcí Funkce f proměnné R je zobrazení na množině reálných čísel (reálnému číslu je přiřazeno právě jedno reálné číslo). Z grafu poznáme, zda se jedná o funkci tak, že nenajdeme žádnou

Více

Zimní semestr akademického roku 2013/2014. 3. září 2014

Zimní semestr akademického roku 2013/2014. 3. září 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 03/04 3. září 04 Předmluva ii Rozjezd

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

Diferencovatelné funkce

Diferencovatelné funkce Přednáška 5 Diferencovatelné funkce Jak jsme se zmínili v minulé přednášce, je lavní myšlenkou diferenciálnío počtu naradit danou funkci y = f) v okolí bodu a polynomem V této přednášce se budeme podrobně

Více

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Kružnice, kruh, tečny, obsahy, goniometrické funkce, integrace

Více

Matematika I Reálná funkce jedné promìnné

Matematika I Reálná funkce jedné promìnné Matematika I Reálná funkce jedné promìnné RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Reálná funkce Def. Zobrazení f nazveme

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické

Více

PRŮBĚH FUNKCE - CVIČENÍ

PRŮBĚH FUNKCE - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.

Více

Soubor příkladů z Matematické analýzy 1 (M1100) 1

Soubor příkladů z Matematické analýzy 1 (M1100) 1 Soubor příkladů z Matematické analýzy (M00). Opakování. Upravte následující výrazy: 3 3 +3 3 3 6+ (+) 3 [ a+b a b ] ( b ) (a a b a+b b a b a b ) (a b) 3 [(a b) 4 (a+b) 5 ] 6 3 a 4 a 3 a 3 aa 3 (f) 3 +

Více

2. FUNKCE JEDNÉ PROMĚNNÉ

2. FUNKCE JEDNÉ PROMĚNNÉ 2. FUNKCE JEDNÉ PROMĚNNÉ Funkce 2.. Definice Říkáme, že na množině D reálných čísel je definována funkce f jedné reálné proměnné, je-li dán předpis, podle kterého je ke každému číslu x D přiřazeno právě

Více

MATEMATIKA I. Diferenciální počet funkcí jedné proměnné

MATEMATIKA I. Diferenciální počet funkcí jedné proměnné Evropský polytechnický institut, s.r.o.. soukromá vysoká škola na Moravě Kunovice MATEMATIKA I. Dierenciální počet unkcí jedné proměnné RNDr. Jitka Jablonická Doc. RNDr. Daniela Hricišáková, CSc. Evropský

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? 2n M = 3n + 1 n N.

Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? 2n M = 3n + 1 n N. 4 4. týden 4.1 supremum a infimum množiny Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? Příklad 4.2 Zkuste uhádnout sup M, inf

Více

1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y) pro x, y R;

1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y) pro x, y R; 3. Elementární funkce. Věta C. Existují funkce sin(x) a cos(x) z R do R a číslo π (0, ) tak, že platí: 1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y)

Více

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO - CVIČENÍ

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně LDF)

Více

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů 3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)

Více

D(f) =( 1, 1) [ ( 1, 1) [ (1, 1). 2( x)3 ( x) 2 1 = 2(x) 3. (x) 2 1 = f(x) Funkce je lichá, není periodická

D(f) =( 1, 1) [ ( 1, 1) [ (1, 1). 2( x)3 ( x) 2 1 = 2(x) 3. (x) 2 1 = f(x) Funkce je lichá, není periodická Vyšetříme funkci f(x): f(x) = 2x3.. Stanovme definiční obor funkce D(f) a zjistíme,ve kterých bodech je funkce sojitá D(f) =(, ) [ (, ) [ (, ). 2. Počítáme f( x) = 2( x)3 ( x) 2 = 2(x) 3 (x) 2 = f(x) Funkce

Více

Průběh funkce jedné proměnné

Průběh funkce jedné proměnné Průběh funkce jedné proměnné Průběh funkce Newtonova metoda. p.1/8 Průběh funkce Příklad 4.1.1 Vyšetřete průběh funkce f(x) =ln 3 x. Příklad 4.1.2 Vyšetřete průběh funkce f(x) =arctg 1 x. Příklad 4.1.3

Více